ggml: Add initial WebGPU backend (#14521)

* Minimal setup of webgpu backend with dawn. Just prints out the adapter and segfaults

* Initialize webgpu device

* Making progress on setting up the backend

* Finish more boilerplate/utility functions

* Organize file and work on alloc buffer

* Add webgpu_context to prepare for actually running some shaders

* Work on memset and add shader loading

* Work on memset polyfill

* Implement set_tensor as webgpu WriteBuffer, remove host_buffer stubs since webgpu doesn't support it

* Implement get_tensor and buffer_clear

* Finish rest of setup

* Start work on compute graph

* Basic mat mul working

* Work on emscripten build

* Basic WebGPU backend instructions

* Use EMSCRIPTEN flag

* Work on passing ci, implement 4d tensor multiplication

* Pass thread safety test

* Implement permuting for mul_mat and cpy

* minor cleanups

* Address feedback

* Remove division by type size in cpy op

* Fix formatting and add github action workflows for vulkan and metal (m-series) webgpu backends

* Fix name

* Fix macos dawn prefix path
This commit is contained in:
Reese Levine
2025-07-16 08:18:51 -07:00
committed by GitHub
parent b0f0ecc3dc
commit 21c021745d
14 changed files with 1337 additions and 0 deletions

View File

@ -181,6 +181,8 @@ option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug ou
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@ -270,6 +272,7 @@ set(GGML_PUBLIC_HEADERS
include/ggml-rpc.h
include/ggml-sycl.h
include/ggml-vulkan.h
include/ggml-webgpu.h
include/gguf.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")

View File

@ -0,0 +1,19 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_WEBGPU_NAME "WebGPU"
// Needed for examples in ggml
GGML_BACKEND_API ggml_backend_t ggml_backend_webgpu_init(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_webgpu_reg(void);
#ifdef __cplusplus
}
#endif

View File

@ -370,6 +370,7 @@ ggml_add_backend(MUSA)
ggml_add_backend(RPC)
ggml_add_backend(SYCL)
ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU)
ggml_add_backend(OpenCL)
foreach (target ggml-base ggml)

View File

@ -45,6 +45,10 @@
#include "ggml-vulkan.h"
#endif
#ifdef GGML_USE_WEBGPU
#include "ggml-webgpu.h"
#endif
#ifdef GGML_USE_OPENCL
#include "ggml-opencl.h"
#endif
@ -173,6 +177,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_VULKAN
register_backend(ggml_backend_vk_reg());
#endif
#ifdef GGML_USE_WEBGPU
register_backend(ggml_backend_webgpu_reg());
#endif
#ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg());
#endif

View File

@ -0,0 +1,54 @@
cmake_minimum_required(VERSION 3.13)
find_package(Python3 REQUIRED)
# Shader locations
set(SHADER_DIR "${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders")
set(SHADER_OUTPUT_DIR "${CMAKE_CURRENT_BINARY_DIR}/generated")
set(SHADER_HEADER "${SHADER_OUTPUT_DIR}/ggml-wgsl-shaders.hpp")
file(MAKE_DIRECTORY ${SHADER_OUTPUT_DIR})
message(STATUS "Shader output dir: ${SHADER_OUTPUT_DIR}")
# Find all WGSL files
file(GLOB WGSL_SHADER_FILES "${SHADER_DIR}/*.wgsl")
# Generate the header using a Python script
add_custom_command(
OUTPUT ${SHADER_HEADER}
COMMAND ${CMAKE_COMMAND} -E echo "Embedding WGSL shaders to ggml-wgsl-shaders.hpp"
COMMAND ${CMAKE_COMMAND} -E make_directory ${SHADER_OUTPUT_DIR}
COMMAND ${CMAKE_COMMAND} -E env PYTHONIOENCODING=utf-8
${Python3_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
--input "${SHADER_DIR}"
--output "${SHADER_HEADER}"
DEPENDS ${WGSL_SHADER_FILES} ${CMAKE_CURRENT_SOURCE_DIR}/wgsl-shaders/embed_wgsl.py
VERBATIM
)
add_custom_target(generate_shaders DEPENDS ${SHADER_HEADER})
ggml_add_backend_library(ggml-webgpu
ggml-webgpu.cpp
${SHADER_HEADER}
../../include/ggml-webgpu.h
)
add_dependencies(ggml-webgpu generate_shaders)
if(EMSCRIPTEN)
set(EMDAWNWEBGPU_DIR "" CACHE PATH "Path to emdawnwebgpu_pkg")
target_compile_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
target_link_options(ggml-webgpu PRIVATE "--use-port=${EMDAWNWEBGPU_DIR}/emdawnwebgpu.port.py")
else()
find_package(Dawn REQUIRED)
set(DawnWebGPU_TARGET dawn::webgpu_dawn)
endif()
if (GGML_WEBGPU_DEBUG)
target_compile_definitions(ggml-webgpu PRIVATE GGML_WEBGPU_DEBUG=1)
endif()
target_include_directories(ggml-webgpu PRIVATE ${SHADER_OUTPUT_DIR})
target_link_libraries(ggml-webgpu PRIVATE ${DawnWebGPU_TARGET})

