mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-30 12:55:17 +00:00
Merge branch 'master' into compilade/imatrix-batched-chunks
This commit is contained in:
@ -14,9 +14,9 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
|
@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=12.4.0
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
@ -21,7 +21,7 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
@ -1,4 +1,4 @@
|
||||
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
|
||||
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
|
||||
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS build
|
||||
|
||||
@ -6,7 +6,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN yum install -y gcc g++ cmake make
|
||||
RUN yum install -y gcc g++ cmake make libcurl-devel
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
|
||||
|
@ -17,10 +17,10 @@ Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
|
||||
Requires: cuda-toolkit
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
URL: https://github.com/ggml-org/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
@ -18,10 +18,10 @@ Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git libstdc++-devel
|
||||
Requires: libstdc++
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
URL: https://github.com/ggml-org/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
ARG MUSA_VERSION=rc3.1.1
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
@ -35,7 +35,7 @@ COPY . .
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
@ -133,12 +133,12 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
# see https://github.com/ggml-org/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
@ -220,7 +220,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
homepage = "https://github.com/ggml-org/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
|
@ -11,14 +11,14 @@ ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-co
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
|
||||
# gfx906 is deprecated
|
||||
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
|
||||
|
||||
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||
ARG ROCM_DOCKER_ARCH=gfx1100
|
||||
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
|
||||
#ARG ROCM_DOCKER_ARCH=gfx1100
|
||||
|
||||
# Set nvcc architectured
|
||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
@ -40,7 +40,7 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
|
||||
&& cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib \
|
||||
|
@ -16,7 +16,7 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
6
.github/ISSUE_TEMPLATE/020-enhancement.yml
vendored
6
.github/ISSUE_TEMPLATE/020-enhancement.yml
vendored
@ -6,7 +6,7 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggml-org/llama.cpp/discussions/categories/ideas)
|
||||
|
||||
- type: checkboxes
|
||||
id: prerequisites
|
||||
@ -16,11 +16,11 @@ body:
|
||||
options:
|
||||
- label: I am running the latest code. Mention the version if possible as well.
|
||||
required: true
|
||||
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
- label: I carefully followed the [README.md](https://github.com/ggml-org/llama.cpp/blob/master/README.md).
|
||||
required: true
|
||||
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
|
||||
required: true
|
||||
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
- label: I reviewed the [Discussions](https://github.com/ggml-org/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
|
2
.github/ISSUE_TEMPLATE/030-research.yml
vendored
2
.github/ISSUE_TEMPLATE/030-research.yml
vendored
@ -6,7 +6,7 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
|
||||
- type: checkboxes
|
||||
id: research-stage
|
||||
|
4
.github/ISSUE_TEMPLATE/040-refactor.yml
vendored
4
.github/ISSUE_TEMPLATE/040-refactor.yml
vendored
@ -6,8 +6,8 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
|
||||
- type: textarea
|
||||
id: background-description
|
||||
|
6
.github/ISSUE_TEMPLATE/config.yml
vendored
6
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,11 +1,11 @@
|
||||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: Got an idea?
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
|
||||
url: https://github.com/ggml-org/llama.cpp/discussions/categories/ideas
|
||||
about: Pop it there. It may then become an enhancement ticket.
|
||||
- name: Got a question?
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
|
||||
url: https://github.com/ggml-org/llama.cpp/discussions/categories/q-a
|
||||
about: Ask a question there!
|
||||
- name: Want to contribute?
