mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-02 05:15:47 +00:00
ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
This commit is contained in:
20
llama.cpp
20
llama.cpp
@ -3175,6 +3175,7 @@ struct llama_model_loader {
|
||||
switch (type_max) {
|
||||
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
|
||||
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
|
||||
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
|
||||
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
|
||||
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
|
||||
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
|
||||
@ -3666,6 +3667,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
switch (ftype) {
|
||||
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
||||
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
|
||||
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
|
||||
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
||||
@ -6129,6 +6131,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
||||
|| !(
|
||||
model.ftype == LLAMA_FTYPE_ALL_F32 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
|
||||
)
|
||||
@ -14158,13 +14161,16 @@ static void llama_tensor_dequantize_internal(
|
||||
if (qtype.to_float == NULL) {
|
||||
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
|
||||
}
|
||||
} else if (tensor->type != GGML_TYPE_F16) {
|
||||
} else if (tensor->type != GGML_TYPE_F16 &&
|
||||
tensor->type != GGML_TYPE_BF16) {
|
||||
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
|
||||
}
|
||||
|
||||
if (nthread < 2) {
|
||||
if (tensor->type == GGML_TYPE_F16) {
|
||||
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
|
||||
} else if (tensor->type == GGML_TYPE_BF16) {
|
||||
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
|
||||
} else if (ggml_is_quantized(tensor->type)) {
|
||||
qtype.to_float(tensor->data, f32_output, nelements);
|
||||
} else {
|
||||
@ -14173,7 +14179,14 @@ static void llama_tensor_dequantize_internal(
|
||||
return;
|
||||
}
|
||||
|
||||
size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
|
||||
size_t block_size;
|
||||
if (tensor->type == GGML_TYPE_F16 ||
|
||||
tensor->type == GGML_TYPE_BF16) {
|
||||
block_size = 1;
|
||||
} else {
|
||||
block_size = (size_t)ggml_blck_size(tensor->type);
|
||||
}
|
||||
|
||||
size_t block_size_bytes = ggml_type_size(tensor->type);
|
||||
|
||||
GGML_ASSERT(nelements % block_size == 0);
|
||||
@ -14192,6 +14205,8 @@ static void llama_tensor_dequantize_internal(
|
||||
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
|
||||
if (typ == GGML_TYPE_F16) {
|
||||
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
|
||||
} else if (typ == GGML_TYPE_BF16) {
|
||||
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
|
||||
} else {
|
||||
qtype.to_float(inbuf, outbuf, nels);
|
||||
}
|
||||
@ -14552,6 +14567,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
|
||||
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
|
||||
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
|
||||
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
|
||||
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
|
||||
|
||||
// K-quants
|
||||
|
Reference in New Issue
Block a user