mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-28 12:25:03 +00:00
ggml : add ggml_set_rows (#14274)
* ggml : add ggml_set_rows Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using indices from 'c'. ref: #8366 * use I64 for indices * ggml : add repeat impl for i64 * ggml : add ggml_is_contiguous_rows * ggml : ggml_set_rows support broadcast * ggml : ggml_set_rows support quantized dst ggml-ci * ggml : support GGML_TYPE_F32 ".from_float" trait * ggml : ggml_set_rows update comment + better index name * tests : add ggml_set_rows * metal : add ggml_set_rows implementation ggml-ci * ggml : simplify forward_dup_f32 * ggml : fix supports_op * tests : add comment to set_rows * ggml : leave the repeat_i64 for a separate PR ggml-ci * ggml : set_rows use std::min instead of MIN * ggml : better error message for set_rows unsupported type * metal : perform op->type check only once * tests : more consistent implementation + more tests ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
committed by
GitHub
parent
f667f1e624
commit
8d94219a4a
@ -55,6 +55,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I64) {
|
||||
v = (float) *(int64_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
|
@ -134,6 +134,7 @@ extern "C" {
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
|
||||
|
@ -470,6 +470,7 @@ extern "C" {
|
||||
GGML_OP_TRANSPOSE,
|
||||
GGML_OP_GET_ROWS,
|
||||
GGML_OP_GET_ROWS_BACK,
|
||||
GGML_OP_SET_ROWS,
|
||||
GGML_OP_DIAG,
|
||||
GGML_OP_DIAG_MASK_INF,
|
||||
GGML_OP_DIAG_MASK_ZERO,
|
||||
@ -687,6 +688,9 @@ extern "C" {
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
// true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
|
||||
GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
@ -1375,6 +1379,23 @@ extern "C" {
|
||||
struct ggml_tensor * b, // row indices
|
||||
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
|
||||
|
||||
// a TD [n_embd, ne1, ne2, ne3]
|
||||
// b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
|
||||
// c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
|
||||
//
|
||||
// undefined behavior if destination rows overlap
|
||||
//
|
||||
// broadcast:
|
||||
// ne2 % ne11 == 0
|
||||
// ne3 % ne12 == 0
|
||||
//
|
||||
// return view(a)
|
||||
GGML_API struct ggml_tensor * ggml_set_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // destination
|
||||
struct ggml_tensor * b, // source
|
||||
struct ggml_tensor * c); // row indices
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_diag(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
@ -195,6 +195,7 @@ typedef pthread_t ggml_thread_t;
|
||||
|
||||
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = {
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp32,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
|
||||
.vec_dot_type = GGML_TYPE_F32,
|
||||
.nrows = 1,
|
||||
@ -1817,6 +1818,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_get_rows_back(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
ggml_compute_forward_set_rows(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_DIAG:
|
||||
{
|
||||
ggml_compute_forward_diag(params, tensor);
|
||||
@ -2170,6 +2175,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
// FIXME: get_rows can use additional threads, but the cost of launching additional threads
|
||||
// decreases performance with GPU offloading
|
||||
@ -3124,6 +3130,10 @@ enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct g
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) {
|
||||
memcpy(y, x, n * sizeof(float));
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
|
@ -416,6 +416,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_SET_ROWS:
|
||||
return
|
||||
op->type != GGML_TYPE_IQ3_XXS &&
|
||||
op->type != GGML_TYPE_IQ3_S &&
|
||||
|
@ -696,24 +696,8 @@ static void ggml_compute_forward_dup_f32(
|
||||
if (ggml_is_contiguous(dst)) {
|
||||
// TODO: simplify
|
||||
if (nb00 == sizeof(float)) {
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
size_t id = 0;
|
||||
const size_t rs = ne00 * nb00;
|
||||
char * dst_ptr = (char *) dst->data;
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
id += rs * ir0;
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||||
memcpy(dst_ptr + id, src0_ptr, rs);
|
||||
id += rs;
|
||||
}
|
||||
id += rs * (ne01 - ir1);
|
||||
}
|
||||
}
|
||||
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
||||
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
|
||||
if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
||||
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
|
||||
|
||||
size_t id = 0;
|
||||
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
