mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-07-26 11:13:53 -04:00
ggml: Add initial WebGPU backend (#14521)
* Minimal setup of webgpu backend with dawn. Just prints out the adapter and segfaults * Initialize webgpu device * Making progress on setting up the backend * Finish more boilerplate/utility functions * Organize file and work on alloc buffer * Add webgpu_context to prepare for actually running some shaders * Work on memset and add shader loading * Work on memset polyfill * Implement set_tensor as webgpu WriteBuffer, remove host_buffer stubs since webgpu doesn't support it * Implement get_tensor and buffer_clear * Finish rest of setup * Start work on compute graph * Basic mat mul working * Work on emscripten build * Basic WebGPU backend instructions * Use EMSCRIPTEN flag * Work on passing ci, implement 4d tensor multiplication * Pass thread safety test * Implement permuting for mul_mat and cpy * minor cleanups * Address feedback * Remove division by type size in cpy op * Fix formatting and add github action workflows for vulkan and metal (m-series) webgpu backends * Fix name * Fix macos dawn prefix path
This commit is contained in:
@ -181,6 +181,8 @@ option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug ou
|
||||
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
|
||||
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
|
||||
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
@ -270,6 +272,7 @@ set(GGML_PUBLIC_HEADERS
|
||||
include/ggml-rpc.h
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h
|
||||
include/ggml-webgpu.h
|
||||
include/gguf.h)
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
|
19
ggml/include/ggml-webgpu.h
Normal file
19
ggml/include/ggml-webgpu.h
Normal file
@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_WEBGPU_NAME "WebGPU"
|
||||
|
||||
// Needed for examples in ggml
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_webgpu_init(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_webgpu_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -370,6 +370,7 @@ ggml_add_backend(MUSA)
|
||||
ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(OpenCL)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
|
@ -45,6 +45,10 @@
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
#include "ggml-webgpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
@ -173,6 +177,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_VULKAN
|
||||
register_backend(ggml_backend_vk_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
register_backend(ggml_backend_webgpu_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
|
54
ggml/src/ggml-webgpu/CMakeLists.txt
Normal file
54
ggml/src/ggml-webgpu/CMakeLists.txt
Normal file
@ -0,0 +1,54 @@
|
||||
cmake_minimum_required(VERSION 3.13)
|
||||
|
||||
find_package(Python3 REQUIRED)
|
||||
|
||||
# Shader locations
|
||||
set(SHADER_DIR "${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders")
|
||||
set(SHADER_OUTPUT_DIR "${CMAKE_CURRENT_BINARY_DIR}/generated")
|
||||
set(SHADER_HEADER "${SHADER_OUTPUT_DIR}/ggml-wgsl-shaders.hpp")
|
||||
file(MAKE_DIRECTORY ${SHADER_OUTPUT_DIR})
|
||||
|
||||
message(STATUS "Shader output dir: ${SHADER_OUTPUT_DIR}")
|
||||
|
||||
# Find all WGSL files
|
||||
file(GLOB WGSL_SHADER_FILES "${SHADER_DIR}/*.wgsl")
|
||||
|
||||
# Generate the header using a Python script
|
||||
add_custom_command(
|
||||
OUTPUT ${SHADER_HEADER}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "Embedding WGSL shaders to ggml-wgsl-shaders.hpp"
|
||||
COMMAND ${CMAKE_COMMAND} -E make_directory ${SHADER_OUTPUT_DIR}
|
||||
COMMAND ${CMAKE_COMMAND} -E env PYTHONIOENCODING=utf-8
|
||||
${Python3_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
|
||||
--input "${SHADER_DIR}"
|
||||
--output "${SHADER_HEADER}"
|
||||
DEPENDS ${WGSL_SHADER_FILES} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
|
||||
VERBATIM
|
||||
)
|
||||
|
||||
add_custom_target(generate_shaders DEPENDS ${SHADER_HEADER})
|
||||
|
||||
ggml_add_backend_library(ggml-webgpu
|
||||
ggml-webgpu.cpp
|
||||
${SHADER_HEADER}
|
||||
../../include/ggml-webgpu.h
|
||||
)
|
||||
|
||||
add_dependencies(ggml-webgpu generate_shaders)
|
||||
|
||||
if(EMSCRIPTEN)
|
||||
set(EMDAWNWEBGPU_DIR "" CACHE PATH "Path to emdawnwebgpu_pkg")
|
||||
|
||||
target_compile_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
|
||||
target_link_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
|
||||
else()
|
||||
find_package(Dawn REQUIRED)
|
||||
set(DawnWebGPU_TARGET dawn::webgpu_dawn)
|
||||
endif()
|
||||
|
||||
if (GGML_WEBGPU_DEBUG)
|
||||
target_compile_definitions(ggml-webgpu PRIVATE GGML_WEBGPU_DEBUG=1)
|
||||
endif()
|
||||
|
||||
target_include_directories(ggml-webgpu PRIVATE ${SHADER_OUTPUT_DIR})
|
||||
target_link_libraries(ggml-webgpu PRIVATE ${DawnWebGPU_TARGET})
|
907
ggml/src/ggml-webgpu/ggml-webgpu.cpp
Normal file
907
ggml/src/ggml-webgpu/ggml-webgpu.cpp
Normal file
@ -0,0 +1,907 @@
|
||||
#include "ggml-webgpu.h"
|
||||
|
||||
#include <webgpu/webgpu_cpp.h>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include "ggml-wgsl-shaders.hpp"
|
||||
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_WEBGPU_DEBUG
|
||||
#define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
|
||||
#else
|
||||
#define WEBGPU_LOG_DEBUG(msg) ((void) 0)
|
||||
#endif // GGML_WEBGPU_DEBUG
|
||||
|
||||
/* Constants */
|
||||
|
||||
#define WEBGPU_MUL_MAT_WG_SIZE 64
|
||||
#define WEBGPU_MUL_MAT_PARAMS_SIZE (13 * sizeof(uint32_t)) // M, N, K, batch sizes, broadcasts
|
||||
#define WEBGPU_CPY_PARAMS_SIZE (15 * sizeof(uint32_t)) // strides and offsets
|
||||
#define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
|
||||
|
||||
/* End Constants */
|
||||
|
||||
// This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations.
