llava : Add Granite Vision Support (#11794)

* Add super wip scripts for multimodal granite gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add example for converting mmgranite to gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* remove hardcoded path

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add vision feature layer to gguf params

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clean up llava surgery and remove name substitution hacks

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add transformers llava next tensor name mapping

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Make siglip / openclip mutuall exclusive

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix projector linear substitution

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix linear 2 substitution index

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Increase max flattened gridpoints to 64

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix hardcoded concat for multiple feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Pull vision feature layers out of gguf keys

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* fix num gridpoints and use all layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Avoid dropping last image encoder layer in llava models

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use 10 for max number of patches

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Standardize vision feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Cleanup logs

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update comment for vision feature layer init

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update notes for alternative to legacy llm conversion script

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix notes rendering

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add v prefix to vision feature layer log

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use current defaults for feature layer

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use constant for max gridpoints / feat layers, style fixes

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* clarify non-negative feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Remove CLIP_API from func signature

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* USE MAX_IMAGE_FEATURE_LAYERS const in layer calc

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clarify feature layers are non negative ints and not uint

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix condition for reading feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* pop last llava layer when feature layers are unset

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix unset vision layer 0

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update examples/llava/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Reenable assertion for out of bounds get_rows

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use std vector for gridpoints and feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Caculate max feature layer at load time

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Include base patch for granite vision allocation

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix trailing whitespace

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add max num patches = 10 back for minicpmv

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use unordered set to store feature layers

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use max feature layer for postnorm

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Apply suggestions from code review

---------

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
This commit is contained in:
Alex Brooks
2025-02-24 09:09:51 -07:00
committed by GitHub
parent 08d5986290
commit 7a2c913e66
6 changed files with 235 additions and 42 deletions

View File

@ -40,6 +40,7 @@
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
@ -120,6 +121,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@ -444,8 +446,9 @@ struct clip_hparams {
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
int32_t image_grid_pinpoints[32];
std::vector<int32_t> image_grid_pinpoints;
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
};
struct clip_layer {
@ -585,6 +588,7 @@ struct clip_ctx {
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
int32_t max_feature_layer;
float image_mean[3];
float image_std[3];
bool use_gelu = false;
@ -651,7 +655,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
int n_layer = hparams.n_layer;
const float eps = hparams.eps;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
@ -752,13 +755,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
std::vector<struct ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
for (int il = 0; il < n_layer - 1; il++) {
for (int il = 0; il < ctx->max_feature_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
// layernorm1
@ -846,7 +855,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
@ -857,6 +865,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// final layer is a vision feature layer
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
// llava projector
if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@ -1443,14 +1464,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
hparams.image_grid_pinpoints[i] = pinpoints[i];
for (int i = 0; i < n; ++i) {
hparams.image_grid_pinpoints.push_back(pinpoints[i]);
}
if (n < 32)
hparams.image_grid_pinpoints[n] = 0;
} catch (std::runtime_error & /*e*/) {
hparams.image_grid_pinpoints[0]=0;
}
} catch (std::runtime_error & /*e*/) { }
// Load the vision feature layer indices if they are explicitly provided;
// if multiple vision feature layers are present, the values will be concatenated
// to form the final visual features.
// NOTE: gguf conversions should standardize the values of the vision feature layer to
// be non-negative, since we use -1 to mark values as unset here.
try {
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < n; ++i) {
hparams.vision_feature_layer.insert(vision_feature_layer[i]);
}
} catch (std::runtime_error & /*e*/) { }
try {
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
@ -1476,6 +1509,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->image_std[i] = std_data[i];
}
// Calculate the deepest feature layer based on hparams and projector type
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
if (verbosity >= 2) {
LOG_INF("\n%s: vision model hparams\n", __func__);
LOG_INF("image_size %d\n", hparams.image_size);
@ -1489,8 +1525,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_INF("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
for (const auto & pp : hparams.image_grid_pinpoints) {
LOG_INF("%d ", pp);
}
LOG_INF("\n");
LOG_INF("v_vision_feature_layer: ");
for (const auto & feature_layer: hparams.vision_feature_layer) {
LOG_INF("%d ", feature_layer);
}
LOG_INF("\n");
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
@ -2235,10 +2276,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
}
} else {
if (params.image_grid_pinpoints[0] != 0) {
if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
@ -2404,7 +2445,14 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
}
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints;
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
}
return nullptr;
}
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints.size();
}
int clip_n_patches(const struct clip_ctx * ctx) {
@ -2929,6 +2977,28 @@ bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->has_qwen2vl_merger;
}
// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
// Get the index of the second to last layer; this is the
// default for models that have a llava projector
const auto & hparams = ctx->vision_model.hparams;
int n_layer = hparams.n_layer - 1;
int deepest_feature_layer = -1;
// Handle other projectors; incrementing here indicates that we
// should use the last encoder layer for the vision features.
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;