|
||||
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
|
||||
url: https://github.com/ggml-org/llama.cpp/wiki/contribute
|
||||
about: Head to the contribution guide page of the wiki for areas you can help with
|
||||
|
25
.github/actions/windows-setup-curl/action.yml
vendored
Normal file
25
.github/actions/windows-setup-curl/action.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
name: 'Windows - Setup CURL'
|
||||
description: 'Composite action, to be reused in other workflow'
|
||||
inputs:
|
||||
curl_version:
|
||||
description: 'CURL version'
|
||||
required: false
|
||||
default: '8.6.0_6'
|
||||
outputs:
|
||||
curl_path:
|
||||
description: "Path to the downloaded libcurl"
|
||||
value: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
shell: powershell
|
||||
env:
|
||||
CURL_VERSION: ${{ inputs.curl_version }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT
|
2
.github/pull_request_template.md
vendored
2
.github/pull_request_template.md
vendored
@ -1 +1 @@
|
||||
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
*Make sure to read the [contributing guidelines](https://github.com/ggml-org/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
|
13
.github/workflows/bench.yml.disabled
vendored
13
.github/workflows/bench.yml.disabled
vendored
@ -1,5 +1,5 @@
|
||||
# TODO: there have been some issues with the workflow, so disabling for now
|
||||
# https://github.com/ggerganov/llama.cpp/issues/7893
|
||||
# https://github.com/ggml-org/llama.cpp/issues/7893
|
||||
#
|
||||
# Benchmark
|
||||
name: Benchmark
|
||||
@ -57,17 +57,7 @@ jobs:
|
||||
|
||||
if: |
|
||||
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|
||||
|| (
|
||||
github.event_name == 'schedule'
|
||||
&& github.ref_name == 'master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
|| github.event_name == 'pull_request_target'
|
||||
|| (
|
||||
github.event_name == 'push'
|
||||
&& github.event.ref == 'refs/heads/master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@ -114,7 +104,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DLLAMA_CUBLAS=ON \
|
||||
-DCUDAToolkit_ROOT=/usr/local/cuda \
|
||||
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
|
||||
|
124
.github/workflows/build-linux-cross.yml
vendored
Normal file
124
.github/workflows/build-linux-cross.yml
vendored
Normal file
@ -0,0 +1,124 @@
|
||||
name: Build on Linux using cross-compiler
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-latest-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64 \
|
||||
libcurl4-openssl-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-latest-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
|
||||
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
|
||||
sudo apt-get clean
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64 \
|
||||
libcurl4-openssl-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
|
||||
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
224
.github/workflows/build.yml
vendored
224
.github/workflows/build.yml
vendored
@ -10,7 +10,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
|
||||
@ -54,6 +54,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -62,7 +63,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON
|
||||
@ -92,7 +92,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@ -123,17 +122,17 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
@ -162,7 +161,6 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@ -173,7 +171,15 @@ jobs:
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-cpu-cmake:
|
||||
runs-on: ubuntu-22.04
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'x64'
|
||||
os: ubuntu-22.04
|
||||
- build: 'arm64'
|
||||
os: ubuntu-22.04-arm
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -199,7 +205,6 @@ jobs:
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@ -238,15 +243,14 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
|
||||
name: llama-bin-ubuntu-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
|
||||
name: llama-bin-ubuntu-${{ matrix.build }}.zip
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
runs-on: ubuntu-latest
|
||||
@ -273,7 +277,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -314,7 +318,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -352,7 +356,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -374,6 +378,8 @@ jobs:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@ -387,7 +393,7 @@ jobs:
