llama : add high-throughput mode (#14363)

* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
This commit is contained in:
Georgi Gerganov
2025-07-16 16:35:42 +03:00
committed by GitHub
parent ab14019821
commit 225e7a1438
30 changed files with 1080 additions and 460 deletions

View File

@ -33,8 +33,10 @@ typedef void (* fattn_kernel_t)(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -521,7 +523,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11) {
constexpr int ncols = ncols1*ncols2;
const int bidx0 = blockIdx.x;
@ -535,8 +537,8 @@ static __global__ void flash_attn_stream_k_fixup(
const int iter_k = ne11 / FATTN_KQ_STRIDE;
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
const int kbc0 = (bidx0 + 0)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc0 = (bidx0 + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const bool did_not_have_any_data = kbc0 == kbc0_stop;
const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
@ -545,14 +547,15 @@ static __global__ void flash_attn_stream_k_fixup(
return;
}
const int channel = kbc0 / (iter_k*iter_j);
const int jt = (kbc0 - channel*iter_k*iter_j) / iter_k;
const int sequence = kbc0 / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc0 - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc0 - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
if (jt*ncols1 + j >= ne01) {
return;
}
dst += jt*ne02*(ncols1*D) + channel*(ncols2*D) + (j*ne02 + c)*D + tid;
dst += sequence*ne02*ne01*D + jt*ne02*(ncols1*D) + head*(ncols2*D) + (j*ne02 + c)*D + tid;
// Load the partial result that needs a fixup:
float dst_val = 0.0f;
@ -571,7 +574,7 @@ static __global__ void flash_attn_stream_k_fixup(
int bidx = bidx0 - 1;
int kbc_stop = kbc0;
while(true) {
const int kbc = bidx*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc = bidx*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
if (kbc == kbc_stop) { // Did not have any data.
bidx--;
kbc_stop = kbc;
@ -617,16 +620,31 @@ static __global__ void flash_attn_combine_results(
const float2 * __restrict__ VKQ_meta,
float * __restrict__ dst,
const int parallel_blocks) {
VKQ_parts += parallel_blocks*D * gridDim.z*blockIdx.x;
VKQ_meta += parallel_blocks * gridDim.z*blockIdx.x;
dst += D * gridDim.z*blockIdx.x;
// Dimension 0: threadIdx.x
// Dimension 1: blockIdx.x
// Dimension 2: blockIdx.y
// Dimension 3: blockIdx.z
// Memory layout is permuted with [0, 2, 1, 3]
const int ne01 = gridDim.x;
const int ne02 = gridDim.y;
const int col = blockIdx.x;
const int head = blockIdx.y;
const int sequence = blockIdx.z;
const int j_dst_unrolled = (sequence*ne01 + col)*ne02 + head;
VKQ_parts += j_dst_unrolled * parallel_blocks*D;
VKQ_meta += j_dst_unrolled * parallel_blocks;
dst += j_dst_unrolled * D;
const int tid = threadIdx.x;
__builtin_assume(tid < D);
extern __shared__ float2 meta[];
for (int i = tid; i < 2*parallel_blocks; i += D) {
((float *) meta)[i] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + i];
((float *) meta)[i] = ((const float *)VKQ_meta) [i];
}
__syncthreads();
@ -644,11 +662,11 @@ static __global__ void flash_attn_combine_results(
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.z*D + blockIdx.z*D + tid];
VKQ_numerator += KQ_max_scale * VKQ_parts[l*D + tid];
VKQ_denominator += KQ_max_scale * meta[l].y;
}
dst[blockIdx.z*D + tid] = VKQ_numerator / VKQ_denominator;
dst[tid] = VKQ_numerator / VKQ_denominator;
}
[[noreturn]]
@ -705,8 +723,6 @@ void launch_fattn(
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
GGML_ASSERT(Q->ne[3] == 1);
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int id = ggml_cuda_get_device();
@ -853,8 +869,8 @@ void launch_fattn(
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0,
mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0,
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0,
mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0, mask ? mask->nb[3] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
nb11, nb12, nb13,
nb21, nb22, nb23,
@ -869,11 +885,11 @@ void launch_fattn(
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1]);
}
} else if (parallel_blocks > 1) {
const dim3 block_dim_combine(DV, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], 1, blocks_num.z);
const dim3 blocks_num_combine(Q->ne[1], Q->ne[2], Q->ne[3]);
const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2);
flash_attn_combine_results<DV>