View File

@ -0,0 +1,907 @@
#include "ggml-webgpu.h"
#include <webgpu/webgpu_cpp.h>
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include "ggml-wgsl-shaders.hpp"
#include <cstring>
#include <iostream>
#include <mutex>
#include <vector>
#ifdef GGML_WEBGPU_DEBUG
#define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
#else
#define WEBGPU_LOG_DEBUG(msg) ((void) 0)
#endif // GGML_WEBGPU_DEBUG
/* Constants */
#define WEBGPU_MUL_MAT_WG_SIZE 64
#define WEBGPU_MUL_MAT_PARAMS_SIZE (13 * sizeof(uint32_t)) // M, N, K, batch sizes, broadcasts
#define WEBGPU_CPY_PARAMS_SIZE (15 * sizeof(uint32_t)) // strides and offsets
#define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
/* End Constants */
// This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations.
static void * const webgpu_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
// Always returns the base offset of a tensor, regardless of views.
static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) {
if (tensor->view_src) {
return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base;
}
return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base;
}
/* Struct definitions */
// All the base objects needed to run operations on a WebGPU device
struct webgpu_context_struct {
wgpu::Instance instance;
wgpu::Adapter adapter;
wgpu::Device device;
wgpu::Queue queue;
wgpu::Limits limits;
wgpu::SupportedFeatures features;
std::mutex mutex;
bool device_initialized = false;
// pipelines and parameter buffers
// TODO: reuse params buffers for different pipelines when possible
wgpu::ComputePipeline memset_pipeline;
wgpu::Buffer memset_params_dev_buf;
wgpu::Buffer memset_params_host_buf;
wgpu::ComputePipeline mul_mat_pipeline;
wgpu::Buffer mul_mat_params_dev_buf;
wgpu::Buffer mul_mat_params_host_buf;
wgpu::ComputePipeline cpy_pipeline;
wgpu::Buffer cpy_params_dev_buf;
wgpu::Buffer cpy_params_host_buf;
size_t memset_bytes_per_thread;
// Staging buffer for reading data from the GPU
wgpu::Buffer get_tensor_staging_buf;
};
typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
struct ggml_backend_webgpu_reg_context {
webgpu_context webgpu_ctx;
size_t device_count;
const char * name;
};
struct ggml_backend_webgpu_device_context {
webgpu_context webgpu_ctx;
std::string device_name;
std::string device_desc;
};
struct ggml_backend_webgpu_context {
webgpu_context webgpu_ctx;
std::string name;
};
struct ggml_backend_webgpu_buffer_context {
webgpu_context webgpu_ctx;
wgpu::Buffer buffer;
ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf) :
webgpu_ctx(ctx), buffer(buf) {
}
};
/* End struct definitions */
/* WebGPU object initializations */
static void ggml_webgpu_create_pipeline(wgpu::Device &device, wgpu::ComputePipeline &pipeline, const char * shader_code, const char * label, const std::vector<wgpu::ConstantEntry> &constants = {}) {
WEBGPU_LOG_DEBUG("ggml_webgpu_create_pipeline()");
wgpu::ShaderSourceWGSL shader_source;
shader_source.code = shader_code;
wgpu::ShaderModuleDescriptor shader_desc;
shader_desc.nextInChain = &shader_source;
wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc);
wgpu::ComputePipelineDescriptor pipeline_desc;
pipeline_desc.label = label;
pipeline_desc.compute.module = shader_module;
pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code
pipeline_desc.layout = nullptr; // nullptr means auto layout
if (constants.size() > 0) {
pipeline_desc.compute.constants = constants.data();
pipeline_desc.compute.constantCount = constants.size();
}
pipeline = device.CreateComputePipeline(&pipeline_desc);
}
static void ggml_webgpu_create_buffer(wgpu::Device &device, wgpu::Buffer &buffer, size_t size, wgpu::BufferUsage usage, const char* label) {
WEBGPU_LOG_DEBUG("ggml_webgpu_create_buffer()");
wgpu::BufferDescriptor buffer_desc;
buffer_desc.size = size;
buffer_desc.usage = usage;
buffer_desc.label = label;
buffer_desc.mappedAtCreation = false;
// TODO: error handling
buffer = device.CreateBuffer(&buffer_desc);
}
/** End WebGPU object initializations */
/** WebGPU Actions */
static void ggml_backend_webgpu_map_buffer(webgpu_context ctx, wgpu::Buffer buffer, wgpu::MapMode mode, size_t offset, size_t size) {
ctx->instance.WaitAny(buffer.MapAsync(
mode, offset, size, wgpu::CallbackMode::WaitAnyOnly,
[](wgpu::MapAsyncStatus status, wgpu::StringView message) {
if (status != wgpu::MapAsyncStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n", message.data);
}
}),
UINT64_MAX
);
}
static void ggml_backend_webgpu_buffer_memset(webgpu_context ctx, wgpu::Buffer buf, uint32_t value, size_t offset, size_t size) {
std::lock_guard<std::mutex> lock(ctx->mutex);
wgpu::Device device = ctx->device;
// map the host parameters buffer
ggml_backend_webgpu_map_buffer(ctx, ctx->memset_params_host_buf, wgpu::MapMode::Write, 0, ctx->memset_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->memset_params_host_buf.GetMappedRange();
params[0] = (uint32_t)offset;
params[1] = (uint32_t)size;
params[2] = value;
ctx->memset_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[2];
entries[0].binding = 0; // binding for the buffer to memset
entries[0].buffer = buf;
entries[0].offset = 0;
entries[0].size = buf.GetSize();
entries[1].binding = 1; // binding for the parameters
entries[1].buffer = ctx->memset_params_dev_buf;
entries[1].offset = 0;
entries[1].size = ctx->memset_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->memset_pipeline.GetBindGroupLayout(0);
bind_group_desc.entryCount = 2;
bind_group_desc.label = "ggml_memset";
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->memset_params_host_buf, 0,
ctx->memset_params_dev_buf, 0,
