mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-15 04:33:06 -04:00
Add LLaDA 8b Diffusion model (#14771)
* Add support for Llada-8b: diffusion model * Add README * Fix README and convert_hf_to_gguf * convert_hf_to_gguf.py: address review comments * Make everything in a single example * Remove model-specific sampling * Remove unused argmax * Remove braced initializers, improve README.md a bit * Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps * Remove adding the mask token * Move add_add_bos_token to set_vocab * use add_bool in gguf_writer.py
This commit is contained in:
@@ -3438,28 +3438,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
// diffusion parameters
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-steps" }, "N",
|
||||
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
|
||||
[](common_params & params, int value) { params.diffusion.steps = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-visual" },
|
||||
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
|
||||
@@ -3467,5 +3450,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) { params.diffusion.visual_mode = true; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-block-length" }, "N",
|
||||
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
|
||||
[](common_params & params, int value) { params.diffusion.block_length = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-cfg-scale" }, "F",
|
||||
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-add-gumbel-noise" }, "F",
|
||||
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
@@ -220,11 +220,17 @@ struct common_params_vocoder {
|
||||
};
|
||||
|
||||
struct common_params_diffusion {
|
||||
int32_t steps = 64; // number of diffusion steps
|
||||
float eps = 1e-3f; // epsilon for timesteps
|
||||
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
bool visual_mode = false; // show progressive diffusion on screen
|
||||
int32_t steps = 128;
|
||||
bool visual_mode = false;
|
||||
|
||||
float eps = 0; // epsilon for timesteps
|
||||
int32_t block_length = 32; // block length for generation
|
||||
|
||||
int32_t algorithm = 4; // default algorithm: low-confidence
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
|
||||
float cfg_scale = 0; // classifier-free guidance scale
|
||||
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
|
Reference in New Issue
Block a user