|
||||
static void * const webgpu_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
|
||||
|
||||
// Always returns the base offset of a tensor, regardless of views.
|
||||
static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) {
|
||||
if (tensor->view_src) {
|
||||
return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base;
|
||||
}
|
||||
return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base;
|
||||
}
|
||||
|
||||
/* Struct definitions */
|
||||
|
||||
// All the base objects needed to run operations on a WebGPU device
|
||||
struct webgpu_context_struct {
|
||||
wgpu::Instance instance;
|
||||
wgpu::Adapter adapter;
|
||||
wgpu::Device device;
|
||||
wgpu::Queue queue;
|
||||
wgpu::Limits limits;
|
||||
wgpu::SupportedFeatures features;
|
||||
|
||||
std::mutex mutex;
|
||||
bool device_initialized = false;
|
||||
|
||||
// pipelines and parameter buffers
|
||||
// TODO: reuse params buffers for different pipelines when possible
|
||||
wgpu::ComputePipeline memset_pipeline;
|
||||
wgpu::Buffer memset_params_dev_buf;
|
||||
wgpu::Buffer memset_params_host_buf;
|
||||
wgpu::ComputePipeline mul_mat_pipeline;
|
||||
wgpu::Buffer mul_mat_params_dev_buf;
|
||||
wgpu::Buffer mul_mat_params_host_buf;
|
||||
wgpu::ComputePipeline cpy_pipeline;
|
||||
wgpu::Buffer cpy_params_dev_buf;
|
||||
wgpu::Buffer cpy_params_host_buf;
|
||||
|
||||
size_t memset_bytes_per_thread;
|
||||
|
||||
// Staging buffer for reading data from the GPU
|
||||
wgpu::Buffer get_tensor_staging_buf;
|
||||
};
|
||||
|
||||
typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
|
||||
|
||||
struct ggml_backend_webgpu_reg_context {
|
||||
webgpu_context webgpu_ctx;
|
||||
|
||||
size_t device_count;
|
||||
const char * name;
|
||||
};
|
||||
|
||||
struct ggml_backend_webgpu_device_context {
|
||||
webgpu_context webgpu_ctx;
|
||||
|
||||
std::string device_name;
|
||||
std::string device_desc;
|
||||
};
|
||||
|
||||
struct ggml_backend_webgpu_context {
|
||||
webgpu_context webgpu_ctx;
|
||||
|
||||
std::string name;
|
||||
};
|
||||
|
||||
struct ggml_backend_webgpu_buffer_context {
|
||||
webgpu_context webgpu_ctx;
|
||||
|
||||
wgpu::Buffer buffer;
|
||||
|
||||
ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf) :
|
||||
webgpu_ctx(ctx), buffer(buf) {
|
||||
}
|
||||
};
|
||||
|
||||
/* End struct definitions */
|
||||
|
||||
/* WebGPU object initializations */
|
||||
|
||||
static void ggml_webgpu_create_pipeline(wgpu::Device &device, wgpu::ComputePipeline &pipeline, const char * shader_code, const char * label, const std::vector<wgpu::ConstantEntry> &constants = {}) {
|
||||
WEBGPU_LOG_DEBUG("ggml_webgpu_create_pipeline()");
|
||||
wgpu::ShaderSourceWGSL shader_source;
|
||||
shader_source.code = shader_code;
|
||||
wgpu::ShaderModuleDescriptor shader_desc;
|
||||
shader_desc.nextInChain = &shader_source;
|
||||
wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc);
|
||||
|
||||
wgpu::ComputePipelineDescriptor pipeline_desc;
|
||||
pipeline_desc.label = label;
|
||||
pipeline_desc.compute.module = shader_module;
|
||||
pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code
|
||||
pipeline_desc.layout = nullptr; // nullptr means auto layout
|
||||
if (constants.size() > 0) {
|
||||
pipeline_desc.compute.constants = constants.data();
|
||||
pipeline_desc.compute.constantCount = constants.size();
|
||||
}
|
||||
pipeline = device.CreateComputePipeline(&pipeline_desc);
|
||||
}
|
||||
|
||||
static void ggml_webgpu_create_buffer(wgpu::Device &device, wgpu::Buffer &buffer, size_t size, wgpu::BufferUsage usage, const char* label) {
|
||||
WEBGPU_LOG_DEBUG("ggml_webgpu_create_buffer()");
|
||||
|
||||
wgpu::BufferDescriptor buffer_desc;
|
||||
buffer_desc.size = size;
|
||||
buffer_desc.usage = usage;
|
||||
buffer_desc.label = label;
|
||||
buffer_desc.mappedAtCreation = false;
|
||||
// TODO: error handling
|
||||
buffer = device.CreateBuffer(&buffer_desc);
|
||||
}
|
||||
|
||||
/** End WebGPU object initializations */
|
||||
|
||||
/** WebGPU Actions */
|
||||
|
||||
static void ggml_backend_webgpu_map_buffer(webgpu_context ctx, wgpu::Buffer buffer, wgpu::MapMode mode, size_t offset, size_t size) {
|
||||
ctx->instance.WaitAny(buffer.MapAsync(
|
||||
mode, offset, size, wgpu::CallbackMode::WaitAnyOnly,
|
||||
[](wgpu::MapAsyncStatus status, wgpu::StringView message) {
|
||||
if (status != wgpu::MapAsyncStatus::Success) {
|
||||
GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n", message.data);
|
||||
}
|
||||
}),
|
||||
UINT64_MAX
|
||||
);
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_buffer_memset(webgpu_context ctx, wgpu::Buffer buf, uint32_t value, size_t offset, size_t size) {
|
||||
std::lock_guard<std::mutex> lock(ctx->mutex);
|
||||
wgpu::Device device = ctx->device;
|
||||
|
||||
// map the host parameters buffer
|
||||
ggml_backend_webgpu_map_buffer(ctx, ctx->memset_params_host_buf, wgpu::MapMode::Write, 0, ctx->memset_params_host_buf.GetSize());
|
||||
uint32_t * params = (uint32_t *) ctx->memset_params_host_buf.GetMappedRange();
|
||||
|
||||
params[0] = (uint32_t)offset;
|
||||
params[1] = (uint32_t)size;
|
||||
params[2] = value;
|
||||
ctx->memset_params_host_buf.Unmap();
|
||||
|
||||
wgpu::BindGroupEntry entries[2];
|
||||
entries[0].binding = 0; // binding for the buffer to memset
|
||||
entries[0].buffer = buf;
|
||||
entries[0].offset = 0;
|
||||
entries[0].size = buf.GetSize();
|
||||
entries[1].binding = 1; // binding for the parameters
|
||||
entries[1].buffer = ctx->memset_params_dev_buf;
|
||||