||||
@ -724,7 +708,7 @@ static void ggml_compute_forward_dup_f32(
|
||||
id += rs * ir0;
|
||||
for (int i01 = ir0; i01 < ir1; i01++) {
|
||||
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
|
||||
from_float(src0_ptr, dst_ptr + id, ne00);
|
||||
id += rs;
|
||||
}
|
||||
id += rs * (ne01 - ir1);
|
||||
@ -2300,6 +2284,12 @@ void ggml_compute_forward_repeat(
|
||||
{
|
||||
ggml_compute_forward_repeat_f32(params, dst);
|
||||
} break;
|
||||
// TODO: templateify the implemenation and support for I64
|
||||
// ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
|
||||
//case GGML_TYPE_I64:
|
||||
// {
|
||||
// ggml_compute_forward_repeat_i64(params, dst);
|
||||
// } break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
@ -4470,6 +4460,74 @@ void ggml_compute_forward_get_rows(
|
||||
//}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_set_rows_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ne01;
|
||||
|
||||
assert(ne0 == nc);
|
||||
assert(ne2 == ne02);
|
||||
assert(ne3 == ne03);
|
||||
assert(src0->type == GGML_TYPE_F32);
|
||||
assert(ne02 % ne11 == 0);
|
||||
assert(ne03 % ne12 == 0);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
// rows per thread
|
||||
const int64_t dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int64_t ir0 = dr*ith;
|
||||
const int64_t ir1 = std::min(ir0 + dr, nr);
|
||||
|
||||
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; ++i03) {
|
||||
for (int64_t i02 = 0; i02 < ne02; ++i02) {
|
||||
for (int64_t i = ir0; i < ir1; ++i) {
|
||||
const int64_t i12 = i03%ne12;
|
||||
const int64_t i11 = i02%ne11;
|
||||
const int64_t i10 = i;
|
||||
|
||||
const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
GGML_ASSERT(i1 >= 0 && i1 < ne1);
|
||||
|
||||
from_float(
|
||||
(const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
|
||||
((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_set_rows(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_set_rows_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_get_rows_back
|
||||
|
||||
static void ggml_compute_forward_get_rows_back_f32_f16(
|
||||
|
@ -53,6 +53,7 @@ void ggml_compute_forward_permute(const struct ggml_compute_params * params, str
|
||||
void ggml_compute_forward_transpose(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rows_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_set_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag_mask_inf(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag_mask_zero(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
@ -521,6 +521,22 @@ typedef struct {
|
||||
uint64_t nb2;
|
||||
} ggml_metal_kargs_get_rows;
|
||||
|
||||
typedef struct {
|
||||
int32_t nk0;
|
||||
int32_t ne01;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
int32_t ne11;
|
||||
int32_t ne12;
|
||||
uint64_t nb10;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb1;
|
||||
uint64_t nb2;
|
||||
uint64_t nb3;
|
||||
} ggml_metal_kargs_set_rows;
|
||||
|
||||
typedef struct {
|
||||
int64_t ne00;
|
||||
int64_t ne01;
|
||||
|
@ -202,6 +202,15 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_F16,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1,
|
||||
GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_L2_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
@ -1169,6 +1178,15 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_F32, set_rows_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_F16, set_rows_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16, set_rows_bf16, use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0, set_rows_q8_0, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0, set_rows_q4_0, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1, set_rows_q4_1, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0, set_rows_q5_0, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1, set_rows_q5_1, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL, set_rows_iq4_nl, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_L2_NORM, l2_norm, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction);
|
||||
@ -1635,6 +1653,10 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
const bool use_bfloat = ctx_dev->use_bfloat;
|
||||
|
||||
if (!use_bfloat) {
|
||||
if (op->type == GGML_TYPE_BF16) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0, n = 3; i < n; ++i) {
|
||||
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
|
||||
return false;
|
||||
@ -1804,6 +1826,27 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
{
|
||||
return op->ne[3] == 1;
|
||||
}
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
if (op->src[0]->type != GGML_TYPE_F32) {