ctx->memset_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->memset_pipeline);
pass.SetBindGroup(0, bind_group);
size_t bytes_per_wg = ctx->limits.maxComputeWorkgroupSizeX * ctx->memset_bytes_per_thread;
pass.DispatchWorkgroups(((size + 3) + bytes_per_wg - 1) / bytes_per_wg, 1, 1);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
ctx->queue.Submit(1, &commands);
}
static void ggml_backend_webgpu_wait_on_submission(webgpu_context ctx) {
// Wait for the queue to finish processing all commands
ctx->instance.WaitAny(ctx->queue.OnSubmittedWorkDone(wgpu::CallbackMode::WaitAnyOnly,
[](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
if (status != wgpu::QueueWorkDoneStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to wait on queue: %s\n", message.data);
}
}),
UINT64_MAX
);
}
/** End WebGPU Actions */
/** GGML Backend Interface */
static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
return ctx->name.c_str();
}
static void ggml_backend_webgpu_free(ggml_backend_t backend) {
ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *)backend->context;
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
// TODO: cleanup
GGML_UNUSED(ctx);
}
// Returns true if node has enqueued work into the queue, false otherwise
static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node){
if (ggml_is_empty(node)) {
return false;
}
WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")");
switch (node->op) {
// no-ops
case GGML_OP_NONE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
return false;
case GGML_OP_CPY: {
std::lock_guard<std::mutex> lock(ctx->mutex);
const ggml_tensor * src = node->src[0];
ggml_backend_webgpu_buffer_context * src_ctx = (ggml_backend_webgpu_buffer_context *) src->buffer->context;
size_t src_offset = webgpu_tensor_offset(src) + src->view_offs;
// assumes power of 2 offset alignment
size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
// align to minimum offset alignment
src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
wgpu::Device device = ctx->device;
ggml_backend_webgpu_map_buffer(ctx, ctx->cpy_params_host_buf,
wgpu::MapMode::Write, 0, ctx->cpy_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->cpy_params_host_buf.GetMappedRange();
uint32_t ne = (uint32_t)ggml_nelements(node);
params[0] = ne;
params[1] = src_misalignment/ggml_type_size(src->type);
params[2] = dst_misalignment/ggml_type_size(node->type);
// Convert byte-strides to element-strides
params[3] = (uint32_t)src->nb[0]/ggml_type_size(src->type);
params[4] = (uint32_t)src->nb[1]/ggml_type_size(src->type);
params[5] = (uint32_t)src->nb[2]/ggml_type_size(src->type);
params[6] = (uint32_t)src->nb[3]/ggml_type_size(src->type);
params[7] = (uint32_t)node->nb[0]/ggml_type_size(node->type);
params[8] = (uint32_t)node->nb[1]/ggml_type_size(node->type);
params[9] = (uint32_t)node->nb[2]/ggml_type_size(node->type);
params[10] = (uint32_t)node->nb[3]/ggml_type_size(node->type);
// Logical shape — same for both tensors even if permuted
params[11] = (uint32_t)(src->ne[0]);
params[12] = (uint32_t)(src->ne[1]);
params[13] = (uint32_t)(src->ne[2]);
params[14] = (uint32_t)(src->ne[3]);
ctx->cpy_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[3];
entries[0].binding = 0;
entries[0].buffer = src_ctx->buffer;
entries[0].offset = src_offset;
entries[0].size = (ggml_nbytes(src) + src_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
entries[1].binding = 1;
entries[1].buffer = dst_ctx->buffer;
entries[1].offset = dst_offset;
entries[1].size = (ggml_nbytes(node) + dst_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1);
entries[2].binding = 2;
entries[2].buffer = ctx->cpy_params_dev_buf;
entries[2].offset = 0;
entries[2].size = ctx->cpy_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->cpy_pipeline.GetBindGroupLayout(0);
bind_group_desc.label = "ggml_op_cpy";
bind_group_desc.entryCount = 3;
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->cpy_params_host_buf, 0,
ctx->cpy_params_dev_buf, 0,
ctx->cpy_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->cpy_pipeline);
pass.SetBindGroup(0, bind_group);
size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX;
pass.DispatchWorkgroups((ne + max_wg_size - 1) / max_wg_size);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
// TODO, don't submit here, batch submissions
ctx->queue.Submit(1, &commands);
// TODO, don't wait on submission here
ggml_backend_webgpu_wait_on_submission(ctx);
return true;
}
case GGML_OP_MUL_MAT:
{
const ggml_tensor * src0 = node->src[0];
ggml_backend_webgpu_buffer_context * src0_ctx = (ggml_backend_webgpu_buffer_context *) src0->buffer->context;
size_t src0_offset = webgpu_tensor_offset(src0) + src0->view_offs;
const ggml_tensor * src1 = node->src[1];
ggml_backend_webgpu_buffer_context * src1_ctx = (ggml_backend_webgpu_buffer_context *) src1->buffer->context;
size_t src1_offset = webgpu_tensor_offset(src1) + src1->view_offs;
ggml_backend_webgpu_buffer_context * dst_ctx = (ggml_backend_webgpu_buffer_context *) node->buffer->context;
size_t dst_offset = webgpu_tensor_offset(node) + node->view_offs;
wgpu::Device device = ctx->device;
// map the host parameters buffer
ggml_backend_webgpu_map_buffer(ctx, ctx->mul_mat_params_host_buf,
wgpu::MapMode::Write, 0, ctx->mul_mat_params_host_buf.GetSize());
uint32_t * params = (uint32_t *) ctx->mul_mat_params_host_buf.GetMappedRange();
params[0] = (uint32_t)node->ne[1]; // number of rows in result (M)
params[1] = (uint32_t)node->ne[0]; // number of columns in result (N)
params[2] = (uint32_t)src0->ne[0]; // number of columns in src0/src1 (K)
params[3] = (uint32_t)src0->nb[1]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 1