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -401,7 +407,34 @@ jobs:
|
||||
run: |
|
||||
cd build
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 1800
|
||||
ctest -L main --verbose --timeout 2700
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
@ -416,7 +449,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@ -429,6 +462,7 @@ jobs:
|
||||
run: |
|
||||
cmake -B build -S . \
|
||||
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@ -438,12 +472,13 @@ jobs:
|
||||
cmake -B build2 -S . \
|
||||
-DCMAKE_C_COMPILER=hipcc \
|
||||
-DCMAKE_CXX_COMPILER=hipcc \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc3.1.0-devel-ubuntu22.04
|
||||
container: mthreads/musa:rc3.1.1-devel-ubuntu22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -490,7 +525,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@ -538,7 +573,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@ -566,6 +601,9 @@ jobs:
|
||||
-DGGML_SYCL_F16=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
build-linux-cross:
|
||||
uses: ./.github/workflows/build-linux-cross.yml
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
@ -593,6 +631,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@ -628,6 +667,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@ -636,6 +676,36 @@ jobs:
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
|
||||
macOS-latest-cmake-visionos:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_COMMON=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=1.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
|
||||
macOS-latest-swift:
|
||||
runs-on: macos-latest
|
||||
|
||||
@ -667,17 +737,17 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
sudo cmake --install build --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama-Package -destination "${{ matrix.destination }}"
|
||||
./build-xcframework.sh
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
@ -735,7 +805,7 @@ jobs:
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
VULKAN_VERSION: 1.3.261.1
|
||||
VULKAN_VERSION: 1.4.309.0
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@ -828,10 +898,17 @@ jobs:
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build-arm64-release --target install --config release
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build ${{ matrix.defines }}
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
@ -891,9 +968,10 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@ -919,7 +997,7 @@ jobs:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
run: |
|
||||
apt update
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
@ -1021,16 +1099,23 @@ jobs:
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
@ -1051,7 +1136,10 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@ -1106,6 +1194,8 @@ jobs:
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
@ -1165,6 +1255,11 @@ jobs:
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
@ -1186,19 +1281,29 @@ jobs:
|
||||
key: ${{ github.job }}
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
# TODO: reuse windows-latest-cmake-hip instead of duplicating this job
|
||||
windows-latest-cmake-hip-release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
runs-on: windows-latest
|
||||
@ -1214,6 +1319,11 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
@ -1235,18 +1345,27 @@ jobs:
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
@ -1268,7 +1387,10 @@ jobs:
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@ -1283,6 +1405,8 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@ -1291,6 +1415,7 @@ jobs:
|
||||
cmake -B build -G Xcode \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@ -1298,15 +1423,40 @@ jobs:
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
sudo cmake --install build --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama-Package -destination 'generic/platform=iOS'
|
||||
./build-xcframework.sh
|
||||
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
|
||||
name: llama-${{ steps.tag.outputs.name }}-xcframework
|
||||
|
||||
android-build:
|
||||
runs-on: ubuntu-latest
|
||||
@ -1345,8 +1495,10 @@ jobs:
|
||||
|
||||
needs:
|
||||
- ubuntu-cpu-cmake
|
||||
- ubuntu-22-cmake-vulkan
|
