mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-26 19:55:04 +00:00
llama : add thread safety test (#14035)
* llama : add thread safety test * llamafile : remove global state * llama : better LLAMA_SPLIT_MODE_NONE logic when main_gpu < 0 GPU devices are not used --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
1
.github/workflows/build.yml
vendored
1
.github/workflows/build.yml
vendored
@ -778,6 +778,7 @@ jobs:
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
|
@ -39,7 +39,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
|
@ -767,6 +767,9 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
@ -784,9 +787,16 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
// process path from front to back, procedurally creating directories
|
||||
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
|
||||
const std::wstring subpath = wpath.substr(0, pos_slash);
|
||||
const wchar_t * test = subpath.c_str();
|
||||
|
||||
const bool success = CreateDirectoryW(test, NULL);
|
||||
pos_slash += 1;
|
||||
|
||||
// skip the drive letter, in some systems it can return an access denied error
|
||||
if (subpath.length() == 2 && subpath[1] == ':') {
|
||||
continue;
|
||||
}
|
||||
|
||||
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
|
||||
|
||||
if (!success) {
|
||||
const DWORD error = GetLastError();
|
||||
|
||||
@ -800,8 +810,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
pos_slash += 1;
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -503,6 +503,9 @@ static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
// TODO: move to ggml-threading
|
||||
void ggml_barrier(struct ggml_threadpool * tp);
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value);
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -559,6 +559,14 @@ void ggml_barrier(struct ggml_threadpool * tp) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) {
|
||||
atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) {
|
||||
return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed);
|
||||
}
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
static cpu_set_t ggml_get_numa_affinity(void) {
|
||||
cpu_set_t cpuset;
|
||||
|
@ -53,7 +53,6 @@
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <array>
|
||||
#include <type_traits>
|
||||
|
||||
@ -394,8 +393,6 @@ class tinyBLAS {
|
||||
|
||||
template <int RM, int RN, int BM>
|
||||
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
|
||||
static std::atomic<int64_t> current_chunk;
|
||||
|
||||
GGML_ASSERT(m % (RM * BM) == 0);
|
||||
const int64_t ytiles = m / (RM * BM);
|
||||
const int64_t xtiles = (n + RN -1) / RN;
|
||||
@ -410,7 +407,7 @@ class tinyBLAS {
|
||||
if (params->ith == 0) {
|
||||
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
std::atomic_store_explicit(¤t_chunk, (int64_t)params->nth, std::memory_order_relaxed);
|
||||
ggml_threadpool_chunk_set(params->threadpool, params->nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
@ -439,8 +436,7 @@ class tinyBLAS {
|
||||
GGML_ASSERT(jj == jj2);
|
||||
}
|
||||
|
||||
// next step.
|
||||
job = std::atomic_fetch_add_explicit(¤t_chunk, (int64_t)1, std::memory_order_relaxed);
|
||||
job = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
@ -198,14 +198,18 @@ static struct llama_model * llama_model_load_from_file_impl(
|
||||
|
||||
// if using single GPU mode, remove all except the main GPU
|
||||
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
|
||||
if (params.main_gpu < 0 || params.main_gpu >= (int)model->devices.size()) {
|
||||
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %d)\n", __func__, params.main_gpu, (int)model->devices.size());
|
||||
llama_model_free(model);
|
||||
return nullptr;
|
||||
if (params.main_gpu < 0) {
|
||||
model->devices.clear();
|
||||
} else {
|
||||
if (params.main_gpu >= (int)model->devices.size()) {
|
||||
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %zu)\n", __func__, params.main_gpu, model->devices.size());
|
||||
llama_model_free(model);
|
||||
return nullptr;
|
||||
}
|
||||
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
||||
model->devices.clear();
|
||||
model->devices.push_back(main_gpu);
|
||||
}
|
||||
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
||||
model->devices.clear();
|
||||
model->devices.push_back(main_gpu);
|
||||
}
|
||||
|
||||
for (auto * dev : model->devices) {
|
||||
|
@ -185,6 +185,8 @@ llama_build_and_test(test-json-partial.cpp)
|
||||
llama_build_and_test(test-log.cpp)
|
||||
llama_build_and_test(test-regex-partial.cpp)
|
||||
|
||||