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
case GGML_TYPE_Q5_1:
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
};
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@ -3777,13 +3820,74 @@ static bool ggml_metal_encode_node(
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:3];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_F16 ].pipeline; break;
|
||||
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16 ].pipeline; break;
|
||||
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL].pipeline; break;
|
||||
default: GGML_ABORT("not implemented");
|
||||
}
|
||||
|
||||
const int32_t nk0 = ne0/ggml_blck_size(dst->type);
|
||||
|
||||
int nth = 32; // SIMD width
|
||||
|
||||
while (nth < nk0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
||||
nth *= 2;
|
||||
}
|
||||
|
||||
int nrptg = 1;
|
||||
if (nth > nk0) {
|
||||
nrptg = (nth + nk0 - 1)/nk0;
|
||||
nth = nk0;
|
||||
|
||||
if (nrptg*nth > (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
||||
nrptg--;
|
||||
}
|
||||
}
|
||||
|
||||
nth = MIN(nth, nk0);
|
||||
|
||||
ggml_metal_kargs_set_rows args = {
|
||||
/*.nk0 =*/ nk0,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.ne11 =*/ ne11,
|
||||
/*.ne12 =*/ ne12,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb1 =*/ nb1,
|
||||
/*.nb2 =*/ nb2,
|
||||
/*.nb3 =*/ nb3,
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nrptg - 1)/nrptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, nrptg, 1)];
|
||||
} break;
|
||||
case GGML_OP_RMS_NORM:
|
||||
{
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
|
@ -35,6 +35,17 @@ constexpr constant static float kvalues_iq4nl_f[16] = {
|
||||
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
|
||||
};
|
||||
|
||||
static inline int best_index_int8(int n, constant float * val, float x) {
|
||||
if (x <= val[0]) return 0;
|
||||
if (x >= val[n-1]) return n-1;
|
||||
int ml = 0, mu = n-1;
|
||||
while (mu-ml > 1) {
|
||||
int mav = (ml+mu)/2;
|
||||
if (x < val[mav]) mu = mav; else ml = mav;
|
||||
}
|
||||
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||
}
|
||||
|
||||
// NOTE: this is not dequantizing - we are simply fitting the template
|
||||
template <typename type4x4>
|
||||
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
|
||||
@ -97,6 +108,173 @@ void dequantize_q4_0_t4(device const block_q4_0 * xb, short il, thread type4 & r
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_q4_0(device const float * src, device block_q4_0 & dst) {
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / -8;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst.d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK4_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
|
||||
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
|
||||
|
||||
dst.qs[j] = xi0;
|
||||
dst.qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_q4_1(device const float * src, device block_q4_1 & dst) {
|
||||
float min = FLT_MAX;
|
||||
float max = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; j++) {
|
||||
const float v = src[j];
|
||||
if (min > v) min = v;
|
||||
if (max < v) max = v;
|
||||
}
|
||||
|
||||
const float d = (max - min) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst.d = d;
|
||||
dst.m = min;
|
||||
|
||||
for (int j = 0; j < QK4_1/2; ++j) {
|
||||
const float x0 = (src[0 + j] - min)*id;
|
||||
const float x1 = (src[QK4_1/2 + j] - min)*id;
|
||||
|
||||
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
|
||||
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
|
||||
|
||||
dst.qs[j] = xi0;
|
||||
dst.qs[j] |= xi1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_q5_0(device const float * src, device block_q5_0 & dst) {
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK5_0; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / -16;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst.d = d;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_0/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK5_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
|
||||
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
|
||||
|
||||
dst.qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||
}
|
||||
|
||||
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
||||
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
dst.qh[j] = qh8[j];
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_q5_1(device const float * src, device block_q5_1 & dst) {
|
||||
float max = src[0];
|
||||
float min = src[0];
|
||||
|
||||
for (int j = 1; j < QK5_1; j++) {
|
||||
const float v = src[j];
|
||||
min = v < min ? v : min;
|
||||
max = v > max ? v : max;
|
||||
}
|
||||
|
||||