entries[1].offset = 0;
|
||||
entries[1].size = ctx->memset_params_dev_buf.GetSize();
|
||||
|
||||
wgpu::BindGroupDescriptor bind_group_desc;
|
||||
bind_group_desc.layout = ctx->memset_pipeline.GetBindGroupLayout(0);
|
||||
bind_group_desc.entryCount = 2;
|
||||
bind_group_desc.label = "ggml_memset";
|
||||
bind_group_desc.entries = entries;
|
||||
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
|
||||
|
||||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||||
encoder.CopyBufferToBuffer(
|
||||
ctx->memset_params_host_buf, 0,
|
||||
ctx->memset_params_dev_buf, 0,
|
||||
ctx->memset_params_dev_buf.GetSize()
|
||||
);
|
||||
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
|
||||
pass.SetPipeline(ctx->memset_pipeline);
|
||||
pass.SetBindGroup(0, bind_group);
|
||||
size_t bytes_per_wg = ctx->limits.maxComputeWorkgroupSizeX * ctx->memset_bytes_per_thread;
|
||||
pass.DispatchWorkgroups(((size + 3) + bytes_per_wg - 1) / bytes_per_wg, 1, 1);
|
||||
pass.End();
|
||||
wgpu::CommandBuffer commands = encoder.Finish();
|
||||
|
||||
ctx->queue.Submit(1, &commands);
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_wait_on_submission(webgpu_context ctx) {
|
||||
// Wait for the queue to finish processing all commands
|
||||
ctx->instance.WaitAny(ctx->queue.OnSubmittedWorkDone(wgpu::CallbackMode::WaitAnyOnly,
|
||||
[](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
|
||||
if (status != wgpu::QueueWorkDoneStatus::Success) {
|
||||
GGML_LOG_ERROR("ggml_webgpu: Failed to wait on queue: %s\n", message.data);
|
||||
}
|
||||
}),
|
||||
UINT64_MAX
|
||||
);
|
||||
}
|
||||
|
||||
/** End WebGPU Actions */
|
||||
|
||||
/** GGML Backend Interface */
|
||||
|
||||
static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
|
||||
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
|
||||
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
|
||||
|
||||
// TODO: cleanup
|
||||
GGML_UNUSED(ctx);
|
||||
}
|
||||
|
||||
// Returns true if node has enqueued work into the queue, false otherwise
|
||||
static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node){
|
||||
if (ggml_is_empty(node)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")");
|
||||
|
||||
|
||||
switch (node->op) {
|
||||
// no-ops
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
return false;
|
||||
|
||||
case GGML_OP_CPY: {
|
||||
std::lock_guard<std::mutex> lock(ctx->mutex);
|
||||
const ggml_tensor * src = node->src[0];
|
||||
ggml_backend_webgpu_buffer_context * src_ctx = (ggml_backend_webgpu_buffer_context *) src->buffer->context;
|
||||
size_t src_offset = webgpu_tensor_offset(src) + src->view_offs;
|
||||
// assumes power of 2 offset alignment
|
||||
size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
// align to minimum offset alignment
|
||||
src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
|
||||
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
|
||||
size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
|
||||
|
||||
wgpu::Device device = ctx->device;
|
||||
ggml_backend_webgpu_map_buffer(ctx, ctx->cpy_params_host_buf,
|
||||
wgpu::MapMode::Write, 0, ctx->cpy_params_host_buf.GetSize());
|
||||
uint32_t * params = (uint32_t *) ctx->cpy_params_host_buf.GetMappedRange();
|
||||
uint32_t ne = (uint32_t)ggml_nelements(node);
|
||||
params[0] = ne;
|
||||
params[1] = src_misalignment/ggml_type_size(src->type);
|
||||
params[2] = dst_misalignment/ggml_type_size(node->type);
|
||||
|
||||
// Convert byte-strides to element-strides
|
||||
params[3] = (uint32_t)src->nb[0]/ggml_type_size(src->type);
|
||||
params[4] = (uint32_t)src->nb[1]/ggml_type_size(src->type);
|
||||
params[5] = (uint32_t)src->nb[2]/ggml_type_size(src->type);
|
||||
params[6] = (uint32_t)src->nb[3]/ggml_type_size(src->type);
|
||||
params[7] = (uint32_t)node->nb[0]/ggml_type_size(node->type);
|
||||
params[8] = (uint32_t)node->nb[1]/ggml_type_size(node->type);
|
||||
params[9] = (uint32_t)node->nb[2]/ggml_type_size(node->type);
|
||||
params[10] = (uint32_t)node->nb[3]/ggml_type_size(node->type);
|
||||
// Logical shape — same for both tensors even if permuted
|
||||
params[11] = (uint32_t)(src->ne[0]);
|
||||
params[12] = (uint32_t)(src->ne[1]);
|
||||
params[13] = (uint32_t)(src->ne[2]);
|
||||
params[14] = (uint32_t)(src->ne[3]);
|
||||
|
||||
ctx->cpy_params_host_buf.Unmap();
|
||||
|
||||
wgpu::BindGroupEntry entries[3];
|
||||
entries[0].binding = 0;
|
||||
entries[0].buffer = src_ctx->buffer;
|
||||
entries[0].offset = src_offset;
|
||||
entries[0].size = (ggml_nbytes(src) + src_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
|
||||
|
||||
entries[1].binding = 1;
|
||||
entries[1].buffer = dst_ctx->buffer;
|
||||
entries[1].offset = dst_offset;
|
||||
entries[1].size = (ggml_nbytes(node) + dst_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
|
||||
|
||||
entries[2].binding = 2;
|
||||
entries[2].buffer = ctx->cpy_params_dev_buf;
|
||||
entries[2].offset = 0;
|
||||
entries[2].size = ctx->cpy_params_dev_buf.GetSize();
|
||||
|
||||
wgpu::BindGroupDescriptor bind_group_desc;
|
||||
bind_group_desc.layout = ctx->cpy_pipeline.GetBindGroupLayout(0);
|
||||
bind_group_desc.label = "ggml_op_cpy";
|
||||
bind_group_desc.entryCount = 3;
|
||||
bind_group_desc.entries = entries;
|
||||
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
|
||||
|
||||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||||
encoder.CopyBufferToBuffer(
|
||||
ctx->cpy_params_host_buf, 0,
|
||||
ctx->cpy_params_dev_buf, 0,
|
||||
ctx->cpy_params_dev_buf.GetSize()
|
||||
);
|