View File

@ -1224,8 +1224,10 @@ static __global__ void flash_attn_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -1274,8 +1276,8 @@ static __global__ void flash_attn_ext_f16(
constexpr int kb_niter = FATTN_KQ_STRIDE / c::nbatch_fa; // Number of kernel iterations per assigned KQ slice.
// kbc == k block continuous, current index in continuous ijk space.
int kbc = (blockIdx.x + 0)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
const int kbc_stop = (blockIdx.x + 1)*iter_k*iter_j*(ne02/ncols2) / gridDim.x;
int kbc = (blockIdx.x + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const int kbc_stop = (blockIdx.x + 1)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
// If the seams of 2 CUDA blocks fall within an output tile their results need to be combined.
// For this we need to track both the block that starts the tile (needs_fixup) and the block that finishes the tile (is_fixup).
@ -1285,18 +1287,19 @@ static __global__ void flash_attn_ext_f16(
int kb0_start = kbc % iter_k;
int kb0_stop = min(iter_k, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == iter_k) {
const int channel = kbc / (iter_k*iter_j);
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02*(head*ncols2));
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb32*(channel % ne32) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
(const half2 *) (mask + nb33*(sequence % ne33) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head*ncols2) * (DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head*ncols2 / gqa_ratio));
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter;
@ -1325,18 +1328,19 @@ static __global__ void flash_attn_ext_f16(
return;
}
const int channel = kbc / (iter_k*iter_j);
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02*(head*ncols2));
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb32*(channel % ne32) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
(const half2 *) (mask + nb33*(sequence % ne33) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head*ncols2) * (DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head*ncols2 / gqa_ratio));
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter;

View File

@ -31,8 +31,10 @@ static __global__ void flash_attn_tile_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -62,15 +64,17 @@ static __global__ void flash_attn_tile_ext_f16(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.z + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.z / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const int stride_KV2 = nb11 / sizeof(half2);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
@ -255,6 +259,8 @@ static __global__ void flash_attn_tile_ext_f16(
__syncthreads();
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
@ -266,21 +272,21 @@ static __global__ void flash_attn_tile_ext_f16(
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
kqsum_j = warp_reduce_sum((float)kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val /= __half2half2(kqsum_j);
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 0] = __low2float(dst_val);
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 1] = __high2float(dst_val);
dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
@ -290,8 +296,8 @@ static __global__ void flash_attn_tile_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);

View File

@ -31,8 +31,10 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -74,15 +76,17 @@ static __global__ void flash_attn_tile_ext_f32(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.z + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.z / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
@ -265,6 +269,8 @@ static __global__ void flash_attn_tile_ext_f32(
__syncthreads();
}
float2 * dst2 = (float2 *) dst;
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
@ -276,22 +282,22 @@ static __global__ void flash_attn_tile_ext_f32(
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum(kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
#pragma unroll
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
const int i0 = i00 + threadIdx.x;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
if (gridDim.y == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 0] = dst_val.x;
dst[j_dst*D*gridDim.z + D*blockIdx.z + i0 + 1] = dst_val.y;
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
}
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else

View File

@ -28,8 +28,10 @@ static __global__ void flash_attn_vec_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -65,14 +67,16 @@ static __global__ void flash_attn_vec_ext_f16(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb02* blockIdx.z + nb01*ic0;
K += nb12*(blockIdx.z / gqa_ratio);
V += nb22*(blockIdx.z / gqa_ratio);
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
@ -330,12 +334,11 @@ static __global__ void flash_attn_vec_ext_f16(
if (gridDim.y == 1) {
dst_val /= kqsum[j_VKQ];
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + tid] = dst_val;
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
}
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[((ic0 + tid)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
@ -344,8 +347,8 @@ static __global__ void flash_attn_vec_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);

