diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu index c6dec4276..eeaa14bf5 100644 --- a/ggml/src/ggml-cuda/convert.cu +++ b/ggml/src/ggml-cuda/convert.cu @@ -728,3 +728,25 @@ to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type) { return nullptr; } } + +to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type) { + switch (type) { + case GGML_TYPE_F32: + return convert_unary_cuda; + case GGML_TYPE_F16: + return convert_unary_cuda; + default: + return nullptr; + } +} + +to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type) { + switch (type) { + case GGML_TYPE_F16: + return convert_unary_cuda; + case GGML_TYPE_BF16: + return convert_unary_cuda; + default: + return nullptr; + } +} diff --git a/ggml/src/ggml-cuda/convert.cuh b/ggml/src/ggml-cuda/convert.cuh index b65b98e08..f04214be1 100644 --- a/ggml/src/ggml-cuda/convert.cuh +++ b/ggml/src/ggml-cuda/convert.cuh @@ -22,5 +22,10 @@ using to_t_nc_cuda_t = void (*)(const void * x, T * y, int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne03, int64_t s01, int64_t s02, int64_t s03, cudaStream_t stream); +typedef to_t_nc_cuda_t to_fp32_nc_cuda_t; typedef to_t_nc_cuda_t to_fp16_nc_cuda_t; +typedef to_t_nc_cuda_t to_bf16_nc_cuda_t; + +to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type); to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type); +to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index b30c13c62..811422f38 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -1749,7 +1749,7 @@ static void ggml_cuda_op_mul_mat( } static __global__ void k_compute_batched_ptrs( - const half * src0_as_f16, const half * src1_as_f16, char * dst, + const void * src0_as_f16, const void * src1_as_f16, char * dst, const void ** ptrs_src, void ** ptrs_dst, int64_t ne12, int64_t ne13, int64_t ne23, @@ -1772,83 +1772,131 @@ static __global__ void k_compute_batched_ptrs( ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; } -static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +// Type traits for mapping ggml types to CUDA/cuBLAS types +template +struct batched_mul_mat_traits; + +template<> +struct batched_mul_mat_traits { + using cuda_type = float; + static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F; + static inline const cudaDataType_t data_type = CUDA_R_32F; + static inline const ggml_type ggml_type_val = GGML_TYPE_F32; + static inline const float alpha = 1.0f; + static inline const float beta = 0.0f; + static inline const void* get_alpha() { static const float val = alpha; return &val; } + static inline const void* get_beta() { static const float val = beta; return &val; } + static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_fp32_nc_cuda(src_type); } +}; + +template<> +struct batched_mul_mat_traits { + using cuda_type = nv_bfloat16; + static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F; + static inline const cudaDataType_t data_type = CUDA_R_16BF; + static inline const ggml_type ggml_type_val = GGML_TYPE_BF16; + static inline const float alpha = 1.0f; + static inline const float beta = 0.0f; + static inline const void* get_alpha() { static const float val = alpha; return &val; } + static inline const void* get_beta() { static const float val = beta; return &val; } + static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_bf16_nc_cuda(src_type); } +}; + +template<> +struct batched_mul_mat_traits { + using cuda_type = half; + static inline const cublasComputeType_t compute_type = CUBLAS_COMPUTE_16F; + static inline const cudaDataType_t data_type = CUDA_R_16F; + static inline const ggml_type ggml_type_val = GGML_TYPE_F16; + static inline const half alpha = 1.0; + static inline const half beta = 0.0; + static inline const void* get_alpha() { static const half val = alpha; return &val; } + static inline const void* get_beta() { static const half val = beta; return &val; } + static inline auto get_nc_converter(ggml_type src_type) { return ggml_get_to_fp16_nc_cuda(src_type); } +}; + +template +static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + using traits = batched_mul_mat_traits; + using cuda_t = typename traits::cuda_type; + GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft)); - GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src0->type == src0_type); + GGML_ASSERT(ggml_is_contiguous(dst)); // Byte offsets and tensor dimensions