||||
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
|
||||
pass.SetPipeline(ctx->cpy_pipeline);
|
||||
pass.SetBindGroup(0, bind_group);
|
||||
size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX;
|
||||
pass.DispatchWorkgroups((ne + max_wg_size - 1) / max_wg_size);
|
||||
pass.End();
|
||||
wgpu::CommandBuffer commands = encoder.Finish();
|
||||
|
||||
// TODO, don't submit here, batch submissions
|
||||
ctx->queue.Submit(1, &commands);
|
||||
// TODO, don't wait on submission here
|
||||
ggml_backend_webgpu_wait_on_submission(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
const ggml_tensor * src0 = node->src[0];
|
||||
ggml_backend_webgpu_buffer_context * src0_ctx = (ggml_backend_webgpu_buffer_context *) src0->buffer->context;
|
||||
size_t src0_offset = webgpu_tensor_offset(src0) + src0->view_offs;
|
||||
const ggml_tensor * src1 = node->src[1];
|
||||
ggml_backend_webgpu_buffer_context * src1_ctx = (ggml_backend_webgpu_buffer_context *) src1->buffer->context;
|
||||
size_t src1_offset = webgpu_tensor_offset(src1) + src1->view_offs;
|
||||
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
|
||||
|
||||
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
|
||||
|
||||
wgpu::Device device = ctx->device;
|
||||
|
||||
// map the host parameters buffer
|
||||
ggml_backend_webgpu_map_buffer(ctx, ctx->mul_mat_params_host_buf,
|
||||
wgpu::MapMode::Write, 0, ctx->mul_mat_params_host_buf.GetSize());
|
||||
uint32_t * params = (uint32_t *) ctx->mul_mat_params_host_buf.GetMappedRange();
|
||||
|
||||
params[0] = (uint32_t)node->ne[1]; // number of rows in result (M)
|
||||
params[1] = (uint32_t)node->ne[0]; // number of columns in result (N)
|
||||
params[2] = (uint32_t)src0->ne[0]; // number of columns in src0/src1 (K)
|
||||
|
||||
params[3] = (uint32_t)src0->nb[1]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 1
|
||||
params[4] = (uint32_t)src1->nb[1]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 1
|
||||
params[5] = (uint32_t)src0->nb[2]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 2
|
||||
params[6] = (uint32_t)src1->nb[2]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 2
|
||||
params[7] = (uint32_t)src0->nb[3]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 3
|
||||
params[8] = (uint32_t)src1->nb[3]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 3
|
||||
|
||||
params[9] = (uint32_t)src0->ne[2]; // batch size in dimension 2
|
||||
params[10] = (uint32_t)src0->ne[3]; // batch size in dimension 3
|
||||
params[11] = (uint32_t)(src1->ne[2]/src0->ne[2]); // broadcast in dimension 2
|
||||
params[12] = (uint32_t)(src1->ne[3]/src0->ne[3]); // broadcast in dimension 3
|
||||
|
||||
ctx->mul_mat_params_host_buf.Unmap();
|
||||
|
||||
wgpu::BindGroupEntry entries[4];
|
||||
entries[0].binding = 0;
|
||||
entries[0].buffer = src0_ctx->buffer;
|
||||
entries[0].offset = src0_offset;
|
||||
entries[0].size = ggml_nbytes(src0);
|
||||
|
||||
entries[1].binding = 1;
|
||||
entries[1].buffer = src1_ctx->buffer;
|
||||
entries[1].offset = src1_offset;
|
||||
entries[1].size = ggml_nbytes(src1);
|
||||
|
||||
entries[2].binding = 2;
|
||||
entries[2].buffer = dst_ctx->buffer;
|
||||
entries[2].offset = dst_offset;
|
||||
entries[2].size = ggml_nbytes(node);
|
||||
|
||||
entries[3].binding = 3;
|
||||
entries[3].buffer = ctx->mul_mat_params_dev_buf;
|
||||
entries[3].offset = 0;
|
||||
entries[3].size = ctx->mul_mat_params_dev_buf.GetSize();
|
||||
|
||||
wgpu::BindGroupDescriptor bind_group_desc;
|
||||
bind_group_desc.layout = ctx->mul_mat_pipeline.GetBindGroupLayout(0);
|
||||
bind_group_desc.entryCount = 4;
|
||||
bind_group_desc.label = "ggml_op_mul_mat";
|
||||
bind_group_desc.entries = entries;
|
||||
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
|
||||
|
||||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||||
encoder.CopyBufferToBuffer(
|
||||
ctx->mul_mat_params_host_buf, 0,
|
||||
ctx->mul_mat_params_dev_buf, 0,
|
||||
ctx->mul_mat_params_dev_buf.GetSize()
|
||||
);
|
||||
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
|
||||
pass.SetPipeline(ctx->mul_mat_pipeline);
|
||||
pass.SetBindGroup(0, bind_group);
|
||||
pass.DispatchWorkgroups((node->ne[0] * node->ne[1] * node->ne[2] * node->ne[3] + WEBGPU_MUL_MAT_WG_SIZE - 1) / WEBGPU_MUL_MAT_WG_SIZE);
|
||||
pass.End();
|
||||
wgpu::CommandBuffer commands = encoder.Finish();
|
||||
|
||||
// TODO, don't submit here, batch submissions
|
||||
ctx->queue.Submit(1, &commands);
|
||||
// TODO, don't wait on submission here
|
||||
ggml_backend_webgpu_wait_on_submission(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)");
|
||||
|
||||
ggml_backend_webgpu_context * backend_ctx = static_cast<ggml_backend_webgpu_context *>(backend->context);
|
||||
webgpu_context ctx = backend_ctx->webgpu_ctx;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_webgpu_encode_node(ctx, cgraph->nodes[i]);
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_webgpu_i = {
|
||||
/* .get_name = */ ggml_backend_webgpu_name,
|
||||
/* .free = */ ggml_backend_webgpu_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_webgpu_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
/* End GGML Backend Interface */
|
||||
|
||||
/* GGML Backend Buffer Interface */
|
||||
|
||||
static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_free_buffer()");
|
||||
ggml_backend_webgpu_buffer_context * ctx = static_cast<ggml_backend_webgpu_buffer_context *>(buffer->context);
|
||||
ctx->buffer.Destroy();
|
||||
}
|
||||
|
||||
// Returns the "fake" base pointer.