View File

@ -28,8 +28,10 @@ static __global__ void flash_attn_vec_ext_f32(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -53,8 +55,8 @@ static __global__ void flash_attn_vec_ext_f32(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
GGML_UNUSED(nb23); GGML_UNUSED(ne0); GGML_UNUSED(ne1);
@ -77,14 +79,16 @@ static __global__ void flash_attn_vec_ext_f32(
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb02* blockIdx.z + nb01*ic0;
K += nb12*(blockIdx.z / gqa_ratio);
V += nb22*(blockIdx.z / gqa_ratio); // K and V have same shape
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float slope = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
@ -326,12 +330,11 @@ static __global__ void flash_attn_vec_ext_f32(
if (gridDim.y == 1) {
dst_val /= kqsum[j_VKQ];
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
dst[j_dst*D*gridDim.z + D*blockIdx.z + tid] = dst_val;
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
}
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[((ic0 + tid)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
@ -340,8 +343,8 @@ static __global__ void flash_attn_vec_ext_f32(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(ne32);
GGML_UNUSED(nb31); GGML_UNUSED(nb32);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);

View File

@ -47,8 +47,10 @@ static __global__ void flash_attn_ext_f16(
const int ne13,
const int ne31,
const int ne32,
const int ne33,
const int nb31,
const int nb32,
const int nb33,
const int nb01,
const int nb02,
const int nb03,
@ -95,17 +97,19 @@ static __global__ void flash_attn_ext_f16(
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb02* blockIdx.z + nb01*ic0);
const half * K_h = (const half *) (K + nb12*(blockIdx.z / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.z / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb32*(blockIdx.z % ne32) + nb31*ic0);
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half * K_h = (const half *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half * V_h = (const half *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const half2 * mask2 = (const half2 *) maskh;
const int stride_Q = nb01 / sizeof(float);
const int stride_KV = nb11 / sizeof(half);
const float slopef = get_alibi_slope(max_bias, blockIdx.z, n_head_log2, m0, m1);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
const half2 slope2 = make_half2(slopef, slopef);
@ -400,7 +404,6 @@ static __global__ void flash_attn_ext_f16(
if (ic0 + j_VKQ >= ne01) {
return;
}
const int j_dst = (ic0 + j_VKQ)*gridDim.y + blockIdx.y;
float KQ_rowsum_j;
if (std::is_same<KQ_acc_t, float>::value) {
@ -409,6 +412,8 @@ static __global__ void flash_attn_ext_f16(
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
}
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size) {
const int i = i0 + threadIdx.x;
@ -419,7 +424,7 @@ static __global__ void flash_attn_ext_f16(
if (gridDim.y == 1) {
dst_val /= KQ_rowsum_j;
}
dst[j_dst*gridDim.z*D + blockIdx.z*D + i] = dst_val;
dst[j_dst_unrolled*D + i] = dst_val;
}
if (gridDim.y == 1 || threadIdx.x != 0) {
@ -433,7 +438,7 @@ static __global__ void flash_attn_ext_f16(
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
}
dst_meta_val.y = KQ_rowsum_j;
dst_meta[((ic0 + j_VKQ)*gridDim.z + blockIdx.z) * gridDim.y + blockIdx.y] = dst_meta_val;
dst_meta[j_dst_unrolled] = dst_meta_val;
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
@ -442,7 +447,8 @@ static __global__ void flash_attn_ext_f16(
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33); GGML_UNUSED(nb31);
GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
GGML_UNUSED(ne0); GGML_UNUSED(ne1); GGML_UNUSED(ne2); GGML_UNUSED(ne3);

View File

@ -3413,12 +3413,6 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 192) {
return false;
}
// TODO: support broadcast
// note: this was initially implemented in https://github.com/ggml-org/llama.cpp/pull/14500, but
// the interface of ggml_flash_attn_ext() changed in https://github.com/ggml-org/llama.cpp/pull/14505
if (op->src[0]->ne[3] != 1) {
return false;
}
if (op->src[1]->type == GGML_TYPE_BF16 || op->src[2]->type == GGML_TYPE_BF16) {
return false;
}
@ -3431,6 +3425,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
return true;
}
if (op->src[3] && op->src[3]->ne[2] != 1) {
return false;
}
return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) &&
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}