mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-14 12:19:48 -04:00
CUDA: Optimize reduce_rows_f32
kernel, leading up to 25x perf improvement on kernel-level and 10% perf increase for Gemma3n (#15132)
* Factor out `reduce_rows_f32` from common.cuh This increases iteration cycle speed by not having to recompile every kernel all the time * Hide memory-latency by loop unrolling in reduce_rows_f32 * Further optimizations to `reduce_rows_f32` 1. Increase threadblock size to better hide latency of memory requests. As a consequence of bigger threadblocks, do 2-step summation, using shared memory to communicate results between invocations 2. Use sum_temp array to reduce waits on sum 3. Adjust num_unroll to reflext bigger threadblock 4. Improve default block_dims, increase support for more block_dims * Add perf tests for `reduce_rows_f32` kernel * Add heuristic to toggle 128/512 threads based on sm count Break even point was the minimum of the following multiples. | GPU Model | Nrow SM Count Multiple | | ----------- | ----------- | | RTX 4000 SFF ADA | 2.0x | | RTX 6000 ADA | 2.5x | | RTX PRO 6000 Blackwell Max-Q | 3.04x | | RTX PRO 4500 Blackwell | 3.15x | * Ensure perf gains also for small ncols and large nrows Alternative to this, one could have also made the number of unrollings template-able, but that would require compiling the kernel multiple times, increasing binary size unnecessarily * Modify perf and unit-tests * Apply auto-formatting by clang * Fix CI build failure See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486 Building with VS generator worked though. * Remove sm_count property from `ggml_backend_cuda_context` Requested by @JohannesGaessler, and should fix remaining CI issues as a side-effect * Add CUB-based implementation for GGML_OP_MEAN Currently this branch is only executed for nrows==1 * Add heuristics to execute CUB branch only when it brings perf Heuristics were determined on the following HW: * RTX 4000 SFF ADA * RTX 6000 ADA * RTX PRO 6000 Blackwell Max-Q * RTX PRO 4500 Blackwell * Add unit-test for CUB-based mean Tests should run with CUDA Graphs enabled per default on NVGPUs * Rename `USE_CUB` to `GGML_CUDA_USE_CUB` Suggested by @JohannesGaessler * Unindent Preprocessor directives See https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
This commit is contained in:
@@ -87,6 +87,10 @@
|
||||
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
|
||||
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
# define GGML_CUDA_USE_CUB
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
|
||||
#ifdef __CUDA_ARCH_LIST__
|
||||
constexpr bool ggml_cuda_has_arch_impl(int) {
|
||||
return false;
|
||||
@@ -420,26 +424,6 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
|
||||
template<bool norm>
|
||||
static __global__ void reduce_rows_f32(const float * x, float * dst, const int ncols) {
|
||||
const int row = blockIdx.x;
|
||||
const int col = threadIdx.x;
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = col; i < ncols; i += blockDim.x) {
|
||||
sum += x[row * ncols + i];
|
||||
}
|
||||
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
if (col != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[row] = norm ? sum / ncols : sum;
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ int warp_reduce_all(int x) {
|
||||
#ifdef GGML_USE_HIP
|
||||
|
@@ -1,4 +1,14 @@
|
||||
#include "mean.cuh"
|
||||
#include "reduce_rows.cuh"
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
template <typename T> __global__ void divide_by_count(T * result, size_t count) {
|
||||
*result /= static_cast<T>(count);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
@@ -13,7 +23,45 @@ void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
// Special case for reducing vectors
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
cudaStreamCaptureStatus iscapturing;
|
||||
CUDA_CHECK(cudaStreamIsCapturing(stream, &iscapturing));
|
||||
if ((nrows == 1) &&
|
||||
// CUDA_GRAPHS_DISABLED
|
||||
((ncols > 65536) &&
|
||||
((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
|
||||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
|
||||
ctx.cuda_graph->disable_due_to_failed_graph_capture)) ||
|
||||
// CUDA_GRAPHS ENABLED
|
||||