||||
- windows-latest-cmake
|
||||
- windows-2019-cmake-cuda
|
||||
- windows-latest-cmake-sycl
|
||||
- windows-latest-cmake-hip-release
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
@ -1619,7 +1771,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
cann:
|
||||
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
|
||||
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
|
||||
device:
|
||||
- 'ascend910b3'
|
||||
build:
|
||||
@ -1632,7 +1784,7 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
yum update -y
|
||||
yum install -y git gcc gcc-c++ make cmake
|
||||
yum install -y git gcc gcc-c++ make cmake libcurl-devel
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
|
14
.github/workflows/docker.yml
vendored
14
.github/workflows/docker.yml
vendored
@ -36,13 +36,13 @@ jobs:
|
||||
matrix:
|
||||
config:
|
||||
# Multi-stage build
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
|
||||
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v4
|
||||
@ -51,6 +51,8 @@ jobs:
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
with:
|
||||
image: tonistiigi/binfmt:qemu-v7.0.0-28
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
2
.github/workflows/labeler.yml
vendored
2
.github/workflows/labeler.yml
vendored
@ -11,7 +11,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "ggerganov/llama.cpp"
|
||||
repository: "ggml-org/llama.cpp"
|
||||
- uses: actions/labeler@v5
|
||||
with:
|
||||
configuration-path: '.github/labeler.yml'
|
||||
|
20
.github/workflows/server.yml
vendored
20
.github/workflows/server.yml
vendored
@ -129,7 +129,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_OPENMP=OFF ;
|
||||
@ -142,7 +141,6 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
@ -154,13 +152,14 @@ jobs:
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
./tests.sh
|
||||
@ -193,17 +192,14 @@ jobs:
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
env:
|
||||
CURL_VERSION: 8.6.0_6
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
|
||||
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
@ -219,8 +215,10 @@ jobs:
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -45,6 +45,8 @@ lcov-report/
|
||||
tags
|
||||
.build/
|
||||
build*
|
||||
release
|
||||
debug
|
||||
!build-info.cmake
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
@ -98,6 +100,7 @@ examples/server/*.css.hpp
|
||||
examples/server/*.html.hpp
|
||||
examples/server/*.js.hpp
|
||||
examples/server/*.mjs.hpp
|
||||
examples/server/*.gz.hpp
|
||||
!build_64.sh
|
||||
!examples/*.bat
|
||||
!examples/*/*.kts
|
||||
|
61
AUTHORS
61
AUTHORS
@ -1,4 +1,4 @@
|
||||
# date: Tue Feb 4 13:04:05 EET 2025
|
||||
# date: Sat Mar 8 18:23:52 EET 2025
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0cc4m <picard12@live.de>
|
||||
@ -8,10 +8,12 @@
|
||||
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
|
||||
44670 <44670@users.noreply.github.com>
|
||||
65a <10104049+65a@users.noreply.github.com>
|
||||
708-145 <40387547+708-145@users.noreply.github.com>
|
||||
AN Long <aisk@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
Aaron Miller <apage43@ninjawhale.com>
|
||||
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
|
||||
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
|
||||
Abheek Gulati <abheekg@hotmail.com>
|
||||
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
|
||||
@ -20,6 +22,7 @@ Adithya Balaji <adithya.b94@gmail.com>
|
||||
AdithyanI <adithyan.i4internet@gmail.com>
|
||||
Adrian <smith.adriane@gmail.com>
|
||||
Adrian Hesketh <a-h@users.noreply.github.com>
|
||||
Adrian Kretz <me@akretz.com>
|
||||
Adrien Gallouët <adrien@gallouet.fr>
|
||||
Adrien Gallouët <angt@huggingface.co>
|
||||
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
|
||||
@ -28,15 +31,18 @@ AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
AidanBeltonS <aidan.belton@codeplay.com>
|
||||
Aisuko <urakiny@gmail.com>
|
||||
Akarshan Biswas <akarshan.biswas@gmail.com>
|
||||
Akarshan Biswas <akarshan@menlo.ai>
|
||||
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
|
||||
Al Mochkin <14274697+amochkin@users.noreply.github.com>
|
||||
Albert Jin <albert.jin@gmail.com>
|
||||
Alberto <57916483+albbus-stack@users.noreply.github.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
|
||||
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
