kv-cache : use ggml_set_rows

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-06-19 19:26:47 +03:00
parent 1f647b5992
commit 79dac3c861
4 changed files with 89 additions and 18 deletions

View File

@ -281,12 +281,24 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
} }
void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) { void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
if (self_kv_idxs) {
mctx->set_input_kv_idxs(self_kv_idxs, ubatch);
}
if (self_kq_mask) { if (self_kq_mask) {
mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
} }
} }
void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) { void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
if (self_kv_idxs) {
mctx->get_base()->set_input_kv_idxs(self_kv_idxs, ubatch);
}
if (self_kv_idxs_swa) {
mctx->get_swa()->set_input_kv_idxs(self_kv_idxs_swa, ubatch);
}
if (self_kq_mask) { if (self_kq_mask) {
mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
} }
@ -1192,6 +1204,9 @@ llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified()
const auto n_kv = mctx_cur->get_n_kv(); const auto n_kv = mctx_cur->get_n_kv();
inp->self_kv_idxs = ggml_new_tensor_1d(ctx0, GGML_TYPE_I64, n_tokens);
ggml_set_input(inp->self_kv_idxs);
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask, "KQ_mask", -1); //cb(inp->self_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->self_kq_mask); ggml_set_input(inp->self_kq_mask);
@ -1224,8 +1239,10 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache // store to KV cache
{ {
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il)); const auto & kv_idxs = inp->get_kv_idxs();
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, kv_idxs, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, kv_idxs, il));
} }
const auto & kq_mask = inp->get_kq_mask(); const auto & kq_mask = inp->get_kq_mask();
@ -1278,8 +1295,10 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache // store to KV cache
{ {
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il)); const auto & kv_idxs = is_swa ? inp->get_kv_idxs_swa() : inp->get_kv_idxs();
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, kv_idxs, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, kv_idxs, il));
} }
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask(); const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
@ -1383,8 +1402,8 @@ ggml_tensor * llm_graph_context::build_attn(
// store to KV cache // store to KV cache
{ {
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il)); ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, nullptr, il));
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il)); ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, nullptr, il));
} }
const auto & kq_mask = inp->get_kq_mask(); const auto & kq_mask = inp->get_kq_mask();
@ -1419,6 +1438,9 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif
{ {
const auto n_kv = mctx_cur->get_base()->get_n_kv(); const auto n_kv = mctx_cur->get_base()->get_n_kv();
inp->self_kv_idxs = ggml_new_tensor_1d(ctx0, GGML_TYPE_I64, n_tokens);
ggml_set_input(inp->self_kv_idxs);
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask, "KQ_mask", -1); //cb(inp->self_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->self_kq_mask); ggml_set_input(inp->self_kq_mask);
@ -1431,6 +1453,9 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif
const auto n_kv = mctx_cur->get_swa()->get_n_kv(); const auto n_kv = mctx_cur->get_swa()->get_n_kv();
inp->self_kv_idxs_swa = ggml_new_tensor_1d(ctx0, GGML_TYPE_I64, n_tokens);
ggml_set_input(inp->self_kv_idxs_swa);
inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1); //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
ggml_set_input(inp->self_kq_mask_swa); ggml_set_input(inp->self_kq_mask_swa);

View File

@ -248,8 +248,12 @@ public:
void set_input(const llama_ubatch * ubatch) override; void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kv_idxs() const { return self_kv_idxs; }
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; } ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
// TODO: should this be I64?
ggml_tensor * self_kv_idxs = nullptr; // I32 [n_batch]
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch] ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch] ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch]
@ -273,9 +277,14 @@ public:
void set_input(const llama_ubatch * ubatch) override; void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kv_idxs() const { return self_kv_idxs; }
ggml_tensor * get_kv_idxs_swa() const { return self_kv_idxs_swa; }
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; } ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; } ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
ggml_tensor * self_kv_idxs = nullptr; // I32 [n_batch]
ggml_tensor * self_kv_idxs_swa = nullptr; // I32 [n_batch]
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch] ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch] ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch]
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch] ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch]