const float d = (max - min) / 31;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst.d = d;
|
||||
dst.m = min;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_1/2; ++j) {
|
||||
const float x0 = (src[0 + j] - min)*id;
|
||||
const float x1 = (src[QK5_1/2 + j] - min)*id;
|
||||
|
||||
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
||||
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
||||
|
||||
dst.qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
||||
}
|
||||
|
||||
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
||||
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
dst.qh[j] = qh8[j];
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_iq4_nl(device const float * src, device block_iq4_nl & dst) {
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_NL; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / kvalues_iq4nl_f[0];
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK4_NL/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
|
||||
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
|
||||
|
||||
dst.qs[j] = xi0 | (xi1 << 4);
|
||||
|
||||
const float v0 = kvalues_iq4nl_f[xi0];
|
||||
const float v1 = kvalues_iq4nl_f[xi1];
|
||||
const float w0 = src[0 + j]*src[0 + j];
|
||||
const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
|
||||
sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
|
||||
sumq2 += w0*v0*v0 + w1*v1*v1;
|
||||
|
||||
}
|
||||
|
||||
dst.d = sumq2 > 0 ? sumqx/sumq2 : d;
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_1(device const block_q4_1 * xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
|
||||
@ -279,6 +457,26 @@ void dequantize_q8_0_t4(device const block_q8_0 *xb, short il, thread type4 & re
|
||||
}
|
||||
}
|
||||
|
||||
void quantize_q8_0(device const float * src, device block_q8_0 & dst) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = src[j];
|
||||
amax = MAX(amax, fabs(v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst.d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = src[j]*id;
|
||||
|
||||
dst.qs[j] = round(x0);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
|
||||
const float d = xb->d;
|
||||
@ -4410,6 +4608,7 @@ template [[host_name("kernel_cpy_bf16_f32")]] kernel kernel_cpy_t kernel_cpy<bf
|
||||
template [[host_name("kernel_cpy_bf16_bf16")]] kernel kernel_cpy_t kernel_cpy<bfloat, bfloat>;
|
||||
#endif
|
||||
|
||||
// TODO: templetify these kernels
|
||||
kernel void kernel_cpy_f32_q8_0(
|
||||
constant ggml_metal_kargs_cpy & args,
|
||||
device const char * src0,
|
||||
@ -4433,23 +4632,7 @@ kernel void kernel_cpy_f32_q8_0(
|
||||
for (int64_t i00 = tpitg.x*QK8_0; i00 < args.ne00; i00 += ntg.x*QK8_0) {
|
||||
device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
const float v = src[j];
|
||||
amax = MAX(amax, fabs(v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK8_0].d = d;
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = src[j]*id;
|
||||
|
||||
dst_data[i00/QK8_0].qs[j] = round(x0);
|
||||
}
|
||||
quantize_q8_0(src, dst_data[i00/QK8_0]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4476,32 +4659,7 @@ kernel void kernel_cpy_f32_q4_0(
|
||||
for (int64_t i00 = tpitg.x*QK4_0; i00 < args.ne00; i00 += ntg.x*QK4_0) {
|
||||
device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_0; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / -8;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK4_0].d = d;
|
||||
|
||||
for (int j = 0; j < QK4_0/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK4_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
|
||||
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
|
||||
|
||||
dst_data[i00/QK4_0].qs[j] = xi0;
|
||||
dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
|
||||
}
|
||||
quantize_q4_0(src, dst_data[i00/QK4_0]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4528,31 +4686,7 @@ kernel void kernel_cpy_f32_q4_1(
|
||||
for (int64_t i00 = tpitg.x*QK4_1; i00 < args.ne00; i00 += ntg.x*QK4_1) {
|
||||
device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
|
||||
|
||||
float min = FLT_MAX;
|
||||
float max = -FLT_MAX;
|
||||
|
||||
for (int j = 0; j < QK4_1; j++) {
|
||||
const float v = src[j];
|
||||
if (min > v) min = v;
|
||||
if (max < v) max = v;
|
||||
}
|
||||
|
||||
const float d = (max - min) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK4_1].d = d;
|
||||
dst_data[i00/QK4_1].m = min;
|
||||
|
||||
for (int j = 0; j < QK4_1/2; ++j) {
|
||||
const float x0 = (src[0 + j] - min)*id;
|
||||
const float x1 = (src[QK4_1/2 + j] - min)*id;
|
||||
|
||||
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
|
||||
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