((ncols > 32768) &&
|
||||
!((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
|
||||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
|
||||
ctx.cuda_graph->disable_due_to_failed_graph_capture))) {
|
||||
// Single row - use device-wide reduction
|
||||
size_t tmp_size = 0;
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
|
||||
DeviceReduce::Sum(nullptr, tmp_size, src0_d, dst_d, ncols, stream);
|
||||
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, src0_d, dst_d, ncols, stream);
|
||||
|
||||
// Divide by ncols
|
||||
divide_by_count<float><<<1, 1, 0, stream>>>(dst_d, ncols);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
reduce_rows_f32</*norm*/ true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
if ((nrows / nsm) < 2) {
|
||||
const dim3 block_dims(512, 1, 1);
|
||||
reduce_rows_f32</*norm=*/true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
} else {
|
||||
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
||||
reduce_rows_f32</*norm=*/true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
}
|
||||
}
|
||||
|
53
ggml/src/ggml-cuda/reduce_rows.cuh
Normal file
53
ggml/src/ggml-cuda/reduce_rows.cuh
Normal file
@@ -0,0 +1,53 @@
|
||||
#include "common.cuh"
|
||||
|
||||
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
|
||||
template <bool norm>
|
||||
static __global__ void reduce_rows_f32(const float * __restrict__ x, float * __restrict__ dst, const int ncols) {
|
||||
const int row = blockIdx.x;
|
||||
const int col = threadIdx.x;
|
||||
|
||||
float sum = 0.0f;
|
||||
const int num_unroll = 8;
|
||||
float temp[num_unroll];
|
||||
float sum_temp[num_unroll] = { 0.0f };
|
||||
for (int i = col; i < ncols;) {
|
||||
for (int j = 0; j < num_unroll; ++j) {
|
||||
if (i < ncols) {
|
||||
temp[j] = x[row * ncols + i];
|
||||
} else {
|
||||
temp[j] = 0;
|
||||
}
|
||||
i += blockDim.x;
|
||||
}
|
||||
for (int j = 0; j < num_unroll; ++j) {
|
||||
sum_temp[j] += temp[j];
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < num_unroll; ++j) {
|
||||
sum += sum_temp[j];
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
sum = warp_reduce_sum(sum);
|
||||
if (blockDim.x > WARP_SIZE) {
|
||||
assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
|
||||
__shared__ float s_sum[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = sum;
|
||||
}
|
||||
__syncthreads();
|
||||
sum = 0.0f;
|
||||
if (lane_id < (blockDim.x / WARP_SIZE)) {
|
||||
sum = s_sum[lane_id];
|
||||
}
|
||||
sum = warp_reduce_sum(sum);
|
||||
}
|
||||
|
||||
if (col != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[row] = norm ? sum / ncols : sum;
|
||||
}
|
@@ -1,19 +1,15 @@
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
#include "sum.cuh"
|
||||
#include "sumrows.cuh"
|
||||
|
||||
#ifdef USE_CUB
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // USE_CUB
|
||||
|
||||
#include "sumrows.cuh"
|
||||
#include "sum.cuh"
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
|
||||
#ifdef USE_CUB
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
size_t tmp_size = 0;
|
||||
DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
@@ -23,7 +19,7 @@ void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int
|
||||
// For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
|
||||
sum_rows_f32_cuda(x, dst, ne, 1, stream);
|
||||
GGML_UNUSED(pool);
|
||||
#endif // USE_CUB
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
@@ -1,9 +1,17 @@
|
||||
#include "reduce_rows.cuh"
|
||||
#include "sumrows.cuh"
|
||||
|
||||
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
reduce_rows_f32</*norm*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
if ((nrows / nsm) < 2) {
|
||||
const dim3 block_dims(512, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
} else {
|
||||
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -19,8 +27,17 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
if ((nrows / nsm) < 2) {
|
||||
// Increase num threads to 512 for small nrows to better hide the latency
|
||||
const dim3 block_dims(512, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
} else {
|
||||
// Enough active SMs to hide latency, use smaller blocks to allow better scheduling
|
||||
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user