mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-16 21:22:37 -04:00
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating m, v tensors. support finetune.cpp arg -opt SGD (or sgd). (default adamw as before) llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch) when using SGD instead of 19gb (55 sec/epoch) using adamw. (wikipedia 100 lines finetune) ( using the same GPU memory, adamw can only do before OOM 512 batch/context, reaching: train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00 val: [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00 SGD is superior, though it converges slower, with max before OOM 1728 batch/context (esp see the better validation perf): train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00 val: [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00 ) note: when finetuning long enough (or w/ enough -lr), validation accuracy *eventually* drops ('catastrophic forgetting') -lr-half (halflife) option useful for SGD to avoid oscillation or super slow underdamped learning (makes setting -lr more forgiving). terminal -lr for now is set by lr-halvings i.e. if you want at most 1/8 the inital -lr you set -lr-halvings 3. note: objective loss not directly comparable between adamw, sgd? - check perplexity or accuracy or consider relative improvements for convergence new finetune args -wd 1e-9 to enable weight decay in sgd or adamw, and max -epochs N (default 2 as before) cache (1 - wd*alpha) in 'adamw' opt struct - no noticeable perf benefit, disabled (still done for new SGD though) since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params would probably be able to change between SGD and AdamW with each epoch but would need to use adamw for the first (unconfirmed - no cmdline arg to set such a policy yet) test-opt checks adamw as before and now sgd (except for a few disabled tests for sgd only; probably just needs logging values and adding alternate reference values); tolerance on the 'regression' test is broader for sgd (so we don't need many more epochs) * Vulkan: Implement GGML_OP_OPT_STEP_SGD * tests: Fix OPT_STEP_SGD test-backend-ops * SGD op param store weight-decay and not 1-alpha*wd * minor + cosmetic changes * fix vulkan sgd * try CI fix --------- Co-authored-by: 0cc4m <picard12@live.de> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
@@ -41,6 +41,7 @@
|
||||
#endif
|
||||
#include <locale>
|
||||
#include <windows.h>
|
||||
#include <string.h>
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#else
|
||||
@@ -1565,3 +1566,56 @@ ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
|
||||
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
|
||||
const lr_opt & d = *(lr_opt *) userdata;
|
||||
result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
|
||||
result.sgd.wd = result.adamw.wd = d.wd;
|
||||
return result;
|
||||
}
|
||||
|
||||
// TODO make all command line args case-insensitive
|
||||
static inline bool eq_case_insensitive(char const* a, char const* b) {
|
||||
return !
|
||||
#if defined(_MSC_VER)
|
||||
_stricmp
|
||||
#else
|
||||
strcasecmp
|
||||
#endif // defined(_MSC_VER)
|
||||
(a, b);
|
||||
}
|
||||
|
||||
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
|
||||
if (eq_case_insensitive("adamw", n)) {
|
||||
return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
|
||||
}
|
||||
if (eq_case_insensitive("sgd", n)) {
|
||||
return GGML_OPT_OPTIMIZER_TYPE_SGD;
|
||||
}
|
||||
return GGML_OPT_OPTIMIZER_TYPE_COUNT;
|
||||
}
|
||||
|
||||
// TODO simplify to use just log and exp
|
||||
static float const k_log_2 = std::log(2.f);
|
||||
|
||||
void lr_opt::init() {
|
||||
if (lr_min > 0 && lr_min < lr0) {
|
||||
float nhalf = std::log(lr0 / lr_min) / k_log_2;
|
||||
float e = epochs;
|
||||
if (decay_epochs > 0 && decay_epochs < e) {
|
||||
e = decay_epochs;
|
||||
} else {
|
||||
decay_epochs = e;
|
||||
}
|
||||
scale_epoch = nhalf / e;
|
||||
}
|
||||
}
|
||||
|
||||
float lr_opt::get_lr(float epoch) const {
|
||||
float r = lr_min <= 0 ? lr0 :
|
||||
epoch >= decay_epochs ? lr_min :
|
||||
lr0 * std::pow(0.5f, epoch * scale_epoch);
|
||||
LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
|
||||
return r;
|
||||
}
|
||||
|
Reference in New Issue
Block a user