are currently used in an inconsistent way for dst. // As long as dst is contiguous this does not matter though. - GGML_ASSERT(ggml_is_contiguous(dst)); GGML_TENSOR_BINARY_OP_LOCALS const int64_t ne_dst = ggml_nelements(dst); - cudaStream_t main_stream = ctx.stream(); - CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream)); - const half * src0_f16 = (const half *) src0->data; float * dst_ddf = (float *) dst->data; - - const half * src1_f16 = (const half *) src1->data; const size_t ts_src1 = ggml_type_size(src1->type); GGML_ASSERT(nb10 == ts_src1); int64_t s11 = nb11 / ts_src1; int64_t s12 = nb12 / ts_src1; int64_t s13 = nb13 / ts_src1; - ggml_cuda_pool_alloc src1_f16_alloc(ctx.pool()); - // convert src1 to fp16 - if (src1->type != GGML_TYPE_F16) { - const to_fp16_nc_cuda_t to_fp16_cuda = ggml_get_to_fp16_nc_cuda(src1->type); + const cuda_t * src0_ptr = nullptr; + const cuda_t * src1_ptr = nullptr; + + ggml_cuda_pool_alloc src0_alloc(ctx.pool()); + ggml_cuda_pool_alloc src1_alloc(ctx.pool()); + + // Handle src0 + src0_ptr = (const cuda_t *) src0->data; + + // Handle src1 - convert if necessary + if (src1->type == src0_type) { + src1_ptr = (const cuda_t *) src1->data; + } else { + // Convert src1 to target type using traits conversion functions const int64_t ne_src1 = ggml_nelements(src1); - src1_f16_alloc.alloc(ne_src1); - GGML_ASSERT(to_fp16_cuda != nullptr); + src1_alloc.alloc(ne_src1); - to_fp16_cuda(src1_f16, src1_f16_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream); - - src1_f16 = src1_f16_alloc.get(); + const auto convert_func = traits::get_nc_converter(src1->type); + GGML_ASSERT(convert_func != nullptr); + convert_func(src1->data, src1_alloc.get(), ne10, ne11, ne12, ne13, s11, s12, s13, main_stream); + src1_ptr = src1_alloc.get(); s11 = ne10; s12 = ne11*s11; s13 = ne12*s12; } - ggml_cuda_pool_alloc dst_f16(ctx.pool()); + // Setup destination buffer + ggml_cuda_pool_alloc dst_temp(ctx.pool()); char * dst_t; - - cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; - cudaDataType_t cu_data_type = CUDA_R_16F; - - // dst strides size_t nbd2 = dst->nb[2]; size_t nbd3 = dst->nb[3]; - const half alpha_f16 = 1.0f; - const half beta_f16 = 0.0f; - + cublasComputeType_t cu_compute_type = traits::compute_type; + cudaDataType_t cu_data_type = traits::data_type; + cudaDataType_t cu_data_type_a = traits::data_type; + cudaDataType_t cu_data_type_b = traits::data_type; + const void * alpha = traits::get_alpha(); + const void * beta = traits::get_beta(); const float alpha_f32 = 1.0f; - const float beta_f32 = 0.0f; - - const void * alpha = &alpha_f16; - const void * beta = &beta_f16; + const float beta_f32 = 0.0f; if (dst->op_params[0] == GGML_PREC_DEFAULT) { - dst_t = (char *) dst_f16.alloc(ne_dst); - - nbd2 /= sizeof(float) / sizeof(half); - nbd3 /= sizeof(float) / sizeof(half); + if constexpr (src0_type == GGML_TYPE_F32) { + dst_t = (char *) dst_ddf; // Direct F32 output + } else { + dst_t = (char *) dst_temp.alloc(ne_dst); + nbd2 /= sizeof(float) / sizeof(cuda_t); + nbd3 /= sizeof(float) / sizeof(cuda_t); + } } else { dst_t = (char *) dst_ddf; - cu_compute_type = CUBLAS_COMPUTE_32F; - cu_data_type = CUDA_R_32F; - + cu_data_type = CUDA_R_32F; alpha = &alpha_f32; - beta = &beta_f32; + beta = &beta_f32; } int id = ggml_cuda_get_device(); @@ -1856,7 +1904,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) { cu_compute_type = CUBLAS_COMPUTE_32F; alpha = &alpha_f32; - beta = &beta_f32; + beta = &beta_f32; } GGML_ASSERT(ne12 % ne02 == 0); @@ -1866,35 +1914,15 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; -#if 0 - // use cublasGemmEx - { - for (int i13 = 0; i13 < ne13; ++i13) { - for (int i12 = 0; i12 < ne12; ++i12) { - int i03 = i13 / r3; - int i02 = i12 / r2; - - CUBLAS_CHECK( - cublasGemmEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - alpha, (const char *) src0_f16 + i03*nb03 + i02*nb02, CUDA_R_16F, nb01/sizeof(half), - src1_f16 + i13*s13 + i12*s12, CUDA_R_16F, s11, - beta, ( char *) dst_t + i13*nbd3 + i12*nbd2, cu_data_type, ne0, - cu_compute_type, - CUBLAS_GEMM_DEFAULT_TENSOR_OP)); - } - } - } -#else if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 // use cublasGemmStridedBatchedEx CUBLAS_CHECK( cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - alpha, src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA - src1_f16, CUDA_R_16F, s11, s12, // strideB - beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC + alpha, src0_ptr, cu_data_type_a, nb01/nb00, nb02/nb00, // strideA + src1_ptr, cu_data_type_b, s11, s12, // strideB + beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC ne12*ne13, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); @@ -1905,34 +1933,55 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co ggml_cuda_pool_alloc ptrs_src(ctx.pool(), 2*ne23); ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23); + size_t src1_stride_size = sizeof(cuda_t); + dim3 block_dims(ne13, ne12); k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( - src0_f16, src1_f16, dst_t, + src0_ptr, src1_ptr, dst_t, ptrs_src.get(), ptrs_dst.get(), ne12, ne13, ne23, nb02, nb03, - src1->type == GGML_TYPE_F16 ? nb12 : s12*sizeof(half), - src1->type == GGML_TYPE_F16 ? nb13 : s13*sizeof(half), + (src1->type == src0_type) ? nb12 : s12*src1_stride_size, + (src1->type == src0_type) ? nb13 : s13*src1_stride_size, nbd2, nbd3, r2, r3); + CUDA_CHECK(cudaGetLastError()); CUBLAS_CHECK( cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, ne01, ne11, ne10, - alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00, - (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, s11, - beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0, + alpha, (const void **) (ptrs_src.get() + 0*ne23), cu_data_type_a, nb01/nb00, + (const void **) (ptrs_src.get() + 1*ne23), cu_data_type_b, s11, + beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne0, ne23, cu_compute_type, CUBLAS_GEMM_DEFAULT_TENSOR_OP)); } -#endif - if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type == CUDA_R_16F) { - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); - to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream); + // Convert output back to F32 if needed + if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type != CUDA_R_32F) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(traits::ggml_type_val); + to_fp32_cuda(dst_temp.get(), dst_ddf, ne_dst, main_stream); + } +} + +static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || src0->type == GGML_TYPE_F32); + + switch (src0->type) { + case GGML_TYPE_F32: + ggml_cuda_mul_mat_batched_cublas_impl(ctx, src0, src1, dst); + break; + case GGML_TYPE_BF16: + ggml_cuda_mul_mat_batched_cublas_impl(ctx, src0, src1, dst); + break; + case GGML_TYPE_F16: + ggml_cuda_mul_mat_batched_cublas_impl(ctx, src0, src1, dst); + break; + default: + GGML_ABORT("Unsupported type"); } } @@ -1984,6 +2033,12 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); + //TODO update for generic tensor parallelism + const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; + bool use_batched_cublas_f16 = src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16); + bool use_batched_cublas_bf16 = src0->type == GGML_TYPE_BF16 && bf16_mma_hardware_available(cc); + bool use_batched_cublas_f32 = src0->type == GGML_TYPE_F32; + if (!split && use_mul_mat_vec) { // the custom F16 vector kernel can be used over batched cuBLAS GEMM // but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention) @@ -1992,8 +2047,8 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst); } else if (!split && use_mul_mat_q) { ggml_cuda_mul_mat_q(ctx, src0, src1, nullptr, dst); - } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16) && - !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { + } else if (!split && (use_batched_cublas_f16 || use_batched_cublas_bf16 || use_batched_cublas_f32) + && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { // general KQ + KQV multi-batch without FlashAttention ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst); } else if (use_mul_mat_vec) { diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index a233f1f2f..128d63988 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -4425,8 +4425,10 @@ static std::vector> make_test_cases_eval() { for (auto nr : {1,4}) { for (uint32_t m = 0; m < 2; ++m) { for (uint32_t k = 0; k < 2; ++k) { - test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3})); - test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true)); + for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) { + test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3})); + test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true)); + } } } }