|
||||
static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
GGML_UNUSED(buffer);
|
||||
return webgpu_ptr_base;
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
if (size == 0) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do.");
|
||||
return;
|
||||
}
|
||||
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")");
|
||||
|
||||
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
|
||||
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
|
||||
// This is a trick to set all bytes of a u32 to the same 1 byte value.
|
||||
uint32_t val32 = (uint32_t)value * 0x01010101;
|
||||
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size);
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
|
||||
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
|
||||
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
|
||||
|
||||
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
|
||||
|
||||
webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size/4)*4);
|
||||
|
||||
if (size % 4 != 0) {
|
||||
// If size is not a multiple of 4, we need to memset the remaining bytes
|
||||
size_t remaining_size = size % 4;
|
||||
// pack the remaining bytes into a uint32_t
|
||||
uint32_t val32 = 0;
|
||||
for (size_t i = 0; i < remaining_size; i++) {
|
||||
((uint8_t *)&val32)[i] = ((const uint8_t *)data)[size - remaining_size + i];
|
||||
}
|
||||
// memset the remaining bytes
|
||||
ggml_backend_webgpu_buffer_memset(webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size), remaining_size);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
|
||||
|
||||
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
|
||||
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
|
||||
wgpu::Device device = webgpu_ctx->device;
|
||||
|
||||
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
|
||||
|
||||
size_t final_size = size;
|
||||
if (size % 4 != 0) {
|
||||
// If size is not a multiple of 4, we need to round it up to the next multiple of 4
|
||||
final_size = size + (4 - (size % 4));
|
||||
}
|
||||
|
||||
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
|
||||
|
||||
if (webgpu_ctx->get_tensor_staging_buf == nullptr ||
|
||||
webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) {
|
||||
// Create a new staging buffer if it doesn't exist or is too small
|
||||
if (webgpu_ctx->get_tensor_staging_buf) {
|
||||
webgpu_ctx->get_tensor_staging_buf.Destroy();
|
||||
}
|
||||
ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size,
|
||||
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf");
|
||||
}
|
||||
|
||||
// Copy the data from the buffer to the staging buffer
|
||||
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
|
||||
encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size);
|
||||
wgpu::CommandBuffer commands = encoder.Finish();
|
||||
// Submit the command buffer to the queue
|
||||
webgpu_ctx->queue.Submit(1, &commands);
|
||||
|
||||
// Map the staging buffer to read the data
|
||||
ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size);
|
||||
// Must specify size here since the staging buffer might be larger than the tensor size
|
||||
const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size);
|
||||
|
||||
// Copy the data from the mapped range to the output buffer
|
||||
std::memcpy(data, mapped_range, size);
|
||||
webgpu_ctx->get_tensor_staging_buf.Unmap();
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")");
|
||||
|
||||
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
|
||||
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_webgpu_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // TODO: optional, needed?
|
||||
/* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ NULL, // TODO: optional, implement this
|
||||
/* .clear = */ ggml_backend_webgpu_buffer_clear,
|
||||
/* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor
|
||||
};
|
||||
|
||||
/* End GGML Backend Buffer Interface */
|
||||
|
||||
/* GGML Backend Buffer Type Interface */
|
||||
|
||||
static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
|
||||
return ctx->device_name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer(" << size << ")");
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
|
||||
|
||||
wgpu::Buffer buf;
|
||||
ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, size,
|
||||
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst, "allocated_buffer");
|
||||
|
||||
ggml_backend_webgpu_buffer_context * buf_ctx = new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf);
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
|
||||
return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment;
|
||||
}
|
||||
|
||||
// maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding.
|
||||
static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
|
||||
return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize;
|
||||
}
|
||||
|
||||
/* End GGML Backend Buffer Type Interface */
|
||||
|
||||
/* GGML Backend Device Interface */
|
||||
|
||||
static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) {
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
|
||||
return ctx->device_name.c_str();
|
||||
}
|
||||
|
||||
static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) {
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
|
||||
return ctx->device_desc.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
|
||||
// TODO: what do we actually want to return here? maxBufferSize might not be the full available memory.
