mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-27 03:55:20 +00:00
quantize: Handle user-defined quantization levels for additional tensors (#12511)
* Add llama_model_quantize_params parameters * Add new quantize parameters parsing and validation * Update usage * Add new parameters defaults * Add new quantization parameters logic * Add llama_model_quantize_params parameters * Add new quantize parameters parsing and validation * Update usage * Add new parameters defaults * Add new quantization parameters logic * Minor refactoring as per the contributors' coding guidelines * Update descriptions to match existing style * Add llama_model_quantize_params parameters * Add new quantize parameters parsing and validation * Update usage * Add new parameters defaults * Add new quantization parameters logic * Minor refactoring as per the contributors' guidelines * Implement general --tensor-type instead of tensor-specific command option * Fix implied type bug * Restore missing #includes * Add regex capability for tensor selection * Refactor function name and update ALLOWED_TENSOR_TYPE * Add missing #include * Handle edge case when tensor name is cls.output * Minor logging improvement
This commit is contained in:
@ -9,6 +9,7 @@
|
||||
#include <fstream>
|
||||
#include <cmath>
|
||||
#include <cctype>
|
||||
#include <algorithm>
|
||||
|
||||
struct quant_option {
|
||||
std::string name;
|
||||
@ -16,7 +17,7 @@ struct quant_option {
|
||||
std::string desc;
|
||||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
static const std::vector<quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
@ -105,7 +106,8 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
||||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type]\n", executable);
|
||||
printf(" [--token-embedding-type] [--tensor-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
||||
@ -114,6 +116,8 @@ static void usage(const char * executable) {
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
|
||||
printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
|
||||
printf(" --keep-split: will generate quantized model in the same shards as input\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
@ -244,6 +248,107 @@ static ggml_type parse_ggml_type(const char * arg) {
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
|
||||
// Allowed tensors for arbitrary quantization with --tensor-type option
|
||||
static const std::vector<std::string> ALLOWED_TENSOR_TYPE = {
|
||||
"attn_k",
|
||||
"attn_kv_a_mqa",
|
||||
"attn_kv_b",
|
||||
"attn_o",
|
||||
"attn_output",
|
||||
"attn_q",
|
||||
"attn_q_a",
|
||||
"attn_q_b",
|
||||
"attn_qkv",
|
||||
"attn_v",
|
||||
"channel_mix_key",
|
||||
"channel_mix_receptance",
|
||||
"channel_mix_value",
|
||||
"cls",
|
||||
"cls.output",
|
||||
"cross_attn_k",
|
||||
"cross_attn_o",
|
||||
"cross_attn_q",
|
||||
"cross_attn_v",
|
||||
"ffn_act",
|
||||
"ffn_down",
|
||||
"ffn_down_exps",
|
||||
"ffn_down_shexp",
|
||||
"ffn_gate",
|
||||
"ffn_gate_exps",
|
||||
"ffn_gate_shexp",
|
||||
"ffn_up",
|
||||
"ffn_up_exps",
|
||||
"ffn_up_shexp",
|
||||
"ssm_in",
|
||||
"ssm_out",
|
||||
"time_mix_gate",
|
||||
"time_mix_key",
|
||||
"time_mix_output",
|
||||
"time_mix_receptance",
|
||||
"time_mix_value",
|
||||
};
|
||||
|
||||
// changes to this struct must be replicated in llama-quant.cpp
|
||||
struct tensor_quantization {
|
||||
std::string name;
|
||||
ggml_type quant = GGML_TYPE_COUNT;
|
||||
};
|
||||
|
||||
static bool parse_tensor_type(const char * data, std::vector<tensor_quantization> & tensor_type) {
|
||||
const char * sep = strchr(data, '=');
|
||||
if (sep == nullptr) {
|
||||
printf("\n%s: malformed tensor type '%s'\n\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t tn_len = sep - data;
|
||||
if (tn_len == 0) {
|
||||
printf("\n%s: missing tensor name\n\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (const size_t qt_len = strlen(sep); qt_len == 1) {
|
||||
printf("\n%s: missing quantization type\n\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string tn(data, tn_len);
|
||||
std::transform(tn.begin(), tn.end(), tn.begin(), tolower);
|
||||
sep++;
|
||||
const std::string qt(sep);
|
||||
|
||||
bool found = false;
|
||||
for (const auto & allowed : ALLOWED_TENSOR_TYPE) {
|
||||
std::string tensor;
|
||||
tensor = tn.rfind('.') != std::string::npos ? tn.substr(tn.rfind('.') + 1) : tn;
|
||||
// handle special case of cls.output
|
||||
std::string cls_output = "cls.output";
|
||||
if (tn.find(cls_output) != std::string::npos) {
|
||||
tensor = "cls.output";
|
||||
}
|
||||
// check if an allowed tensor exists and it's at the end of the kv string
|
||||
if (tensor == allowed) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
printf("\n%s: invalid tensor name '%s'\n\n", __func__, tn.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (parse_ggml_type(qt.c_str()) == GGML_TYPE_COUNT) {
|
||||
printf("\n%s: invalid quantization type '%s'\n\n", __func__, qt.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
tensor_quantization tqz;
|
||||
tqz.name = tn;
|
||||
tqz.quant = parse_ggml_type(qt.c_str());