|
||||
Alex <awhill19@icloud.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Azarov <alexander.azarov@mapbox.com>
|
||||
Alex Brooks <alex.brooks@ibm.com>
|
||||
Alex Klinkhamer <from.github.com.917@grencez.dev>
|
||||
Alex Klinkhamer <git@grencez.dev>
|
||||
Alex Nguyen <tiendung@users.noreply.github.com>
|
||||
@ -67,6 +73,7 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
|
||||
Andy Salerno <andysalerno@gmail.com>
|
||||
Andy Tai <andy-tai@users.noreply.github.com>
|
||||
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
|
||||
Antoine Viallon <antoine@lesviallon.fr>
|
||||
Antonis Makropoulos <benuix@gmail.com>
|
||||
Arik Poznanski <arikpoz@users.noreply.github.com>
|
||||
Armen Kaleshian <kriation@users.noreply.github.com>
|
||||
@ -83,6 +90,7 @@ Atsushi Tatsuma <yoshoku@outlook.com>
|
||||
Austin <77757836+teleprint-me@users.noreply.github.com>
|
||||
AustinMroz <austinmroz@utexas.edu>
|
||||
BADR <contact@pythops.com>
|
||||
BB-fat <45072480+BB-fat@users.noreply.github.com>
|
||||
Bach Le <bach@bullno1.com>
|
||||
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
|
||||
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
|
||||
@ -101,6 +109,7 @@ Bert Wagner <github@bertwagner.com>
|
||||
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
|
||||
Bingan <70050083+binganao@users.noreply.github.com>
|
||||
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
|
||||
Bodhi <3882561+BodhiHu@users.noreply.github.com>
|
||||
Bodo Graumann <mail@bodograumann.de>
|
||||
Bono Lv <lvscar@users.noreply.github.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
@ -128,6 +137,7 @@ CentricStorm <CentricStorm@users.noreply.github.com>
|
||||
Chad Brewbaker <crb002@gmail.com>
|
||||
Changyeon Kim <cyzero.kim@samsung.com>
|
||||
Chao Jiang <jc19chaoj@zoho.com>
|
||||
Charles Duffy <charles@dyfis.net>
|
||||
Charles Xu <63788048+chaxu01@users.noreply.github.com>
|
||||
Charles Xu <charles.xu@arm.com>
|
||||
Chen Xi <xi2.chen@intel.com>
|
||||
@ -139,12 +149,14 @@ Chris Kuehl <ckuehl@ckuehl.me>
|
||||
Christian Demsar <christian@github.email.demsar.us>
|
||||
Christian Demsar <crasm@git.vczf.us>
|
||||
Christian Falch <875252+chrfalch@users.noreply.github.com>
|
||||
Christian Fillion <cfillion@users.noreply.github.com>
|
||||
Christian Kastner <ckk@kvr.at>
|
||||
Christian Kögler <ck3d@gmx.de>
|
||||
Christian Köhnenkamp <cvk5@me.com>
|
||||
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
|
||||
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
|
||||
Clark Saben <76020733+csaben@users.noreply.github.com>
|
||||
Clauszy <zhangyub@uniontech.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Conrad Kramer <conrad@conradkramer.com>
|
||||
Corentin REGAL <corentin.regal@gmail.com>
|
||||
@ -163,6 +175,7 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
|
||||
Daniel Illescas Romero <illescas.daniel@protonmail.com>
|
||||
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
|
||||
Daniele <57776841+daniandtheweb@users.noreply.github.com>
|
||||
Danny Milosavljevic <dannym@friendly-machines.com>
|
||||
DannyDaemonic <DannyDaemonic@gmail.com>
|
||||
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
|
||||
Dave <dave-fl@users.noreply.github.com>
|
||||
@ -170,6 +183,7 @@ Dave Airlie <airlied@gmail.com>
|
||||
Dave Airlie <airlied@redhat.com>
|
||||
Dave Della Costa <ddellacosta+github@gmail.com>
|
||||
David Friehs <david@friehs.info>
|
||||
David Huang <1969802+hjc4869@users.noreply.github.com>
|
||||
David Kennedy <dakennedyd@gmail.com>
|
||||
David Pflug <david@pflug.email>
|
||||
David Renshaw <dwrenshaw@gmail.com>
|
||||
@ -236,6 +250,7 @@ Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
Firat <firatkiral@gmail.com>
|
||||
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
|
||||
Florent BENOIT <fbenoit@redhat.com>
|
||||
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
|
||||
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
|
||||
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
|
||||
@ -254,6 +269,7 @@ Gary Mulder <gjmulder@gmail.com>
|
||||
Gavin Zhao <gavinzhaojw@protonmail.com>
|
||||
Genkagaku.GPT <hlhr202@163.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
Gian-Carlo Pascutto <gcp@sjeng.org>
|
||||
Gilad S <giladgd@users.noreply.github.com>