View File

@ -746,13 +746,17 @@ ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint
0); 0);
} }
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const { ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il, uint32_t head_cur) const {
const int32_t ikv = map_layer_ids.at(il); const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k; auto * k = layers[ikv].k;
const int64_t n_tokens = k_cur->ne[2]; const int64_t n_tokens = k_cur->ne[2];
if (kv_idxs) {
return ggml_set_rows(ctx, k, ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens), kv_idxs);
}
ggml_tensor * k_view = ggml_view_1d(ctx, k, ggml_tensor * k_view = ggml_view_1d(ctx, k,
n_tokens*hparams.n_embd_k_gqa(il), n_tokens*hparams.n_embd_k_gqa(il),
ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head_cur); ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head_cur);
@ -760,7 +764,7 @@ ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_
return ggml_cpy(ctx, k_cur, k_view); return ggml_cpy(ctx, k_cur, k_view);
} }
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const { ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * kv_idxs, int32_t il, uint32_t head_cur) const {
const int32_t ikv = map_layer_ids.at(il); const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v; auto * v = layers[ikv].v;
@ -772,21 +776,48 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
ggml_tensor * v_view = nullptr; ggml_tensor * v_view = nullptr;
if (!v_trans) { if (!v_trans) {
if (kv_idxs) {
return ggml_set_rows(ctx, v, v_cur, kv_idxs);
}
v_view = ggml_view_1d(ctx, v, v_view = ggml_view_1d(ctx, v,
n_tokens*hparams.n_embd_v_gqa(il), n_tokens*hparams.n_embd_v_gqa(il),
ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head_cur); ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head_cur);
} else { } else {
v_cur = ggml_transpose(ctx, v_cur);
// note: the V cache is transposed when not using flash attention // note: the V cache is transposed when not using flash attention
if (kv_idxs) {
// the row becomes a single element and we repeat the KV indices d_head times
// TODO: this seems not very optimal - can we do something better?
v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]);
v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
kv_idxs = ggml_repeat_4d(ctx, kv_idxs, v_cur->ne[1], v_cur->ne[2], 1, 1);
return ggml_set_rows(ctx, v_view, v_cur, kv_idxs);
}
v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il), v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il),
(v->ne[1])*ggml_element_size(v), (v->ne[1])*ggml_element_size(v),
(head_cur)*ggml_element_size(v)); (head_cur)*ggml_element_size(v));
v_cur = ggml_transpose(ctx, v_cur);
} }
return ggml_cpy(ctx, v_cur, v_view); return ggml_cpy(ctx, v_cur, v_view);
} }
void llama_kv_cache_unified::set_input_kv_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, uint32_t head_cur) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (int64_t i = 0; i < n_tokens; ++i) {
data[i] = head_cur + i;
}
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens; const uint32_t n_tokens = ubatch->n_tokens;
@ -1789,18 +1820,22 @@ ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t
return kv->get_v(ctx, il, n_kv); return kv->get_v(ctx, il, n_kv);
} }
ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const { ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il) const {
return kv->cpy_k(ctx, k_cur, il, head); return kv->cpy_k(ctx, k_cur, kv_idxs, il, head);
} }
ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const { ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * kv_idxs, int32_t il) const {
return kv->cpy_v(ctx, v_cur, il, head); return kv->cpy_v(ctx, v_cur, kv_idxs, il, head);
} }
void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const { void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const {
kv->set_input_k_shift(dst); kv->set_input_k_shift(dst);
} }
void llama_kv_cache_unified_context::set_input_kv_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_kv_idxs(dst, ubatch, head);
}
void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
kv->set_input_kq_mask(dst, ubatch, causal_attn); kv->set_input_kq_mask(dst, ubatch, causal_attn);
} }

View File

@ -102,8 +102,8 @@ public:
ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const; ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
// store k_cur and v_cur in the cache based on the provided head location // store k_cur and v_cur in the cache based on the provided head location
ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const; ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il, uint32_t head_cur) const;
ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const; ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * kv_idxs, int32_t il, uint32_t head_cur) const;
// //
// preparation API // preparation API
@ -126,6 +126,7 @@ public:
// set_input API // set_input API
// //
void set_input_kv_idxs (ggml_tensor * dst, const llama_ubatch * ubatch, uint32_t head_cur) const;
void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
void set_input_k_shift (ggml_tensor * dst) const; void set_input_k_shift (ggml_tensor * dst) const;
void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
@ -257,11 +258,12 @@ public:
ggml_tensor * get_v(ggml_context * ctx, int32_t il) const; ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;
// store k_cur and v_cur in the cache based on the provided head location // store k_cur and v_cur in the cache based on the provided head location
ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const; ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il) const;
ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const; ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * kv_idxs, int32_t il) const;
void set_input_k_shift(ggml_tensor * dst) const; void set_input_k_shift(ggml_tensor * dst) const;
void set_input_kv_idxs (ggml_tensor * dst, const llama_ubatch * ubatch) const;
void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;