|
||||
|
||||
dst_data[i00/QK4_1].qs[j] = xi0;
|
||||
dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
|
||||
}
|
||||
quantize_q4_1(src, dst_data[i00/QK4_1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4579,38 +4713,7 @@ kernel void kernel_cpy_f32_q5_0(
|
||||
for (int64_t i00 = tpitg.x*QK5_0; i00 < args.ne00; i00 += ntg.x*QK5_0) {
|
||||
device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK5_0; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / -16;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK5_0].d = d;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_0/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK5_0/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
|
||||
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
|
||||
|
||||
dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
||||
}
|
||||
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
dst_data[i00/QK5_0].qh[j] = qh8[j];
|
||||
}
|
||||
quantize_q5_0(src, dst_data[i00/QK5_0]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4637,49 +4740,8 @@ kernel void kernel_cpy_f32_q5_1(
|
||||
for (int64_t i00 = tpitg.x*QK5_1; i00 < args.ne00; i00 += ntg.x*QK5_1) {
|
||||
device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
|
||||
|
||||
float max = src[0];
|
||||
float min = src[0];
|
||||
|
||||
for (int j = 1; j < QK5_1; j++) {
|
||||
const float v = src[j];
|
||||
min = v < min ? v : min;
|
||||
max = v > max ? v : max;
|
||||
quantize_q5_1(src, dst_data[i00/QK5_1]);
|
||||
}
|
||||
|
||||
const float d = (max - min) / 31;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
dst_data[i00/QK5_1].d = d;
|
||||
dst_data[i00/QK5_1].m = min;
|
||||
|
||||
uint32_t qh = 0;
|
||||
for (int j = 0; j < QK5_1/2; ++j) {
|
||||
const float x0 = (src[0 + j] - min)*id;
|
||||
const float x1 = (src[QK5_1/2 + j] - min)*id;
|
||||
|
||||
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
||||
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
||||
|
||||
dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
||||
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
||||
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
||||
}
|
||||
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
dst_data[i00/QK5_1].qh[j] = qh8[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline int best_index_int8(int n, constant float * val, float x) {
|
||||
if (x <= val[0]) return 0;
|
||||
if (x >= val[n-1]) return n-1;
|
||||
int ml = 0, mu = n-1;
|
||||
while (mu-ml > 1) {
|
||||
int mav = (ml+mu)/2;
|
||||
if (x < val[mav]) mu = mav; else ml = mav;
|
||||
}
|
||||
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f32_iq4_nl(
|
||||
@ -4705,40 +4767,7 @@ kernel void kernel_cpy_f32_iq4_nl(
|
||||
for (int64_t i00 = tpitg.x*QK4_NL; i00 < args.ne00; i00 += ntg.x*QK4_NL) {
|
||||
device const float * src = (device float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
|
||||
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0.0f;
|
||||
|
||||
for (int j = 0; j < QK4_NL; j++) {
|
||||
const float v = src[j];
|
||||
if (amax < fabs(v)) {
|
||||
amax = fabs(v);
|
||||
max = v;
|
||||
}
|
||||
}
|
||||
|
||||
const float d = max / kvalues_iq4nl_f[0];
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
const float x0 = src[0 + j]*id;
|
||||
const float x1 = src[QK4_NL/2 + j]*id;
|
||||
|
||||
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
|
||||
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
|
||||
|
||||
dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4);
|
||||
|
||||
const float v0 = kvalues_iq4nl_f[xi0];
|
||||
const float v1 = kvalues_iq4nl_f[xi1];
|
||||
const float w0 = src[0 + j]*src[0 + j];
|
||||
const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
|
||||
sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
|
||||
sumq2 += w0*v0*v0 + w1*v1*v1;
|
||||
|
||||
}
|
||||
|
||||
dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d;
|
||||
quantize_iq4_nl(src, dst_data[i00/QK4_NL]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -6419,10 +6448,10 @@ kernel void kernel_mul_mv_iq4_xs_f32(
|
||||
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||
kernel void kernel_get_rows_q(
|
||||
constant ggml_metal_kargs_get_rows & args,
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device float * dst,
|
||||
constant ggml_metal_kargs_get_rows & args,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]]) {
|
||||
@ -6442,10 +6471,10 @@ kernel void kernel_get_rows_q(
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_get_rows_f(
|
||||
constant ggml_metal_kargs_get_rows & args,
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device float * dst,
|
||||
