opencl: add tiled mul_mat_f16_f32 (#14535)

* add tiled mul_mat_f16_f32

* fix trailing whitespace

* add insightful comments
This commit is contained in:
rmatif
2025-07-10 23:58:12 +02:00
committed by GitHub
parent 0b8855775c
commit 6bdda13981
3 changed files with 213 additions and 0 deletions

View File

@ -104,6 +104,7 @@ set(GGML_OPENCL_KERNELS
tanh
pad
repeat
mul_mat_f16_f32
)
foreach (K ${GGML_OPENCL_KERNELS})

View File

@ -368,6 +368,7 @@ struct ggml_backend_opencl_context {
cl_program program_mul_mv_f16_f32;
cl_program program_mul_mv_f32_f32;
cl_program program_mul;
cl_program program_mul_mat_f16_f32_tiled;
cl_program program_div;
cl_program program_sub;
cl_program program_norm;
@ -422,6 +423,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mat_f16_f32_1row;
cl_kernel kernel_mul_mat_f16_f32;
cl_kernel kernel_mul_mat_f16_f32_l4;
cl_kernel kernel_mul_mat_f16_f32_tiled;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
@ -1015,6 +1017,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mat_f16_f32_tiled
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mat_f16_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
#endif
backend_ctx->program_mul_mat_f16_f32_tiled =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
GGML_LOG_CONT(".");
}
// mul
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -4927,6 +4945,58 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
}
static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int M = src0->ne[1];
const int N = src1->ne[1];
const int K = src0->ne[0];
cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
// Tiling parameters. These need to be tuned for optimal performance.
// They must match the #defines in the kernel mul_mat_f16_f32.cl.
//
// OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
// TPWM / TPWN: Threads per Work-group. This is the work-group size.
// OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
//
// The following relationships must hold:
// OPWM = TPWM * OPTM
// OPWN = TPWN * OPTN
//
const int OPWM = 64;
const int OPWN = 64;
const int TPWM = 16;
const int TPWN = 8;
size_t local_work_size[2] = { TPWM, TPWN };
size_t global_work_size[2] = {
(size_t) ((M + OPWM - 1) / OPWM) * TPWM,
(size_t) ((N + OPWN - 1) / OPWN) * TPWN,
};
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
}
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -4940,6 +5010,18 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
src0->ne[1] > 32 && // M > 32
src1->ne[1] > 32 && // N > 32
src0->ne[0] > 32 && // K > 32
src0->ne[2] == 1 && src0->ne[3] == 1 &&
src1->ne[2] == 1 && src1->ne[3] == 1 &&
ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
return;
}
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

View File

@ -0,0 +1,130 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#if defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#else
#define REQD_SUBGROUP_SIZE_128
#endif
#define OPWM 64
#define OPWN 64
#define CPWK 8
#define OPTM 4
#define OPTN 8
#define WG_M (OPWM / OPTM)
#define WG_N (OPWN / OPTN)
#define VEC_K (CPWK / 4)
REQD_SUBGROUP_SIZE_128
__kernel void mul_mat_f16_f32(
const int M, const int N, const int K,
__global const void* A_void, ulong A_offset,
__global const void* B_void, ulong B_offset,
__global void* C_void, ulong C_offset) {
__global const half* A = (__global const half* )((__global const char*)A_void + A_offset);
__global const float* B = (__global const float*)((__global const char*)B_void + B_offset);
__global float* C = (__global float*)((__global char*)C_void + C_offset);
const int lidm = get_local_id(0);
const int lidn = get_local_id(1);
const int lid = lidn * WG_M + lidm;
const int offsetM = get_group_id(0) * OPWM;
const int offsetN = get_group_id(1) * OPWN;
__local half4 Alocal[OPWM][VEC_K];
__local float4 Blocal[OPWN][VEC_K];
float sum[OPTM][OPTN];
for (int wm = 0; wm < OPTM; wm++) {
for (int wn = 0; wn < OPTN; wn++) {
sum[wm][wn] = 0.0f;
}
}
const int numTiles = (K + CPWK - 1) / CPWK;
const int load_row_a = lid % OPWM;
const int load_vec_k_a = lid / OPWM;
const int global_row_a = offsetM + load_row_a;
const int load_row_b = lid % OPWN;
const int load_vec_k_b = lid / OPWN;
const int global_row_b = offsetN + load_row_b;
for (int t = 0; t < numTiles; t++) {
const int k_start = t * CPWK;
const int k_vec_start_a = k_start + load_vec_k_a * 4;
const int k_vec_start_b = k_start + load_vec_k_b * 4;
if (global_row_a < M && k_vec_start_a < K) {
if (k_vec_start_a + 3 < K) {
Alocal[load_row_a][load_vec_k_a] = vload4(0, A + global_row_a * K + k_vec_start_a);
} else {
half4 tempA = (half4)(0.0h);
if (k_vec_start_a < K) tempA.s0 = A[global_row_a * K + k_vec_start_a];
if (k_vec_start_a + 1 < K) tempA.s1 = A[global_row_a * K + k_vec_start_a + 1];
if (k_vec_start_a + 2 < K) tempA.s2 = A[global_row_a * K + k_vec_start_a + 2];
Alocal[load_row_a][load_vec_k_a] = tempA;
}
} else {
Alocal[load_row_a][load_vec_k_a] = (half4)(0.0h);
}
if (global_row_b < N && k_vec_start_b < K) {
if (k_vec_start_b + 3 < K) {
Blocal[load_row_b][load_vec_k_b] = vload4(0, B + global_row_b * K + k_vec_start_b);
} else {
float4 tempB = (float4)(0.0f);
if (k_vec_start_b < K) tempB.s0 = B[global_row_b * K + k_vec_start_b];
if (k_vec_start_b + 1 < K) tempB.s1 = B[global_row_b * K + k_vec_start_b + 1];
if (k_vec_start_b + 2 < K) tempB.s2 = B[global_row_b * K + k_vec_start_b + 2];
Blocal[load_row_b][load_vec_k_b] = tempB;
}
} else {
Blocal[load_row_b][load_vec_k_b] = (float4)(0.0f);
}
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int k_vec = 0; k_vec < VEC_K; k_vec++) {
float4 a_fvecs[OPTM];
int current_row_a = lidm;
for (int wm = 0; wm < OPTM; wm++) {
a_fvecs[wm] = convert_float4(Alocal[current_row_a][k_vec]);
current_row_a += WG_M;
}
float4 b_fvecs[OPTN];
int current_row_b = lidn;
for (int wn = 0; wn < OPTN; wn++) {
b_fvecs[wn] = Blocal[current_row_b][k_vec];
current_row_b += WG_N;
}
for (int wm = 0; wm < OPTM; wm++) {
for (int wn = 0; wn < OPTN; wn++) {
sum[wm][wn] += dot(a_fvecs[wm], b_fvecs[wn]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
for (int wm = 0; wm < OPTM; wm++) {
int globalRow = offsetM + lidm + wm * WG_M;
if (globalRow < M) {
for (int wn = 0; wn < OPTN; wn++) {
int globalCol = offsetN + lidn + wn * WG_N;
if (globalCol < N) {
C[globalCol * M + globalRow] = sum[wm][wn];
}
}
}
}
}