mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-17 13:40:55 -04:00
Merge branch 'master' into cisc/jina-embeddings-v3
This commit is contained in:
@@ -187,6 +187,9 @@ class Keys:
|
||||
class Classifier:
|
||||
OUTPUT_LABELS = "{arch}.classifier.output_labels"
|
||||
|
||||
class ShortConv:
|
||||
L_CACHE = "{arch}.shortconv.l_cache"
|
||||
|
||||
class Tokenizer:
|
||||
MODEL = "tokenizer.ggml.model"
|
||||
PRE = "tokenizer.ggml.pre"
|
||||
@@ -232,6 +235,11 @@ class Keys:
|
||||
LORA_TASK_NAME = "adapter.lora.task_name"
|
||||
LORA_PROMPT_PREFIX = "adapter.lora.prompt_prefix"
|
||||
|
||||
class IMatrix:
|
||||
CHUNK_COUNT = "imatrix.chunk_count"
|
||||
CHUNK_SIZE = "imatrix.chunk_size"
|
||||
DATASETS = "imatrix.datasets"
|
||||
|
||||
class Clip:
|
||||
PROJECTOR_TYPE = "clip.projector_type"
|
||||
HAS_VISION_ENCODER = "clip.has_vision_encoder"
|
||||
@@ -281,6 +289,7 @@ class Keys:
|
||||
class GGUFType:
|
||||
MODEL = "model"
|
||||
ADAPTER = "adapter"
|
||||
IMATRIX = "imatrix"
|
||||
MMPROJ = "mmproj" # dummy, unused for now
|
||||
|
||||
|
||||
@@ -290,6 +299,7 @@ class MODEL_ARCH(IntEnum):
|
||||
LLAMA4 = auto()
|
||||
DECI = auto()
|
||||
FALCON = auto()
|
||||
FALCON_H1 = auto()
|
||||
BAICHUAN = auto()
|
||||
GROK = auto()
|
||||
GPT2 = auto()
|
||||
@@ -316,6 +326,7 @@ class MODEL_ARCH(IntEnum):
|
||||
PHI3 = auto()
|
||||
PHIMOE = auto()
|
||||
PLAMO = auto()
|
||||
PLAMO2 = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
@@ -332,6 +343,7 @@ class MODEL_ARCH(IntEnum):
|
||||
ARWKV7 = auto()
|
||||
MAMBA = auto()
|
||||
MAMBA2 = auto()
|
||||
JAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
COHERE2 = auto()
|
||||
@@ -351,8 +363,10 @@ class MODEL_ARCH(IntEnum):
|
||||
JAIS = auto()
|
||||
NEMOTRON = auto()
|
||||
EXAONE = auto()
|
||||
EXAONE4 = auto()
|
||||
GRANITE = auto()
|
||||
GRANITE_MOE = auto()
|
||||
GRANITE_HYBRID = auto()
|
||||
CHAMELEON = auto()
|
||||
WAVTOKENIZER_DEC = auto()
|
||||
PLM = auto()
|
||||
@@ -360,6 +374,11 @@ class MODEL_ARCH(IntEnum):
|
||||
DOTS1 = auto()
|
||||
ARCEE = auto()
|
||||
ERNIE4_5 = auto()
|
||||
ERNIE4_5_MOE = auto()
|
||||
HUNYUAN_MOE = auto()
|
||||
SMOLLM3 = auto()
|
||||
LFM2 = auto()
|
||||
DREAM = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
@@ -432,7 +451,10 @@ class MODEL_TENSOR(IntEnum):
|
||||
SSM_CONV1D = auto()
|
||||
SSM_X = auto()
|
||||
SSM_DT = auto()
|
||||
SSM_DT_NORM = auto()
|
||||
SSM_A = auto()
|
||||
SSM_B_NORM = auto()
|
||||
SSM_C_NORM = auto()
|
||||
SSM_D = auto()
|
||||
SSM_NORM = auto()
|
||||
SSM_OUT = auto()
|
||||
@@ -528,6 +550,9 @@ class MODEL_TENSOR(IntEnum):
|
||||
POSNET_ATTN_K = auto()
|
||||
POSNET_ATTN_V = auto()
|
||||
POSNET_ATTN_OUT = auto()
|
||||
SHORTCONV_CONV = auto()
|
||||
SHORTCONV_INPROJ = auto()
|
||||
SHORTCONV_OUTPROJ = auto()
|
||||
# vision
|
||||
V_MMPROJ = auto()
|
||||
V_MMPROJ_FC = auto()
|
||||
@@ -620,6 +645,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.PHI3: "phi3",
|
||||
MODEL_ARCH.PHIMOE: "phimoe",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.PLAMO2: "plamo2",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
@@ -636,6 +662,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ARWKV7: "arwkv7",
|
||||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.MAMBA2: "mamba2",
|
||||
MODEL_ARCH.JAMBA: "jamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.COHERE2: "cohere2",
|
||||
@@ -655,8 +682,10 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||
MODEL_ARCH.EXAONE: "exaone",
|
||||
MODEL_ARCH.EXAONE4: "exaone4",
|
||||
MODEL_ARCH.GRANITE: "granite",
|
||||
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
||||
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
|
||||
MODEL_ARCH.CHAMELEON: "chameleon",
|
||||
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
|
||||
MODEL_ARCH.PLM: "plm",
|
||||
@@ -664,6 +693,12 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.DOTS1: "dots1",
|
||||
MODEL_ARCH.ARCEE: "arcee",
|
||||
MODEL_ARCH.ERNIE4_5: "ernie4_5",
|
||||
MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe",
|
||||
MODEL_ARCH.FALCON_H1: "falcon-h1",
|
||||
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
|
||||
MODEL_ARCH.SMOLLM3: "smollm3",
|
||||
MODEL_ARCH.LFM2: "lfm2",
|
||||
MODEL_ARCH.DREAM: "dream",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
@@ -736,7 +771,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
|
||||
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
|
||||