params[4] = (uint32_t)src1->nb[1]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 1
params[5] = (uint32_t)src0->nb[2]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 2
params[6] = (uint32_t)src1->nb[2]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 2
params[7] = (uint32_t)src0->nb[3]/ggml_type_size(src0->type); // stride (elements) of src0 in dimension 3
params[8] = (uint32_t)src1->nb[3]/ggml_type_size(src1->type); // stride (elements) of src1 in dimension 3
params[9] = (uint32_t)src0->ne[2]; // batch size in dimension 2
params[10] = (uint32_t)src0->ne[3]; // batch size in dimension 3
params[11] = (uint32_t)(src1->ne[2]/src0->ne[2]); // broadcast in dimension 2
params[12] = (uint32_t)(src1->ne[3]/src0->ne[3]); // broadcast in dimension 3
ctx->mul_mat_params_host_buf.Unmap();
wgpu::BindGroupEntry entries[4];
entries[0].binding = 0;
entries[0].buffer = src0_ctx->buffer;
entries[0].offset = src0_offset;
entries[0].size = ggml_nbytes(src0);
entries[1].binding = 1;
entries[1].buffer = src1_ctx->buffer;
entries[1].offset = src1_offset;
entries[1].size = ggml_nbytes(src1);
entries[2].binding = 2;
entries[2].buffer = dst_ctx->buffer;
entries[2].offset = dst_offset;
entries[2].size = ggml_nbytes(node);
entries[3].binding = 3;
entries[3].buffer = ctx->mul_mat_params_dev_buf;
entries[3].offset = 0;
entries[3].size = ctx->mul_mat_params_dev_buf.GetSize();
wgpu::BindGroupDescriptor bind_group_desc;
bind_group_desc.layout = ctx->mul_mat_pipeline.GetBindGroupLayout(0);
bind_group_desc.entryCount = 4;
bind_group_desc.label = "ggml_op_mul_mat";
bind_group_desc.entries = entries;
wgpu::BindGroup bind_group = device.CreateBindGroup(&bind_group_desc);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(
ctx->mul_mat_params_host_buf, 0,
ctx->mul_mat_params_dev_buf, 0,
ctx->mul_mat_params_dev_buf.GetSize()
);
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(ctx->mul_mat_pipeline);
pass.SetBindGroup(0, bind_group);
pass.DispatchWorkgroups((node->ne[0] * node->ne[1] * node->ne[2] * node->ne[3] + WEBGPU_MUL_MAT_WG_SIZE - 1) / WEBGPU_MUL_MAT_WG_SIZE);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
// TODO, don't submit here, batch submissions
ctx->queue.Submit(1, &commands);
// TODO, don't wait on submission here
ggml_backend_webgpu_wait_on_submission(ctx);
return true;
}
default:
return false;
}
}
static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_webgpu_context * backend_ctx = static_cast<ggml_backend_webgpu_context *>(backend->context);
webgpu_context ctx = backend_ctx->webgpu_ctx;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_webgpu_encode_node(ctx, cgraph->nodes[i]);
}
return GGML_STATUS_SUCCESS;
}
static ggml_backend_i ggml_backend_webgpu_i = {
/* .get_name = */ ggml_backend_webgpu_name,
/* .free = */ ggml_backend_webgpu_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_webgpu_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
/* End GGML Backend Interface */
/* GGML Backend Buffer Interface */
static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_free_buffer()");
ggml_backend_webgpu_buffer_context * ctx = static_cast<ggml_backend_webgpu_buffer_context *>(buffer->context);
ctx->buffer.Destroy();
}
// Returns the "fake" base pointer.
static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_UNUSED(buffer);
return webgpu_ptr_base;
}
static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
if (size == 0) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do.");
return;
}
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
// This is a trick to set all bytes of a u32 to the same 1 byte value.
uint32_t val32 = (uint32_t)value * 0x01010101;
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size);
}
static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size/4)*4);
if (size % 4 != 0) {
// If size is not a multiple of 4, we need to memset the remaining bytes
size_t remaining_size = size % 4;
// pack the remaining bytes into a uint32_t
uint32_t val32 = 0;
for (size_t i = 0; i < remaining_size; i++) {
((uint8_t *)&val32)[i] = ((const uint8_t *)data)[size - remaining_size + i];
}
// memset the remaining bytes
ggml_backend_webgpu_buffer_memset(webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size), remaining_size);
}
}
static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
wgpu::Device device = webgpu_ctx->device;
size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
size_t final_size = size;
if (size % 4 != 0) {
// If size is not a multiple of 4, we need to round it up to the next multiple of 4
final_size = size + (4 - (size % 4));
}
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
if (webgpu_ctx->get_tensor_staging_buf == nullptr ||
webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) {
// Create a new staging buffer if it doesn't exist or is too small
if (webgpu_ctx->get_tensor_staging_buf) {
webgpu_ctx->get_tensor_staging_buf.Destroy();
}
ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size,
wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf");
}
// Copy the data from the buffer to the staging buffer
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size);
wgpu::CommandBuffer commands = encoder.Finish();
// Submit the command buffer to the queue
webgpu_ctx->queue.Submit(1, &commands);
// Map the staging buffer to read the data
ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size);
// Must specify size here since the staging buffer might be larger than the tensor size
const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size);
// Copy the data from the mapped range to the output buffer
std::memcpy(data, mapped_range, size);
