mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-27 03:55:20 +00:00
sampling: add Top-nσ sampler (#11223)
* initial sampling changes: * completed top nsigma sampler implementation * apply parameter to only llama-cli * updated readme * added tests and fixed nsigma impl * cleaned up pr * format * format * format * removed commented tests * cleanup pr and remove explicit floats * added top-k sampler to improve performance * changed sigma to float * fixed string format to float * Update src/llama-sampling.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/sampling.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update src/llama-sampling.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update src/llama-sampling.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update src/llama-sampling.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update src/llama-sampling.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * added llama_sampler_init --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
committed by
GitHub
parent
e4376270d9
commit
27e8a23300
@ -1172,6 +1172,9 @@ extern "C" {
|
||||
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
|
||||
|
||||
/// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_top_n_sigma(float n);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
|
Reference in New Issue
Block a user