|
||||
*free = ctx->webgpu_ctx->limits.maxBufferSize;
|
||||
*total = ctx->webgpu_ctx->limits.maxBufferSize;
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) {
|
||||
GGML_UNUSED(dev);
|
||||
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
||||
}
|
||||
|
||||
static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_webgpu_device_get_name(dev);
|
||||
props->description = ggml_backend_webgpu_device_get_description(dev);
|
||||
props->type = ggml_backend_webgpu_device_get_type(dev);
|
||||
ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ false,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_guid_t ggml_backend_webgpu_guid(void) {
|
||||
static const char * guid_str = "__ggml_webgpu :)";
|
||||
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
|
||||
}
|
||||
|
||||
static void ggml_webgpu_init_memset_pipeline(webgpu_context webgpu_ctx) {
|
||||
// we use the maximum workgroup size for the memset pipeline
|
||||
size_t max_wg_size = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
|
||||
size_t max_threads = max_wg_size * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension;
|
||||
// Size the bytes_per_thread so that the largest buffer size can be handled
|
||||
webgpu_ctx->memset_bytes_per_thread = (webgpu_ctx->limits.maxStorageBufferBindingSize + max_threads - 1) / max_threads;
|
||||
std::vector<wgpu::ConstantEntry> constants(2);
|
||||
constants[0].key = "wg_size";
|
||||
constants[0].value = max_wg_size;
|
||||
constants[1].key = "bytes_per_thread";
|
||||
constants[1].value = webgpu_ctx->memset_bytes_per_thread;
|
||||
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->memset_pipeline, wgsl_memset, "memset", constants);
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_dev_buf,
|
||||
3 * sizeof(uint32_t), // 3 parameters: buffer size, offset, value
|
||||
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "memset_params_dev_buf");
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_host_buf,
|
||||
3 * sizeof(uint32_t), wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "memset_params_host_buf");
|
||||
}
|
||||
|
||||
static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context webgpu_ctx) {
|
||||
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline, wgsl_mul_mat, "mul_mat");
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_dev_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
|
||||
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "mul_mat_params_dev_buf");
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_host_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
|
||||
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "mul_mat_params_host_buf");
|
||||
}
|
||||
|
||||
static void ggml_webgpu_init_cpy_pipeline(webgpu_context webgpu_ctx) {
|
||||
std::vector<wgpu::ConstantEntry> constants(1);
|
||||
constants[0].key = "wg_size";
|
||||
constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
|
||||
|
||||
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline, wgsl_cpy, "cpy", constants);
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_dev_buf, WEBGPU_CPY_PARAMS_SIZE,
|
||||
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "cpy_params_dev_buf");
|
||||
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_host_buf, WEBGPU_CPY_PARAMS_SIZE,
|
||||
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "cpy_params_host_buf");
|
||||
}
|
||||
|
||||
// TODO: Make thread safe if multiple devices are used
|
||||
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
GGML_UNUSED(params);
|
||||
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()");
|
||||
|
||||
ggml_backend_webgpu_device_context * dev_ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
|
||||
webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx;
|
||||
|
||||
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
|
||||
|
||||
if (!webgpu_ctx->device_initialized) {
|
||||
// Initialize device
|
||||
wgpu::DeviceDescriptor dev_desc;
|
||||
dev_desc.requiredLimits = &webgpu_ctx->limits;
|
||||
dev_desc.requiredFeatures = webgpu_ctx->features.features;
|
||||
dev_desc.requiredFeatureCount = webgpu_ctx->features.featureCount;
|
||||
dev_desc.SetDeviceLostCallback(wgpu::CallbackMode::AllowSpontaneous,
|
||||
[](const wgpu::Device& device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
|
||||
GGML_UNUSED(device);
|
||||
GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
|
||||
});
|
||||
dev_desc.SetUncapturedErrorCallback(
|
||||
[](const wgpu::Device& device, wgpu::ErrorType reason, wgpu::StringView message) {
|
||||
GGML_UNUSED(device);
|
||||
GGML_LOG_ERROR("ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
|
||||
});
|
||||
webgpu_ctx->instance.WaitAny(webgpu_ctx->adapter.RequestDevice(&dev_desc, wgpu::CallbackMode::WaitAnyOnly,
|
||||
[webgpu_ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) {
|
||||
if (status != wgpu::RequestDeviceStatus::Success) {
|
||||
GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n", message.data);
|
||||
return;
|
||||
}
|
||||
webgpu_ctx->device = device;
|
||||
}),
|
||||
UINT64_MAX
|
||||
);
|
||||
GGML_ASSERT(webgpu_ctx->device != nullptr);
|
||||
|
||||
// Initialize (compute) queue
|
||||
webgpu_ctx->queue = webgpu_ctx->device.GetQueue();
|
||||
|
||||
ggml_webgpu_init_memset_pipeline(webgpu_ctx);
|
||||
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
|
||||
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
|
||||
webgpu_ctx->device_initialized = true;
|
||||
}
|
||||
|
||||
static ggml_backend_webgpu_context backend_ctx;
|
||||
backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name;
|
||||
backend_ctx.webgpu_ctx = webgpu_ctx;
|
||||
|
||||
// See GGML Backend Interface section
|
||||
static ggml_backend backend = {
|
||||
/* .guid = */ ggml_backend_webgpu_guid(),
|
||||
/* .interface = */ ggml_backend_webgpu_i,
|
||||
/* .device = */ dev,
|
||||
/* .context = */ &backend_ctx,
|
||||
};
|
||||
|
||||
return &backend;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
// See GGML Backend Buffer Type Interface section
|
||||
static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_webgpu_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ NULL, // defaults to false
|
||||
},
|
||||
/* .device = */ dev,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_webgpu_buffer_type;
|
||||
}
|
||||
|
||||
static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
GGML_UNUSED(dev);
|
||||
return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name;
|
||||
}
|
||||
|
||||
static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||||
GGML_UNUSED(dev);
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
return true;
|
||||
case GGML_OP_CPY:
|
||||
return op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_MUL_MAT:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static struct ggml_backend_device_i ggml_backend_webgpu_device_i = {
|
||||
/* .get_name = */ ggml_backend_webgpu_device_get_name,
|
||||
/* .get_description = */ ggml_backend_webgpu_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_webgpu_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_webgpu_device_get_type,
|
||||
/* .get_props = */ ggml_backend_webgpu_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_webgpu_device_init,
|
||||
/* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ NULL,
|
||||
/* .supports_op = */ ggml_backend_webgpu_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_webgpu_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
/* End GGML Backend Device Interface */
|
||||
|
||||
/* GGML Backend Registration Interface */
|
||||
|
||||
static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) {
|
||||
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
|
||||
return ctx->name;
|
||||
}
|
||||
|
||||
static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
|
||||
return ctx->device_count;
|
||||
}
|
||||
|
||||
// TODO: Does this need to be thread safe? Is it only called once?