webgpu_ctx->get_tensor_staging_buf.Unmap();
}
static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")");
ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size);
}
static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = {
/* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_webgpu_buffer_get_base,
/* .init_tensor = */ NULL, // TODO: optional, needed?
/* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor,
/* .cpy_tensor = */ NULL, // TODO: optional, implement this
/* .clear = */ ggml_backend_webgpu_buffer_clear,
/* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor
};
/* End GGML Backend Buffer Interface */
/* GGML Backend Buffer Type Interface */
static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->device_name.c_str();
}
static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer(" << size << ")");
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
wgpu::Buffer buf;
ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, size,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst, "allocated_buffer");
ggml_backend_webgpu_buffer_context * buf_ctx = new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf);
return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size);
}
static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment;
}
// maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding.
static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize;
}
/* End GGML Backend Buffer Type Interface */
/* GGML Backend Device Interface */
static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
return ctx->device_name.c_str();
}
static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
return ctx->device_desc.c_str();
}
static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
// TODO: what do we actually want to return here? maxBufferSize might not be the full available memory.
*free = ctx->webgpu_ctx->limits.maxBufferSize;
*total = ctx->webgpu_ctx->limits.maxBufferSize;
}
static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_webgpu_device_get_name(dev);
props->description = ggml_backend_webgpu_device_get_description(dev);
props->type = ggml_backend_webgpu_device_get_type(dev);
ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_guid_t ggml_backend_webgpu_guid(void) {
static const char * guid_str = "__ggml_webgpu :)";
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}
static void ggml_webgpu_init_memset_pipeline(webgpu_context webgpu_ctx) {
// we use the maximum workgroup size for the memset pipeline
size_t max_wg_size = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
size_t max_threads = max_wg_size * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension;
// Size the bytes_per_thread so that the largest buffer size can be handled
webgpu_ctx->memset_bytes_per_thread = (webgpu_ctx->limits.maxStorageBufferBindingSize + max_threads - 1) / max_threads;
std::vector<wgpu::ConstantEntry> constants(2);
constants[0].key = "wg_size";
constants[0].value = max_wg_size;
constants[1].key = "bytes_per_thread";
constants[1].value = webgpu_ctx->memset_bytes_per_thread;
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->memset_pipeline, wgsl_memset, "memset", constants);
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_dev_buf,
3 * sizeof(uint32_t), // 3 parameters: buffer size, offset, value
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "memset_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->memset_params_host_buf,
3 * sizeof(uint32_t), wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "memset_params_host_buf");
}
static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline, wgsl_mul_mat, "mul_mat");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_dev_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "mul_mat_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->mul_mat_params_host_buf, WEBGPU_MUL_MAT_PARAMS_SIZE,
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "mul_mat_params_host_buf");
}
static void ggml_webgpu_init_cpy_pipeline(webgpu_context webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants(1);
constants[0].key = "wg_size";
constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX;
ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline, wgsl_cpy, "cpy", constants);
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_dev_buf, WEBGPU_CPY_PARAMS_SIZE,
wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, "cpy_params_dev_buf");
ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->cpy_params_host_buf, WEBGPU_CPY_PARAMS_SIZE,
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, "cpy_params_host_buf");
}
// TODO: Make thread safe if multiple devices are used
static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()");
ggml_backend_webgpu_device_context * dev_ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx;
std::lock_guard<std::mutex> lock(webgpu_ctx->mutex);
if (!webgpu_ctx->device_initialized) {
// Initialize device
wgpu::DeviceDescriptor dev_desc;
dev_desc.requiredLimits = &webgpu_ctx->limits;
dev_desc.requiredFeatures = webgpu_ctx->features.features;
dev_desc.requiredFeatureCount = webgpu_ctx->features.featureCount;
dev_desc.SetDeviceLostCallback(wgpu::CallbackMode::AllowSpontaneous,
[](const wgpu::Device& device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
});
dev_desc.SetUncapturedErrorCallback(
[](const wgpu::Device& device, wgpu::ErrorType reason, wgpu::StringView message) {
GGML_UNUSED(device);
GGML_LOG_ERROR("ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast<int>(reason), message.data);
});
webgpu_ctx->instance.WaitAny(webgpu_ctx->adapter.RequestDevice(&dev_desc, wgpu::CallbackMode::WaitAnyOnly,
