mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-28 12:25:03 +00:00
llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
257
tools/server/tests/unit/test_embedding.py
Normal file
257
tools/server/tests/unit/test_embedding.py
Normal file
@ -0,0 +1,257 @@
|
||||
import base64
|
||||
import struct
|
||||
import pytest
|
||||
from openai import OpenAI
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.bert_bge_small()
|
||||
|
||||
EPSILON = 1e-3
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.bert_bge_small()
|
||||
|
||||
|
||||
def test_embedding_single():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": "I believe the meaning of life is",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 1
|
||||
assert 'embedding' in res.body['data'][0]
|
||||
assert len(res.body['data'][0]['embedding']) > 1
|
||||
|
||||
# make sure embedding vector is normalized
|
||||
assert abs(sum([x ** 2 for x in res.body['data'][0]['embedding']]) - 1) < EPSILON
|
||||
|
||||
|
||||
def test_embedding_multiple():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"Write a joke about AI from a very long prompt which will not be truncated",
|
||||
"This is a test",
|
||||
"This is another test",
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 4
|
||||
for d in res.body['data']:
|
||||
assert 'embedding' in d
|
||||
assert len(d['embedding']) > 1
|
||||
|
||||
|
||||
def test_embedding_multiple_with_fa():
|
||||
server = ServerPreset.bert_bge_small_with_fa()
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"a "*253,
|
||||
"b "*254,
|
||||
"c "*255,
|
||||
"d "*256,
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 4
|
||||
for d in res.body['data']:
|
||||
assert 'embedding' in d
|
||||
assert len(d['embedding']) > 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input,is_multi_prompt",
|
||||
[
|
||||
# do not crash on empty input
|
||||
("", False),
|
||||
# single prompt
|
||||
("string", False),
|
||||
([12, 34, 56], False),
|
||||
([12, 34, "string", 56, 78], False),
|
||||
# multiple prompts
|
||||
(["string1", "string2"], True),
|
||||
(["string1", [12, 34, 56]], True),
|
||||
([[12, 34, 56], [12, 34, 56]], True),
|
||||
([[12, 34, 56], [12, "string", 34, 56]], True),
|
||||
]
|
||||
)
|
||||
def test_embedding_mixed_input(input, is_multi_prompt: bool):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={"input": input})
|
||||
assert res.status_code == 200
|
||||
data = res.body['data']
|
||||
if is_multi_prompt:
|
||||
assert len(data) == len(input)
|
||||
for d in data:
|
||||
assert 'embedding' in d
|
||||
assert len(d['embedding']) > 1
|
||||
else:
|
||||
assert 'embedding' in data[0]
|
||||
assert len(data[0]['embedding']) > 1
|
||||
|
||||
|
||||
def test_embedding_pooling_none():
|
||||
global server
|
||||
server.pooling = 'none'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
"input": "hello hello hello",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert 'embedding' in res.body[0]
|
||||
assert len(res.body[0]['embedding']) == 5 # 3 text tokens + 2 special
|
||||
|
||||
# make sure embedding vector is not normalized
|
||||
for x in res.body[0]['embedding']:
|
||||
assert abs(sum([x ** 2 for x in x]) - 1) > EPSILON
|
||||
|
||||
|
||||
def test_embedding_pooling_none_oai():
|
||||
global server
|
||||
server.pooling = 'none'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": "hello hello hello",
|
||||
})
|
||||
|
||||
# /v1/embeddings does not support pooling type 'none'
|
||||
assert res.status_code == 400
|
||||
assert "error" in res.body
|
||||
|
||||
|
||||
def test_embedding_openai_library_single():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is")
|
||||
assert len(res.data) == 1
|
||||
assert len(res.data[0].embedding) > 1
|
||||
|
||||
|
||||
def test_embedding_openai_library_multiple():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
res = client.embeddings.create(model="text-embedding-3-small", input=[
|
||||
"I believe the meaning of life is",
|
||||
"Write a joke about AI from a very long prompt which will not be truncated",
|
||||
"This is a test",
|
||||
"This is another test",
|
||||
])
|
||||
assert len(res.data) == 4
|
||||
for d in res.data:
|
||||
assert len(d.embedding) > 1
|
||||
|
||||
|
||||
def test_embedding_error_prompt_too_long():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": "This is a test " * 512,
|
||||
})
|
||||
assert res.status_code != 200
|
||||
assert "too large" in res.body["error"]["message"]
|
||||
|
||||
|
||||
def test_same_prompt_give_same_result():
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert len(res.body['data']) == 5
|
||||
for i in range(1, len(res.body['data'])):
|
||||
v0 = res.body['data'][0]['embedding']
|
||||
vi = res.body['data'][i]['embedding']
|
||||
for x, y in zip(v0, vi):
|
||||
assert abs(x - y) < EPSILON
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"content,n_tokens",
|
||||
[
|
||||
("I believe the meaning of life is", 9),
|
||||
("This is a test", 6),
|
||||
]
|
||||
)
|
||||
def test_embedding_usage_single(content, n_tokens):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={"input": content})
|
||||
assert res.status_code == 200
|
||||
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
|
||||
assert res.body['usage']['prompt_tokens'] == n_tokens
|
||||
|
||||
|
||||
def test_embedding_usage_multiple():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
],
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
|
||||
assert res.body['usage']['prompt_tokens'] == 2 * 9
|
||||
|
||||
|
||||
def test_embedding_openai_library_base64():
|
||||
server.start()
|
||||
test_input = "Test base64 embedding output"
|
||||
|
||||
# get embedding in default format
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": test_input
|
||||
})
|
||||
assert res.status_code == 200
|
||||
vec0 = res.body["data"][0]["embedding"]
|
||||
|
||||
# get embedding in base64 format
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": test_input,
|
||||
"encoding_format": "base64"
|
||||
})
|
||||
|
||||
assert res.status_code == 200
|
||||
assert "data" in res.body
|
||||
assert len(res.body["data"]) == 1
|
||||
|
||||
embedding_data = res.body["data"][0]
|
||||
assert "embedding" in embedding_data
|
||||
assert isinstance(embedding_data["embedding"], str)
|
||||
|
||||
# Verify embedding is valid base64
|
||||
decoded = base64.b64decode(embedding_data["embedding"])
|
||||
# Verify decoded data can be converted back to float array
|
||||
float_count = len(decoded) // 4 # 4 bytes per float
|
||||
floats = struct.unpack(f'{float_count}f', decoded)
|
||||
assert len(floats) > 0
|
||||
assert all(isinstance(x, float) for x in floats)
|
||||
assert len(floats) == len(vec0)
|
||||
|
||||
# make sure the decoded data is the same as the original
|
||||
for x, y in zip(floats, vec0):
|
||||
assert abs(x - y) < EPSILON
|
Reference in New Issue
Block a user