|
||||
// Only one device is supported for now
|
||||
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()");
|
||||
|
||||
ggml_backend_webgpu_reg_context * reg_ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
|
||||
|
||||
webgpu_context ctx = reg_ctx->webgpu_ctx;
|
||||
|
||||
wgpu::RequestAdapterOptions options = {};
|
||||
auto callback = [](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char *message, void *userdata) {
|
||||
if (status != wgpu::RequestAdapterStatus::Success) {
|
||||
GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message);
|
||||
return;
|
||||
}
|
||||
*static_cast<wgpu::Adapter *>(userdata) = adapter;
|
||||
};
|
||||
void *userdata = &ctx->adapter;
|
||||
ctx->instance.WaitAny(ctx->instance.RequestAdapter(&options, wgpu::CallbackMode::WaitAnyOnly, callback, userdata), UINT64_MAX);
|
||||
GGML_ASSERT(ctx->adapter != nullptr);
|
||||
|
||||
ctx->adapter.GetLimits(&ctx->limits);
|
||||
ctx->adapter.GetFeatures(&ctx->features);
|
||||
|
||||
wgpu::AdapterInfo info{};
|
||||
ctx->adapter.GetInfo(&info);
|
||||
|
||||
static ggml_backend_webgpu_device_context device_ctx;
|
||||
device_ctx.webgpu_ctx = ctx;
|
||||
device_ctx.device_name = GGML_WEBGPU_NAME;
|
||||
device_ctx.device_desc = std::string(info.description.data);
|
||||
|
||||
GGML_LOG_INFO("ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | device_desc: %s\n",
|
||||
info.vendorID, info.vendor.data, info.architecture.data, info.deviceID, info.device.data, info.description.data);
|
||||
|
||||
// See GGML Backend Device Interface section
|
||||
static ggml_backend_device device = {
|
||||
/* .iface = */ ggml_backend_webgpu_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ &device_ctx,
|
||||
};
|
||||
return &device;
|
||||
}
|
||||
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = {
|
||||
/* .get_name = */ ggml_backend_webgpu_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_webgpu_reg_get_device,
|
||||
/* .get_proc_address = */ NULL,
|
||||
};
|
||||
|
||||
/* End GGML Backend Registration Interface */
|
||||
|
||||
// TODO: Does this need to be thread safe? Is it only called once?
|
||||
ggml_backend_reg_t ggml_backend_webgpu_reg() {
|
||||
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()");
|
||||
|
||||
webgpu_context webgpu_ctx = std::make_shared<webgpu_context_struct>();
|
||||
webgpu_ctx->device_initialized = false;
|
||||
|
||||
static ggml_backend_webgpu_reg_context ctx;
|
||||
ctx.webgpu_ctx = webgpu_ctx;
|
||||
ctx.name = GGML_WEBGPU_NAME;
|
||||
ctx.device_count = 1;
|
||||
|
||||
wgpu::InstanceDescriptor instance_descriptor{};
|
||||
std::vector<wgpu::InstanceFeatureName> instance_features = {wgpu::InstanceFeatureName::TimedWaitAny};
|
||||
instance_descriptor.requiredFeatures = instance_features.data();
|
||||
instance_descriptor.requiredFeatureCount = instance_features.size();
|
||||
webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor);
|
||||
GGML_ASSERT(webgpu_ctx->instance != nullptr);
|
||||
|
||||
static ggml_backend_reg reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_webgpu_reg_i,
|
||||
/* .context = */ &ctx,
|
||||
};
|
||||
return ®
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_webgpu_init(void) {
|
||||
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0);
|
||||
|
||||
return ggml_backend_webgpu_device_init(dev, nullptr);
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)
|
60
ggml/src/ggml-webgpu/wgsl-shaders/cpy.wgsl
Normal file
60
ggml/src/ggml-webgpu/wgsl-shaders/cpy.wgsl
Normal file
@ -0,0 +1,60 @@
|
||||
enable f16;
|
||||
|
||||
@group(0) @binding(0)
|
||||
var<storage, read_write> src: array<f32>;
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<storage, read_write> dst: array<f16>;
|
||||
|
||||
struct Params {
|
||||
ne: u32, // total number of elements
|
||||
offset_src: u32, // in elements
|
||||
offset_dst: u32, // in elements
|
||||
|
||||
// Strides (in elements) — may be permuted
|
||||
stride_src0: u32,
|
||||
stride_src1: u32,
|
||||
stride_src2: u32,
|
||||
stride_src3: u32,
|
||||
|
||||
stride_dst0: u32,
|
||||
stride_dst1: u32,
|
||||
stride_dst2: u32,
|
||||
stride_dst3: u32,
|
||||
|
||||
// Logical shape (same for both tensors)
|
||||
ne0: u32,
|
||||
ne1: u32,
|
||||
ne2: u32,
|
||||
ne3: u32,
|
||||
};
|
||||
|
||||
@group(0) @binding(2)
|
||||
var<uniform> params: Params;
|
||||
|
||||
override wg_size: u32;
|
||||
@compute @workgroup_size(wg_size)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
if (gid.x >= params.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
var i = gid.x;
|
||||
|
||||
let i3 = i / (params.ne2 * params.ne1 * params.ne0);
|
||||
i = i % (params.ne2 * params.ne1 * params.ne0);
|
||||
|
||||
let i2 = i / (params.ne1 * params.ne0);
|
||||
i = i % (params.ne1 * params.ne0);
|
||||
|
||||
let i1 = i / params.ne0;
|
||||
let i0 = i % params.ne0;
|
||||
|
||||
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
|
||||
i2 * params.stride_src2 + i3 * params.stride_src3;
|
||||
|
||||
let dst_idx = i0 * params.stride_dst0 + i1 * params.stride_dst1 +
|
||||
i2 * params.stride_dst2 + i3 * params.stride_dst3;
|
||||
|
||||
dst[params.offset_dst + dst_idx] = f16(src[params.offset_src + src_idx]);