[webgpu_ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) {
if (status != wgpu::RequestDeviceStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n", message.data);
return;
}
webgpu_ctx->device = device;
}),
UINT64_MAX
);
GGML_ASSERT(webgpu_ctx->device != nullptr);
// Initialize (compute) queue
webgpu_ctx->queue = webgpu_ctx->device.GetQueue();
ggml_webgpu_init_memset_pipeline(webgpu_ctx);
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
webgpu_ctx->device_initialized = true;
}
static ggml_backend_webgpu_context backend_ctx;
backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name;
backend_ctx.webgpu_ctx = webgpu_ctx;
// See GGML Backend Interface section
static ggml_backend backend = {
/* .guid = */ ggml_backend_webgpu_guid(),
/* .interface = */ ggml_backend_webgpu_i,
/* .device = */ dev,
/* .context = */ &backend_ctx,
};
return &backend;
}
static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) {
// See GGML Backend Buffer Type Interface section
static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_webgpu_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ NULL, // defaults to false
},
/* .device = */ dev,
/* .context = */ NULL,
};
return &ggml_backend_webgpu_buffer_type;
}
static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
GGML_UNUSED(dev);
return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name;
}
static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
GGML_UNUSED(dev);
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
return true;
case GGML_OP_CPY:
return op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_MUL_MAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
default:
return false;
}
}
static struct ggml_backend_device_i ggml_backend_webgpu_device_i = {
/* .get_name = */ ggml_backend_webgpu_device_get_name,
/* .get_description = */ ggml_backend_webgpu_device_get_description,
/* .get_memory = */ ggml_backend_webgpu_device_get_memory,
/* .get_type = */ ggml_backend_webgpu_device_get_type,
/* .get_props = */ ggml_backend_webgpu_device_get_props,
/* .init_backend = */ ggml_backend_webgpu_device_init,
/* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_webgpu_device_supports_op,
/* .supports_buft = */ ggml_backend_webgpu_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
/* End GGML Backend Device Interface */
/* GGML Backend Registration Interface */
static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) {
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
return ctx->name;
}
static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
return ctx->device_count;
}
// TODO: Does this need to be thread safe? Is it only called once?
// Only one device is supported for now
static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()");
ggml_backend_webgpu_reg_context * reg_ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
webgpu_context ctx = reg_ctx->webgpu_ctx;
wgpu::RequestAdapterOptions options = {};
auto callback = [](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char *message, void *userdata) {
if (status != wgpu::RequestAdapterStatus::Success) {
GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message);
return;
}
*static_cast<wgpu::Adapter *>(userdata) = adapter;
};
void *userdata = &ctx->adapter;
ctx->instance.WaitAny(ctx->instance.RequestAdapter(&options, wgpu::CallbackMode::WaitAnyOnly, callback, userdata), UINT64_MAX);
GGML_ASSERT(ctx->adapter != nullptr);
ctx->adapter.GetLimits(&ctx->limits);
ctx->adapter.GetFeatures(&ctx->features);
wgpu::AdapterInfo info{};
ctx->adapter.GetInfo(&info);
static ggml_backend_webgpu_device_context device_ctx;
device_ctx.webgpu_ctx = ctx;
device_ctx.device_name = GGML_WEBGPU_NAME;
device_ctx.device_desc = std::string(info.description.data);
GGML_LOG_INFO("ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | device_desc: %s\n",
info.vendorID, info.vendor.data, info.architecture.data, info.deviceID, info.device.data, info.description.data);
// See GGML Backend Device Interface section
static ggml_backend_device device = {
/* .iface = */ ggml_backend_webgpu_device_i,
/* .reg = */ reg,
/* .context = */ &device_ctx,
};
return &device;
}
static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = {
/* .get_name = */ ggml_backend_webgpu_reg_get_name,
/* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count,
/* .get_device = */ ggml_backend_webgpu_reg_get_device,
/* .get_proc_address = */ NULL,
};
/* End GGML Backend Registration Interface */
// TODO: Does this need to be thread safe? Is it only called once?
ggml_backend_reg_t ggml_backend_webgpu_reg() {
WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()");
webgpu_context webgpu_ctx = std::make_shared<webgpu_context_struct>();
webgpu_ctx->device_initialized = false;
static ggml_backend_webgpu_reg_context ctx;
ctx.webgpu_ctx = webgpu_ctx;
ctx.name = GGML_WEBGPU_NAME;
ctx.device_count = 1;
wgpu::InstanceDescriptor instance_descriptor{};
std::vector<wgpu::InstanceFeatureName> instance_features = {wgpu::InstanceFeatureName::TimedWaitAny};
instance_descriptor.requiredFeatures = instance_features.data();
instance_descriptor.requiredFeatureCount = instance_features.size();
webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor);
GGML_ASSERT(webgpu_ctx->instance != nullptr);
static ggml_backend_reg reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_webgpu_reg_i,
/* .context = */ &ctx,
};
return &reg;
}
ggml_backend_t ggml_backend_webgpu_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0);
return ggml_backend_webgpu_device_init(dev, nullptr);
}
GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)

