ggml: aarch64: Implement SVE F32 kernels for vector functions (#13843)

* F32-Mamba-SVE

* F32-Mamba-SVE

* Resolve test errors-1

* Resolve test errors-2

* F32-vec-SVE

* F32-vec-SVE

* F32-vec-SVE
This commit is contained in:
Vineel Abhinav
2025-05-29 11:31:33 +05:30
committed by GitHub
parent 53ae30640e
commit 1b8fb8152d
4 changed files with 522 additions and 147 deletions

View File

@ -7641,8 +7641,8 @@ static void ggml_compute_forward_ssm_scan_f32(
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
@ -8070,6 +8070,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define WKV_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@ -8080,8 +8088,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define WKV_VECTOR_SIZE 4
#endif
int wkv_vector_size;
#ifdef WKV_VECTOR_SIZE
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
#if defined(__ARM_FEATURE_SVE)
wkv_vector_size = svcntw();
#else
wkv_vector_size = WKV_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / wkv_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
@ -8111,7 +8125,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * WKV_VECTOR_SIZE;
size_t base_j = j * wkv_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
@ -8136,7 +8150,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
@ -8272,6 +8286,14 @@ static void ggml_compute_forward_gla_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define GLA_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@ -8282,8 +8304,14 @@ static void ggml_compute_forward_gla_f32(
#define GLA_VECTOR_SIZE 4
#endif
int gla_vector_size;
#ifdef GLA_VECTOR_SIZE
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
#if defined(__ARM_FEATURE_SVE)
gla_vector_size = svcntw();
#else
gla_vector_size = GLA_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / gla_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
@ -8310,7 +8338,7 @@ static void ggml_compute_forward_gla_f32(
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * GLA_VECTOR_SIZE;
size_t base_j = j * gla_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
@ -8334,7 +8362,7 @@ static void ggml_compute_forward_gla_f32(
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
@ -8443,83 +8471,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float v_val = v[t_h_i_offset];
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
dst_data[t_h_i_offset] = result;
}
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
}
}
}
}
#endif
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;