mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-28 04:15:21 +00:00
gemma : more consistent attention scaling for v2 and v3 (#13951)
* gemma : fix attn scale for 27B * cont : apply scale before attn * cont : consistent attention scaling
This commit is contained in:
@ -956,6 +956,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||||||
case 46: type = LLM_TYPE_27B; break;
|
case 46: type = LLM_TYPE_27B; break;
|
||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
|
||||||
|
hparams.f_attention_scale = type == LLM_TYPE_27B
|
||||||
|
? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
|
||||||
|
: 1.0f / std::sqrt(float(hparams.n_embd_head_k));
|
||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_GEMMA3:
|
case LLM_ARCH_GEMMA3:
|
||||||
{
|
{
|
||||||
@ -976,6 +981,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
|
||||||
hparams.f_attention_scale = type == LLM_TYPE_27B
|
hparams.f_attention_scale = type == LLM_TYPE_27B
|
||||||
? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
|
? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
|
||||||
: 1.0f / std::sqrt(float(hparams.n_embd_head_k));
|
: 1.0f / std::sqrt(float(hparams.n_embd_head_k));
|
||||||
@ -8484,14 +8490,7 @@ struct llm_build_gemma2_iswa : public llm_graph_context {
|
|||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
cb(Vcur, "Vcur", il);
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
|
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
|
||||||
switch (model.type) {
|
|
||||||
case LLM_TYPE_2B:
|
|
||||||
case LLM_TYPE_9B:
|
|
||||||
case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
|
|
||||||
default: GGML_ABORT("fatal error");
|
|
||||||
};
|
|
||||||
cb(Qcur, "Qcur_scaled", il);
|
|
||||||
|
|
||||||
cur = build_attn(inp_attn, gf,
|
cur = build_attn(inp_attn, gf,
|
||||||
model.layers[il].wo, NULL,
|
model.layers[il].wo, NULL,
|
||||||
@ -8632,9 +8631,12 @@ struct llm_build_gemma3_iswa : public llm_graph_context {
|
|||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
cb(Vcur, "Vcur", il);
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
|
||||||
|
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
|
||||||
|
|
||||||
cur = build_attn(inp_attn, gf,
|
cur = build_attn(inp_attn, gf,
|
||||||
model.layers[il].wo, NULL,
|
model.layers[il].wo, NULL,
|
||||||
Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
|
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
|
||||||
}
|
}
|
||||||
|
|
||||||
cur = build_norm(cur,
|
cur = build_norm(cur,
|
||||||
|
Reference in New Issue
Block a user