View File

@ -0,0 +1,60 @@
enable f16;
@group(0) @binding(0)
var<storage, read_write> src: array<f32>;
@group(0) @binding(1)
var<storage, read_write> dst: array<f16>;
struct Params {
ne: u32, // total number of elements
offset_src: u32, // in elements
offset_dst: u32, // in elements
// Strides (in elements) — may be permuted
stride_src0: u32,
stride_src1: u32,
stride_src2: u32,
stride_src3: u32,
stride_dst0: u32,
stride_dst1: u32,
stride_dst2: u32,
stride_dst3: u32,
// Logical shape (same for both tensors)
ne0: u32,
ne1: u32,
ne2: u32,
ne3: u32,
};
@group(0) @binding(2)
var<uniform> params: Params;
override wg_size: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x >= params.ne) {
return;
}
var i = gid.x;
let i3 = i / (params.ne2 * params.ne1 * params.ne0);
i = i % (params.ne2 * params.ne1 * params.ne0);
let i2 = i / (params.ne1 * params.ne0);
i = i % (params.ne1 * params.ne0);
let i1 = i / params.ne0;
let i0 = i % params.ne0;
let src_idx = i0 * params.stride_src0 + i1 * params.stride_src1 +
i2 * params.stride_src2 + i3 * params.stride_src3;
let dst_idx = i0 * params.stride_dst0 + i1 * params.stride_dst1 +
i2 * params.stride_dst2 + i3 * params.stride_dst3;
dst[params.offset_dst + dst_idx] = f16(src[params.offset_src + src_idx]);
}