constant ggml_metal_kargs_get_rows & args,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]]) {
|
||||
@ -6463,10 +6492,10 @@ kernel void kernel_get_rows_f(
|
||||
}
|
||||
|
||||
kernel void kernel_get_rows_i32(
|
||||
constant ggml_metal_kargs_get_rows & args,
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device int32_t * dst,
|
||||
constant ggml_metal_kargs_get_rows & args,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]]) {
|
||||
@ -6483,6 +6512,67 @@ kernel void kernel_get_rows_i32(
|
||||
}
|
||||
}
|
||||
|
||||
template<typename block_q, void (*quantize_func)(device const float *, device block_q &)>
|
||||
kernel void kernel_set_rows_q32(
|
||||
constant ggml_metal_kargs_set_rows & args,
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device float * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]]) {
|
||||
const int32_t i03 = tgpig.z;
|
||||
const int32_t i02 = tgpig.y;
|
||||
|
||||
const int32_t i12 = i03%args.ne12;
|
||||
const int32_t i11 = i02%args.ne11;
|
||||
|
||||
const int32_t i01 = tgpig.x*tptg.y + tiitg/tptg.x;
|
||||
if (i01 >= args.ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int32_t i10 = i01;
|
||||
const int64_t i1 = ((const device int64_t *) ((const device char *) src1 + i10*args.nb10 + i11*args.nb11 + i12*args.nb12))[0];
|
||||
|
||||
device block_q * dst_row = ( device block_q *) (( device char *) dst + i1*args.nb1 + i02*args.nb2 + i03*args.nb3);
|
||||
const device float * src_row = (const device float *) ((const device char *) src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
|
||||
|
||||
for (int ind = tiitg%tptg.x; ind < args.nk0; ind += tptg.x) {
|
||||
quantize_func(src_row + 32*ind, dst_row[ind]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
kernel void kernel_set_rows_f(
|
||||
constant ggml_metal_kargs_set_rows & args,
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device float * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint3 tptg [[threads_per_threadgroup]]) {
|
||||
const int32_t i03 = tgpig.z;
|
||||
const int32_t i02 = tgpig.y;
|
||||
|
||||
const int32_t i12 = i03%args.ne12;
|
||||
const int32_t i11 = i02%args.ne11;
|
||||
|
||||
const int32_t i01 = tgpig.x*tptg.y + tiitg/tptg.x;
|
||||
if (i01 >= args.ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int32_t i10 = i01;
|
||||
const int64_t i1 = ((const device int64_t *) ((const device char *) src1 + i10*args.nb10 + i11*args.nb11 + i12*args.nb12))[0];
|
||||
|
||||
device T * dst_row = ( device T *) (( device char *) dst + i1*args.nb1 + i02*args.nb2 + i03*args.nb3);
|
||||
const device float * src_row = (const device float *) ((const device char *) src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
|
||||
|
||||
for (int ind = tiitg%tptg.x; ind < args.nk0; ind += tptg.x) {
|
||||
dst_row[ind] = (T) src_row[ind];
|
||||
}
|
||||
}
|
||||
|
||||
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
|
||||
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
|
||||
@ -6906,6 +6996,27 @@ template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_q_t kernel_get
|
||||
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_nl, 2, dequantize_iq4_nl>;
|
||||
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
||||
|
||||
//
|
||||
// set rows
|
||||
//
|
||||
|
||||
typedef decltype(kernel_set_rows_f<float>) set_rows_f_t;
|
||||
|
||||
template [[host_name("kernel_set_rows_f32")]] kernel set_rows_f_t kernel_set_rows_f<float>;
|
||||
template [[host_name("kernel_set_rows_f16")]] kernel set_rows_f_t kernel_set_rows_f<half>;
|
||||
#if defined(GGML_METAL_USE_BF16)
|
||||
template [[host_name("kernel_set_rows_bf16")]] kernel set_rows_f_t kernel_set_rows_f<bfloat>;
|
||||
#endif
|
||||
|
||||
typedef decltype(kernel_set_rows_q32<block_q8_0, quantize_q8_0>) set_rows_q32_t;
|
||||
|
||||
template [[host_name("kernel_set_rows_q8_0")]] kernel set_rows_q32_t kernel_set_rows_q32<block_q8_0, quantize_q8_0>;
|
||||
template [[host_name("kernel_set_rows_q4_0")]] kernel set_rows_q32_t kernel_set_rows_q32<block_q4_0, quantize_q4_0>;
|
||||
template [[host_name("kernel_set_rows_q4_1")]] kernel set_rows_q32_t kernel_set_rows_q32<block_q4_1, quantize_q4_1>;
|
||||
template [[host_name("kernel_set_rows_q5_0")]] kernel set_rows_q32_t kernel_set_rows_q32<block_q5_0, quantize_q5_0>;
|
||||
template [[host_name("kernel_set_rows_q5_1")]] kernel set_rows_q32_t kernel_set_rows_q32<block_q5_1, quantize_q5_1>;
|
||||
template [[host_name("kernel_set_rows_iq4_nl")]] kernel set_rows_q32_t kernel_set_rows_q32<block_iq4_nl, quantize_iq4_nl>;
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
//
|
||||
|
@ -933,6 +933,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"TRANSPOSE",