|
||||
}
|
35
ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py
Executable file
35
ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py
Executable file
@ -0,0 +1,35 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
def escape_triple_quotes(wgsl):
|
||||
# Simple defense in case of embedded """
|
||||
return wgsl.replace('"""', '\\"""')
|
||||
|
||||
|
||||
def to_cpp_string_literal(varname, content):
|
||||
return f'const char* wgsl_{varname} = R"({content})";\n'
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--input', required=True)
|
||||
parser.add_argument('--output', required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.output, 'w', encoding='utf-8') as out:
|
||||
out.write("// Auto-generated shader embedding \n\n")
|
||||
for fname in sorted(os.listdir(args.input)):
|
||||
if not fname.endswith('.wgsl'):
|
||||
continue
|
||||
shader_path = os.path.join(args.input, fname)
|
||||
varname = os.path.splitext(fname)[0]
|
||||
with open(shader_path, 'r', encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
content = escape_triple_quotes(content)
|
||||
out.write(to_cpp_string_literal(varname, content))
|
||||
out.write('\n')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
40
ggml/src/ggml-webgpu/wgsl-shaders/memset.wgsl
Normal file
40
ggml/src/ggml-webgpu/wgsl-shaders/memset.wgsl
Normal file
@ -0,0 +1,40 @@
|
||||
@group(0) @binding(0)
|
||||
var<storage, read_write> output_buffer: array<u32>;
|
||||
|
||||
struct Params {
|
||||
offset: u32, // in bytes
|
||||
size: u32, // in bytes
|
||||
value: u32, // 4 8-bit values, which are either repeating (memset_tensor) or may be separate (cleaning up unaligned set_tensor operations)
|
||||
};
|
||||
|
||||
@group(0) @binding(1)
|
||||
var<uniform> params: Params;
|
||||
|
||||
override wg_size: u32;
|
||||
override bytes_per_thread: u32;
|
||||
|
||||
@compute @workgroup_size(wg_size)
|
||||
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
|
||||
let i = gid.x * bytes_per_thread;
|
||||
let start = params.offset;
|
||||
let end = params.offset + params.size;
|
||||
|
||||
for (var j: u32 = 0u; j < bytes_per_thread; j = j + 1u) {
|
||||
let byte_index = start + i + j;
|
||||
if (byte_index + 4u <= end) {
|
||||
output_buffer[(byte_index >> 2u)] = params.value;
|
||||
} else {
|
||||
// Handle tail (unaligned)
|
||||
for (var k: u32 = 0u; k < 4u; k = k + 1u) {
|
||||
let idx = byte_index + k;
|
||||
if (idx < end) {
|
||||
let word_idx = idx >> 2u;
|
||||
let byte_offset = (idx & 3u) * 8u;
|
||||
let mask = ~(0xffu << byte_offset);
|
||||
let existing = output_buffer[word_idx];
|
||||
output_buffer[word_idx] = (existing & mask) | ((params.value & 0xffu) << byte_offset);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
56
ggml/src/ggml-webgpu/wgsl-shaders/mul_mat.wgsl
Normal file
56
ggml/src/ggml-webgpu/wgsl-shaders/mul_mat.wgsl
Normal file
@ -0,0 +1,56 @@
|
||||
struct MulMatParams {
|
||||
m: u32,
|
||||
n: u32,
|
||||
k: u32,
|
||||
// all strides are in elements
|
||||
stride_01: u32,
|
||||
stride_11: u32,
|
||||
stride_02: u32,
|
||||
stride_12: u32,
|
||||
stride_03: u32,
|
||||
stride_13: u32,
|
||||
|
||||
bs02: u32,
|
||||
bs03: u32,
|
||||
broadcast2: u32,
|
||||
broadcast3: u32
|
||||
};
|
||||
|
||||
@group(0) @binding(0) var<storage, read_write> src0: array<f32>; // N rows, K columns
|
||||
@group(0) @binding(1) var<storage, read_write> src1: array<f32>; // M rows, K columns (transposed)
|
||||
@group(0) @binding(2) var<storage, read_write> dst: array<f32>; // M rows, N columns
|
||||
|
||||
@group(0) @binding(3) var<uniform> params: MulMatParams;
|
||||
|
||||
@compute @workgroup_size(64)
|
||||
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
|
||||
let total = params.m * params.n * params.bs02 * params.broadcast2 * params.bs03 * params.broadcast3;
|
||||
if (global_id.x >= total) {
|
||||
return;
|
||||
}
|
||||
|
||||
let dst2_stride = params.m * params.n;
|
||||
let dst3_stride = dst2_stride * params.bs02 * params.broadcast2;
|
||||
|
||||
let dst3_idx = global_id.x / dst3_stride;
|
||||
let src03_idx = dst3_idx / params.broadcast3; // src0 may be broadcast along the third dimension
|
||||
let src13_idx = dst3_idx; // src1 is not broadcast
|
||||
let dst3_rem = global_id.x % dst3_stride;
|
||||
|
||||
let dst2_idx = dst3_rem / dst2_stride;
|
||||
let src02_idx = dst2_idx / params.broadcast2; // src0 may also be broadcast along the second dimension
|
||||
let src12_idx = dst2_idx; // src1 is not broadcast
|
||||
|
||||
let dst2_rem = dst3_rem % dst2_stride;
|
||||
|
||||
let row = dst2_rem / params.n; // output row
|
||||
let col = dst2_rem % params.n; // output column
|
||||
|
||||
var sum = 0.0;
|
||||
for (var i: u32 = 0u; i < params.k; i = i + 1u) {
|
||||
let src0_idx = src03_idx * params.stride_03 + src02_idx * params.stride_02 + col * params.stride_01 + i;
|
||||
let src1_idx = src13_idx * params.stride_13 + src12_idx * params.stride_12 + row * params.stride_11 + i;
|
||||
sum = sum + src0[src0_idx] * src1[src1_idx];
|
||||
}
|
||||
dst[dst3_idx * dst3_stride + dst2_idx * dst2_stride + row * params.n + col] = sum;
|
||||
}
|
Reference in New Issue
Block a user