View File

@ -0,0 +1,35 @@
import os
import argparse
def escape_triple_quotes(wgsl):
# Simple defense in case of embedded """
return wgsl.replace('"""', '\\"""')
def to_cpp_string_literal(varname, content):
return f'const char* wgsl_{varname} = R"({content})";\n'
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input', required=True)
parser.add_argument('--output', required=True)
args = parser.parse_args()
with open(args.output, 'w', encoding='utf-8') as out:
out.write("// Auto-generated shader embedding \n\n")
for fname in sorted(os.listdir(args.input)):
if not fname.endswith('.wgsl'):
continue
shader_path = os.path.join(args.input, fname)
varname = os.path.splitext(fname)[0]
with open(shader_path, 'r', encoding='utf-8') as f:
content = f.read()
content = escape_triple_quotes(content)
out.write(to_cpp_string_literal(varname, content))
out.write('\n')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,40 @@
@group(0) @binding(0)
var<storage, read_write> output_buffer: array<u32>;
struct Params {
offset: u32, // in bytes
size: u32, // in bytes
value: u32, // 4 8-bit values, which are either repeating (memset_tensor) or may be separate (cleaning up unaligned set_tensor operations)
};
@group(0) @binding(1)
var<uniform> params: Params;
override wg_size: u32;
override bytes_per_thread: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
let i = gid.x * bytes_per_thread;
let start = params.offset;
let end = params.offset + params.size;
for (var j: u32 = 0u; j < bytes_per_thread; j = j + 1u) {
let byte_index = start + i + j;
if (byte_index + 4u <= end) {
output_buffer[(byte_index >> 2u)] = params.value;
} else {
// Handle tail (unaligned)
for (var k: u32 = 0u; k < 4u; k = k + 1u) {
let idx = byte_index + k;
if (idx < end) {
let word_idx = idx >> 2u;
let byte_offset = (idx & 3u) * 8u;
let mask = ~(0xffu << byte_offset);
let existing = output_buffer[word_idx];
output_buffer[word_idx] = (existing & mask) | ((params.value & 0xffu) << byte_offset);
}
}
}
}
}

View File

@ -0,0 +1,56 @@
struct MulMatParams {
m: u32,
n: u32,
k: u32,
// all strides are in elements
stride_01: u32,
stride_11: u32,
stride_02: u32,
stride_12: u32,
stride_03: u32,
stride_13: u32,
bs02: u32,
bs03: u32,
broadcast2: u32,
broadcast3: u32
};
@group(0) @binding(0) var<storage, read_write> src0: array<f32>; // N rows, K columns
@group(0) @binding(1) var<storage, read_write> src1: array<f32>; // M rows, K columns (transposed)
@group(0) @binding(2) var<storage, read_write> dst: array<f32>; // M rows, N columns
@group(0) @binding(3) var<uniform> params: MulMatParams;
@compute @workgroup_size(64)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
let total = params.m * params.n * params.bs02 * params.broadcast2 * params.bs03 * params.broadcast3;
if (global_id.x >= total) {
return;
}
let dst2_stride = params.m * params.n;
let dst3_stride = dst2_stride * params.bs02 * params.broadcast2;
let dst3_idx = global_id.x / dst3_stride;
let src03_idx = dst3_idx / params.broadcast3; // src0 may be broadcast along the third dimension
let src13_idx = dst3_idx; // src1 is not broadcast
let dst3_rem = global_id.x % dst3_stride;
let dst2_idx = dst3_rem / dst2_stride;
let src02_idx = dst2_idx / params.broadcast2; // src0 may also be broadcast along the second dimension
let src12_idx = dst2_idx; // src1 is not broadcast
let dst2_rem = dst3_rem % dst2_stride;
let row = dst2_rem / params.n; // output row
let col = dst2_rem % params.n; // output column
var sum = 0.0;
for (var i: u32 = 0u; i < params.k; i = i + 1u) {
let src0_idx = src03_idx * params.stride_03 + src02_idx * params.stride_02 + col * params.stride_01 + i;
let src1_idx = src13_idx * params.stride_13 + src12_idx * params.stride_12 + row * params.stride_11 + i;
sum = sum + src0[src0_idx] * src1[src1_idx];
}
dst[dst3_idx * dst3_stride + dst2_idx * dst2_stride + row * params.n + col] = sum;
}