|
||||
Gilad S. <7817232+giladgd@users.noreply.github.com>
|
||||
Giuseppe Scrivano <giuseppe@scrivano.org>
|
||||
@ -267,7 +283,9 @@ Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
|
||||
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
|
||||
Haggai Nuchi <h.nuchi@gmail.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
Hale Chan <halechan@qq.com>
|
||||
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
|
||||
Han Yin <han.yin@arm.com>
|
||||
HanishKVC <hanishkvc@gmail.com>
|
||||
Haohui Mai <ricetons@gmail.com>
|
||||
Haoxiang Fei <tonyfettes@tonyfettes.com>
|
||||
@ -278,6 +296,7 @@ Haus1 <haus.xda@gmail.com>
|
||||
Henk Poley <HenkPoley@gmail.com>
|
||||
Henri Vasserman <henv@hot.ee>
|
||||
Henrik Forstén <henrik.forsten@gmail.com>
|
||||
Henry Linjamäki <henry.linjamaki@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
Hesen Peng <hesen.peng@gmail.com>
|
||||
HimariO <dsfhe49854@gmail.com>
|
||||
@ -307,6 +326,7 @@ Ivan <nekotekina@gmail.com>
|
||||
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
|
||||
Ivan Komarov <Ivan.Komarov@dfyz.info>
|
||||
Ivan Stepanov <ivanstepanovftw@gmail.com>
|
||||
JC <43374599+MrSMlT@users.noreply.github.com>
|
||||
JFLFY2255 <JFLFY2255@163.com>
|
||||
JH23X <165871467+JH23X@users.noreply.github.com>
|
||||
Jack Mousseau <jack@software.inc>
|
||||
@ -325,6 +345,7 @@ Jan Ploski <jpl@plosquare.com>
|
||||
Jannis Schönleber <joennlae@gmail.com>
|
||||
Jared Van Bortel <cebtenzzre@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jason C.H <ctrysbita@outlook.com>
|
||||
Jason McCartney <jmac@theroot.org>
|
||||
Jason Stillerman <jason.t.stillerman@gmail.com>
|
||||
Jean-Christophe Hoelt <hoelt@fovea.cc>
|
||||
@ -342,6 +363,7 @@ Jiahao Li <liplus17@163.com>
|
||||
Jian Liao <jianliao@users.noreply.github.com>
|
||||
JidongZhang-THU <1119708529@qq.com>
|
||||
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
|
||||
Jinyang He <hejinyang@loongson.cn>
|
||||
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
|
||||
Jiří Sejkora <Sejseloid@gmail.com>
|
||||
Joan Fontanals <jfontanalsmartinez@gmail.com>
|
||||
@ -379,6 +401,7 @@ Justine Tunney <jtunney@mozilla.com>
|
||||
Juuso Alasuutari <juuso.alasuutari@gmail.com>
|
||||
KASR <karim.asrih@gmail.com>
|
||||
Kamil Tomšík <info@tomsik.cz>
|
||||
Kante Yin <kerthcet@gmail.com>
|
||||
Karol Kontny <82021046+kkontny@users.noreply.github.com>
|
||||
Karsten Weiss <knweiss@gmail.com>
|
||||
Karthick <j.karthic2004@gmail.com>
|
||||
@ -419,6 +442,7 @@ LoganDark <github@logandark.mozmail.com>
|
||||
Loïc Carrère <loic.carrere@gmail.com>
|
||||
LostRuins <39025047+LostRuins@users.noreply.github.com>
|
||||
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
|
||||
Lucas Moura Belo <lucas.belo@live.com>
|
||||
Luciano <lucianostrika44@gmail.com>
|
||||
Luo Tian <lt@basecity.com>
|
||||
Lyle Dean <dean@lyle.dev>
|
||||
@ -463,6 +487,7 @@ Matthew Tejo <matthew.tejo@gmail.com>
|
||||
Matvey Soloviev <blackhole89@gmail.com>
|
||||
Max Krasnyansky <max.krasnyansky@gmail.com>
|
||||
Max Krasnyansky <quic_maxk@quicinc.com>
|
||||
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
|
||||
Maxime <672982+maximegmd@users.noreply.github.com>
|
||||
Maximilian Winter <maximilian.winter.91@gmail.com>
|
||||
Meng Zhang <meng@tabbyml.com>
|
||||
@ -494,6 +519,7 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
|
||||
Molly Sophia <mollysophia379@gmail.com>
|
||||
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
|
||||
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
Musab Gultekin <musabgultekin@users.noreply.github.com>
|
||||
@ -524,6 +550,7 @@ Nikolas <127742645+nneubacher@users.noreply.github.com>
|
||||
Nindaleth <Nindaleth@users.noreply.github.com>
|
||||
Nuno <rare-magma@posteo.eu>
|
||||
OSecret <135510162+OLSecret@users.noreply.github.com>
|
||||
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
|
||||
Oleksandr Nikitin <oleksandr@tvori.info>
|
||||
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
|
||||
Olivier Chafik <ochafik@users.noreply.github.com>
|
||||
@ -533,6 +560,7 @@ PAB <pierreantoine.bannier@gmail.com>
|
||||
Pablo Duboue <pablo.duboue@gmail.com>
|
||||
Pascal Patry <ppatry@mtacitlabs.com>
|
||||
Patrice Ferlet <metal3d@gmail.com>
|
||||
