llama : support BailingMoE (Ling) (#12634)

This commit is contained in:
Sigbjørn Skjæret
2025-03-30 22:21:03 +02:00
committed by GitHub
parent 4663bd353c
commit 2c3f8b850a
13 changed files with 404 additions and 0 deletions

View File

@ -88,6 +88,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
case LLM_TYPE_57B_A14B: return "57B.A14B";
case LLM_TYPE_27B: return "27B";
case LLM_TYPE_290B: return "290B";
default: return "?B";
}
}
@ -1328,6 +1329,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
} break;
case LLM_ARCH_BAILINGMOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
switch (hparams.n_layer) {
case 28: type = LLM_TYPE_16B; break;
case 88: type = LLM_TYPE_290B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
default: throw std::runtime_error("unsupported model architecture");
}
@ -3739,6 +3755,46 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
} break;
case LLM_ARCH_BAILINGMOE:
{
const int64_t n_ff_exp = hparams.n_ff_exp;
const int64_t n_expert_shared = hparams.n_expert_shared;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0");
}
if (n_expert_used == 0) {
throw std::runtime_error("n_expert_used must be > 0");
}
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@ -4026,6 +4082,14 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
}
if (arch == LLM_ARCH_BAILINGMOE) {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
}
vocab.print_info();
}
@ -11814,6 +11878,150 @@ struct llm_build_plm : public llm_graph_context {
}
};
struct llm_build_bailingmoe : public llm_graph_context {
llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_rot)), il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
false, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
llama_memory_i * llama_model::create_memory() const {
llama_memory_i * res;
@ -12090,6 +12298,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_plm>(*this, params, gf);
} break;
case LLM_ARCH_BAILINGMOE:
{
llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
} break;
default:
GGML_ABORT("fatal error");
}
@ -12221,6 +12433,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_BAILINGMOE:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2