|
||||
tensor_type.emplace_back(std::move(tqz));
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
@ -255,6 +360,7 @@ int main(int argc, char ** argv) {
|
||||
std::string imatrix_file;
|
||||
std::vector<std::string> included_weights, excluded_weights;
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<tensor_quantization> tensor_types;
|
||||
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
||||
@ -277,6 +383,10 @@ int main(int argc, char ** argv) {
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--tensor-type") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_tensor_type(argv[++arg_idx], tensor_types)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
usage(argv[0]);
|
||||
@ -361,6 +471,9 @@ int main(int argc, char ** argv) {
|
||||
kv_overrides.back().key[0] = 0;
|
||||
params.kv_overrides = &kv_overrides;
|
||||
}
|
||||
if (!tensor_types.empty()) {
|
||||
params.tensor_types = &tensor_types;
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
|
@ -378,6 +378,7 @@ extern "C" {
|
||||
bool keep_split; // quantize to the same number of shards
|
||||
void * imatrix; // pointer to importance matrix data
|
||||
void * kv_overrides; // pointer to vector containing overrides
|
||||
void * tensor_types; // pointer to vector containing tensor types
|
||||
} llama_model_quantize_params;
|
||||
|
||||
typedef struct llama_logit_bias {
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include <cinttypes>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <regex>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
|
||||
@ -47,8 +48,14 @@ struct quantize_state_impl {
|
||||
{}
|
||||
};
|
||||
|
||||
// changes to this struct must be replicated in quantize.cpp
|
||||
struct tensor_quantization {
|
||||
std::string name;
|
||||
ggml_type quant = GGML_TYPE_COUNT;
|
||||
};
|
||||
|
||||
static void llama_tensor_dequantize_impl(
|
||||
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||||
ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||||
const size_t nelements, const int nthread
|
||||
) {
|
||||
if (output.size() < nelements) {
|
||||
@ -536,7 +543,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
model.load_hparams(ml);
|
||||
model.load_stats (ml);
|
||||
|
||||
struct quantize_state_impl qs(model, params);
|
||||
quantize_state_impl qs(model, params);
|
||||
|
||||
if (params->only_copy) {
|
||||
ftype = ml.ftype;
|
||||
@ -661,7 +668,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// populate the original tensors so we get an initial meta data
|
||||
for (const auto * it : tensors) {
|
||||
uint16_t i_split = params->keep_split ? it->idx : 0;
|
||||
struct ggml_tensor * tensor = it->tensor;
|
||||
ggml_tensor * tensor = it->tensor;
|
||||
if (!ctx_outs[i_split]) {
|
||||
ctx_outs[i_split].reset(gguf_init_empty());
|
||||
}
|
||||
@ -710,7 +717,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
new_ofstream(0);
|
||||
for (const auto * it : tensors) {
|
||||
const auto & weight = *it;
|
||||
struct ggml_tensor * tensor = weight.tensor;
|
||||
ggml_tensor * tensor = weight.tensor;
|
||||
if (weight.idx != cur_split && params->keep_split) {
|
||||
close_ofstream();
|
||||
new_ofstream(weight.idx);
|
||||
@ -776,7 +783,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// do not quantize relative position bias (T5)
|
||||
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
||||
|
||||
enum ggml_type new_type;
|
||||
ggml_type new_type;
|
||||
void * new_data;
|
||||
size_t new_size;
|
||||
|
||||
@ -786,6 +793,19 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// get more optimal quantization type based on the tensor shape, layer, etc.
|
||||
if (!params->pure && ggml_is_quantized(default_type)) {
|
||||
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
|
||||
// unless the user specifies a type
|
||||
if (params->tensor_types) {
|
||||
const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
|
||||
for (const auto & [tname, qtype] : tensor_types) {
|
||||
if (std::regex pattern(tname); std::regex_search(tensor->name, pattern)) {
|
||||
if (qtype != new_type) {
|
||||
LLAMA_LOG_DEBUG("(overriding %s -> %s), ", ggml_type_name(new_type), ggml_type_name(qtype));
|
||||
}
|
||||
new_type = qtype;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
|
||||
new_type = params->token_embedding_type;
|
||||
@ -910,8 +930,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// interface implementation
|
||||
//
|
||||
|
||||
struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||||
struct llama_model_quantize_params result = {
|
||||
llama_model_quantize_params llama_model_quantize_default_params() {
|
||||
llama_model_quantize_params result = {
|
||||
/*.nthread =*/ 0,
|
||||
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
|
||||
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
|
||||
@ -923,6 +943,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||||
/*.keep_split =*/ false,
|
||||
/*.imatrix =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
/*.tensor_type =*/ nullptr,
|
||||
};
|
||||
|
||||
return result;
|
||||
|
Reference in New Issue
Block a user