llama_build_and_test(test-thread-safety.cpp ARGS -hf ggml-org/models -hff tinyllamas/stories15M-q4_0.gguf -ngl 99 -p "The meaning of life is" -n 128 -c 256 -ub 32 -np 4)
|
||||
|
||||
# this fails on windows (github hosted runner) due to curl DLL not found (exit code 0xc0000135)
|
||||
if (NOT WIN32)
|
||||
llama_build_and_test(test-arg-parser.cpp)
|
||||
|
152
tests/test-thread-safety.cpp
Normal file
152
tests/test-thread-safety.cpp
Normal file
@ -0,0 +1,152 @@
|
||||
// thread safety test
|
||||
// - Loads a copy of the same model on each GPU, plus a copy on the CPU
|
||||
// - Creates n_parallel (--parallel) contexts per model
|
||||
// - Runs inference in parallel on each context
|
||||
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <atomic>
|
||||
#include "llama.h"
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
|
||||
//llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
// if (level == GGML_LOG_LEVEL_ERROR) {
|
||||
// common_log_add(common_log_main(), level, "%s", text);
|
||||
// }
|
||||
//}, NULL);
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
int dev_count = ggml_backend_dev_count();
|
||||
int gpu_dev_count = 0;
|
||||
for (int i = 0; i < dev_count; ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
if (dev && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
|
||||
gpu_dev_count++;
|
||||
}
|
||||
}
|
||||
const int num_models = gpu_dev_count + 1 + 1; // GPUs + 1 CPU model + 1 layer split
|
||||
//const int num_models = std::max(1, gpu_dev_count);
|
||||
const int num_contexts = std::max(1, params.n_parallel);
|
||||
|
||||
std::vector<llama_model_ptr> models;
|
||||
std::vector<std::thread> threads;
|
||||
std::atomic<bool> failed = false;
|
||||
|
||||
for (int m = 0; m < num_models; ++m) {
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
if (m < gpu_dev_count) {
|
||||
mparams.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
mparams.main_gpu = m;
|
||||
} else if (m == gpu_dev_count) {
|
||||
mparams.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
mparams.main_gpu = -1; // CPU model
|
||||
} else {
|
||||
mparams.split_mode = LLAMA_SPLIT_MODE_LAYER;;
|
||||
}
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
models.emplace_back(model);
|
||||
}
|
||||
|
||||
for (int m = 0; m < num_models; ++m) {
|
||||
auto * model = models[m].get();
|
||||
for (int c = 0; c < num_contexts; ++c) {
|
||||
threads.emplace_back([&, m, c, model]() {
|
||||
LOG_INF("Creating context %d/%d for model %d/%d\n", c + 1, num_contexts, m + 1, num_models);
|
||||
|
||||
llama_context_ptr ctx { llama_init_from_model(model, cparams) };
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("failed to create context\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
|
||||
std::unique_ptr<common_sampler, decltype(&common_sampler_free)> sampler { common_sampler_init(model, params.sampling), common_sampler_free };
|
||||
if (sampler == NULL) {
|
||||
LOG_ERR("failed to create sampler\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
|
||||
llama_batch batch = {};
|
||||
{
|
||||
auto prompt = common_tokenize(ctx.get(), params.prompt, true);
|
||||
if (prompt.empty()) {
|
||||
LOG_ERR("failed to tokenize prompt\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
batch = llama_batch_get_one(prompt.data(), prompt.size());
|
||||
if (llama_decode(ctx.get(), batch)) {
|
||||
LOG_ERR("failed to decode prompt\n");
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
const auto * vocab = llama_model_get_vocab(model);
|
||||
std::string result = params.prompt;
|
||||
|
||||
for (int i = 0; i < params.n_predict; i++) {
|
||||
llama_token token;
|
||||
if (batch.n_tokens > 0) {
|
||||
token = common_sampler_sample(sampler.get(), ctx.get(), batch.n_tokens - 1);
|
||||
} else {
|
||||
token = llama_vocab_bos(vocab);
|
||||
}
|
||||
|
||||
result += common_token_to_piece(ctx.get(), token);
|
||||
|
||||
if (llama_vocab_is_eog(vocab, token)) {
|
||||
break;
|
||||
}
|
||||
|
||||
batch = llama_batch_get_one(&token, 1);
|
||||
if (llama_decode(ctx.get(), batch)) {
|
||||
LOG_ERR("Model %d/%d, Context %d/%d: failed to decode\n", m + 1, num_models, c + 1, num_contexts);
|
||||
failed.store(true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("Model %d/%d, Context %d/%d: %s\n\n", m + 1, num_models, c + 1, num_contexts, result.c_str());
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
for (auto & thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
if (failed) {
|
||||
LOG_ERR("One or more threads failed.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("All threads finished without errors.\n");
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user