MODEL_TENSOR.SSM_DT_NORM: "blk.{bid}.ssm_dt_norm",
|
||||
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
||||
MODEL_TENSOR.SSM_B_NORM: "blk.{bid}.ssm_b_norm",
|
||||
MODEL_TENSOR.SSM_C_NORM: "blk.{bid}.ssm_c_norm",
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
@@ -832,6 +870,9 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.POSNET_ATTN_K: "posnet.{bid}.attn_k",
|
||||
MODEL_TENSOR.POSNET_ATTN_V: "posnet.{bid}.attn_v",
|
||||
MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output",
|
||||
MODEL_TENSOR.SHORTCONV_CONV: "blk.{bid}.shortconv.conv",
|
||||
MODEL_TENSOR.SHORTCONV_INPROJ: "blk.{bid}.shortconv.in_proj",
|
||||
MODEL_TENSOR.SHORTCONV_OUTPROJ: "blk.{bid}.shortconv.out_proj",
|
||||
# vision
|
||||
MODEL_TENSOR.V_MMPROJ: "mm.{bid}",
|
||||
MODEL_TENSOR.V_MMPROJ_FC: "mm.model.fc",
|
||||
@@ -1276,6 +1317,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.DREAM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.QWEN2VL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -1358,6 +1414,36 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.PLAMO2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_POST_NORM,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_X,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
MODEL_TENSOR.SSM_DT_NORM,
|
||||
MODEL_TENSOR.SSM_B_NORM,
|
||||
MODEL_TENSOR.SSM_C_NORM,
|
||||
],
|
||||
MODEL_ARCH.GPT2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.POS_EMBD,
|
||||
@@ -1748,6 +1834,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
],
|
||||
MODEL_ARCH.JAMBA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_X,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_DT_NORM,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_B_NORM,
|
||||
MODEL_TENSOR.SSM_C_NORM,
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.XVERSE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -1934,6 +2048,28 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_EXP_PROBS_B,
|
||||
],
|
||||
MODEL_ARCH.ERNIE4_5_MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_EXP_PROBS_B,
|
||||
],
|
||||
MODEL_ARCH.PLM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
@@ -2085,6 +2221,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.EXAONE4: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_POST_NORM,
|
||||
],
|
||||
MODEL_ARCH.GRANITE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -2117,6 +2270,36 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.GRANITE_HYBRID: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
# MoE
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
# Dense
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.CHAMELEON: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -2227,6 +2410,95 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.FALCON_H1: [
|
||||
# Token embedding
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
||||
# Input layernorm
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
|
||||
# Attention components
|
||||
MODEL_TENSOR.ATTN_Q, # Query projection
|
||||
MODEL_TENSOR.ATTN_K, # Key projection
|
||||
MODEL_TENSOR.ATTN_V, # Value projection
|
||||
MODEL_TENSOR.ATTN_OUT, # Output projection
|
||||
|
||||
# SSM components (Mamba2 specific)
|
||||
MODEL_TENSOR.SSM_IN, # Input projection for SSM
|
||||
MODEL_TENSOR.SSM_CONV1D, # Convolution layer
|
||||
MODEL_TENSOR.SSM_DT, # Delta time projection
|
||||
MODEL_TENSOR.SSM_A, # A parameter (log form)
|
||||
MODEL_TENSOR.SSM_D, # D parameter
|
||||
MODEL_TENSOR.SSM_NORM, # Normalization in SSM
|
||||
MODEL_TENSOR.SSM_OUT, # Output projection
|
||||
|
||||
# Pre-feedforward layernorm
|
||||
MODEL_TENSOR.FFN_PRE_NORM,
|
||||
|
||||
# Feed-forward network components
|
||||
MODEL_TENSOR.FFN_GATE, # Gate projection (SwiGLU)
|
||||
MODEL_TENSOR.FFN_DOWN, # Down projection
|
||||
MODEL_TENSOR.FFN_UP, # Up projection
|
||||
|
||||
# Post-feedforward layernorm
|
||||
MODEL_TENSOR.OUTPUT_NORM, # Final layer norm
|
||||
MODEL_TENSOR.OUTPUT, # Output projection (lm_head)
|
||||
],
|
||||
MODEL_ARCH.HUNYUAN_MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
],
|
||||
MODEL_ARCH.SMOLLM3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.LFM2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||
MODEL_TENSOR.SHORTCONV_CONV,
|
||||
MODEL_TENSOR.SHORTCONV_INPROJ,
|
||||
MODEL_TENSOR.SHORTCONV_OUTPROJ,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.ATTN_NORM, # operator_norm
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user