mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-27 03:55:20 +00:00
tests: add gradient tests for all backends (ggml/932)
* tests: add gradient checking to test-backend-ops * remove old comment * reorder includes * adjust SIN/COS parameters * add documentation, use supports_op if possible
This commit is contained in:
committed by
Georgi Gerganov
parent
dbbebcab33
commit
202084d31d
41
ggml/src/ggml-cuda/sum.cu
Normal file
41
ggml/src/ggml-cuda/sum.cu
Normal file
@ -0,0 +1,41 @@
|
||||
#include "sumrows.cuh"
|
||||
#include "sum.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
|
||||
void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
|
||||
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
size_t tmp_size = 0;
|
||||
DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, x, dst, ne, stream);
|
||||
#else
|
||||
// Use (inefficient) sum_rows implementation as a fallback.
|
||||
// For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
|
||||
sum_rows_f32_cuda(x, dst, ne, 1, stream);
|
||||
GGML_UNUSED(pool);
|
||||
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
sum_f32_cuda(pool, src0_d, dst_d, ne, stream);
|
||||
}
|
Reference in New Issue
Block a user