|
||||
"GET_ROWS",
|
||||
"GET_ROWS_BACK",
|
||||
"SET_ROWS",
|
||||
"DIAG",
|
||||
"DIAG_MASK_INF",
|
||||
"DIAG_MASK_ZERO",
|
||||
@ -983,7 +984,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
static_assert(GGML_OP_COUNT == 84, "GGML_OP_COUNT != 84");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@ -1029,6 +1030,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"transpose(x)",
|
||||
"get_rows(x)",
|
||||
"get_rows_back(x)",
|
||||
"set_rows(x)",
|
||||
"diag(x)",
|
||||
"diag_mask_inf(x)",
|
||||
"diag_mask_zero(x)",
|
||||
@ -1079,7 +1081,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
|
||||
static_assert(GGML_OP_COUNT == 84, "GGML_OP_COUNT != 84");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@ -1348,6 +1350,12 @@ bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor) {
|
||||
tensor->nb[2] == ggml_type_size(tensor->type);
|
||||
}
|
||||
|
||||
bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor) {
|
||||
return
|
||||
tensor->ne[0] == ggml_blck_size(tensor->type) ||
|
||||
tensor->nb[0] == ggml_type_size(tensor->type);
|
||||
}
|
||||
|
||||
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
@ -3384,6 +3392,35 @@ struct ggml_tensor * ggml_get_rows_back(
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_set_rows
|
||||
|
||||
struct ggml_tensor * ggml_set_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c) {
|
||||
GGML_ASSERT(a->ne[0] == b->ne[0]);
|
||||
GGML_ASSERT(a->ne[2] == b->ne[2]);
|
||||
GGML_ASSERT(a->ne[3] == b->ne[3]);
|
||||
GGML_ASSERT(b->ne[1] == c->ne[0]);
|
||||
GGML_ASSERT(b->ne[2] % c->ne[1] == 0);
|
||||
GGML_ASSERT(b->ne[3] % c->ne[2] == 0);
|
||||
GGML_ASSERT(c->ne[3] == 1);
|
||||
GGML_ASSERT(b->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(c->type == GGML_TYPE_I64);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_rows(a));
|
||||
GGML_ASSERT(ggml_is_contiguous_rows(b));
|
||||
|
||||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||||
|
||||
result->op = GGML_OP_SET_ROWS;
|
||||
result->src[0] = b;
|
||||
result->src[1] = c;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_diag
|
||||
|
||||
struct ggml_tensor * ggml_diag(
|
||||
|
@ -1213,6 +1213,76 @@ struct test_get_rows_back : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SET_ROWS
|
||||
struct test_set_rows : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const std::array<int, 2> nr23; // broadcast only dims 2 and 3
|
||||
const int r; // rows to set
|
||||
const bool v; // view (non-contiguous src1)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(type, ne, nr23, r, v);
|
||||
}
|
||||
|
||||
test_set_rows(ggml_type type,
|
||||
std::array<int64_t, 4> ne,
|
||||
std::array<int, 2> nr23,
|
||||
int r, bool v = false)
|
||||
: type(type), ne(ne), nr23(nr23), r(r), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
|
||||
ggml_set_name(dst, "dst");
|
||||
|
||||
ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
|
||||
ggml_set_name(src, "src");
|
||||
|
||||
ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
|
||||
ggml_set_name(row_idxs, "row_idxs");
|
||||
|
||||
if (v) {
|
||||
src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
|
||||
row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
|
||||
ggml_set_name(row_idxs, "view_of_rows");
|
||||
}
|
||||
|
||||
ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I64) {
|
||||
if (ggml_is_view_op(t->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i2 = 0; i2 < t->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < t->ne[1]; i1++) {
|
||||
// generate a shuffled subset of row indices
|
||||
std::vector<int64_t> data(ne[1]);
|
||||
for (int i = 0; i < ne[1]; i++) {
|
||||
data[i] = i;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
data.resize(t->ne[0]);
|
||||
|
||||
const size_t offs = i1*t->nb[1] + i2*t->nb[2];
|
||||
ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_ARGMAX
|
||||
struct test_argmax : public test_case {
|
||||
const ggml_type type;
|
||||
@ -3984,6 +4054,23 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
|
||||
for (ggml_type type : all_types) {
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
|
||||
test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
|
||||
|
||||
test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
|
||||
|
||||
if (ggml_blck_size(type) == 1) {
|
||||
test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
|
||||
test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (ggml_type type_input : {GGML_TYPE_F32}) {
|
||||
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
|
||||
for (int k0 : {1, 3}) {
|
||||
|
Reference in New Issue
Block a user