Patrick Peng <retr0@retr0.blog>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Pavel Zloi <github.com@drteam.rocks>
|
||||
Pavol Rusnak <pavol@rusnak.io>
|
||||
@ -549,6 +577,7 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
|
||||
Plamen Minev <pacominev@gmail.com>
|
||||
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
PureJourney <edward.pong@qq.com>
|
||||
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
|
||||
Qingyou Meng <meng.qingyou@gmail.com>
|
||||
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
|
||||
@ -564,14 +593,17 @@ Rand Xie <randxiexyy29@gmail.com>
|
||||
Randall Fitzgerald <randall@dasaku.net>
|
||||
Random Fly <renfei8@live.cn>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Rémy O <remyoudompheng@gmail.com>
|
||||
Rémy Oudompheng <oudomphe@phare.normalesup.org>
|
||||
Ren Xuancheng <jklj077@users.noreply.github.com>
|
||||
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
|
||||
Reza Kakhki <rezakakhki.de@gmail.com>
|
||||
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Riccardo Orlando <Riccorl@users.noreply.github.com>
|
||||
Riceball LEE <snowyu.lee@gmail.com>
|
||||
Rich Dougherty <rich@rd.nz>
|
||||
Richard <r-burton@hotmail.co.uk>
|
||||
Richard Kiss <him@richardkiss.com>
|
||||
Richard Roberson <richardr1126@gmail.com>
|
||||
Rick G <26732651+TheFlipbook@users.noreply.github.com>
|
||||
@ -588,6 +620,7 @@ Robert Sung-wook Shin <edp1096@users.noreply.github.com>
|
||||
Robey Holderith <robey@flaminglunchbox.net>
|
||||
Robyn <robyngraf@users.noreply.github.com>
|
||||
Roger Meier <r.meier@siemens.com>
|
||||
Rohanjames1997 <rohan.james4@gmail.com>
|
||||
Roland <14355895+rbur0425@users.noreply.github.com>
|
||||
Romain Biessy <romain.biessy@codeplay.com>
|
||||
Romain D <90720+Artefact2@users.noreply.github.com>
|
||||
@ -610,6 +643,7 @@ Ryan Landay <rlanday@gmail.com>
|
||||
Ryder Wishart <ryderwishart@gmail.com>
|
||||
Ryuei <louixs@users.noreply.github.com>
|
||||
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
|
||||
SAMI <samuel.koesnadi@stud.uni-due.de>
|
||||
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
|
||||
SXX <sxx1136965276@gmail.com>
|
||||
SakuraUmi <yukinon244@gmail.com>
|
||||
@ -634,6 +668,8 @@ Shane A <shanea@allenai.org>
|
||||
Shangning Xu <32517059+xushangning@users.noreply.github.com>
|
||||
Shankar <gshankar.87@gmail.com>
|
||||
Shanshan Shen <467638484@qq.com>
|
||||
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
|
||||
Sheldon Robinson <sheldon.robinson@live.com>
|
||||
Shijie <821898965@qq.com>
|
||||
Shintarou Okada <kokuzen@gmail.com>
|
||||
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
|
||||
@ -713,18 +749,24 @@ Victor Nogueira <felladrin@gmail.com>
|
||||
Victor Z. Peng <ziliangdotme@gmail.com>
|
||||
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
|
||||
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
|
||||
Vitali Lovich <vlovich+github@gmail.com>
|
||||
Vivian <vynride@gmail.com>
|
||||
Vlad <spitfireage@gmail.com>
|
||||
Vladimir <bogdad@gmail.com>
|
||||
Vladimir Malyutin <first-leon@yandex.ru>
|
||||
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
|
||||
Vladimir Zorin <vladimir@deviant.guru>
|
||||
VoidIsVoid <343750470@qq.com>
|
||||
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
|
||||
Wagner Bruna <wbruna@users.noreply.github.com>
|
||||
Wang Qin <37098874+wangqin0@users.noreply.github.com>
|
||||
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
|
||||
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
|
||||
Weird Constructor <weirdconstructor@gmail.com>
|
||||
Weizhao Ouyang <o451686892@gmail.com>
|
||||
Welby Seely <welbyseely@gmail.com>
|
||||
Wentai Zhang <rchardx@gmail.com>
|
||||
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
|
||||
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
|
||||
William Tambellini <william.tambellini@gmail.com>
|
||||
William Tambellini <wtambellini@sdl.com>
|
||||
@ -816,6 +858,8 @@ chaihahaha <chai836275709@gmail.com>
|
||||
chiranko <96988916+chiranko@users.noreply.github.com>
|
||||
clibdev <52199778+clibdev@users.noreply.github.com>
|
||||
clyang <clyang@clyang.net>
|
||||
cmdr2 <secondary.cmdr2@gmail.com>
|
||||
cmdr2 <shashank.shekhar.global@gmail.com>
|
||||
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
|
||||
codezjx <code.zjx@gmail.com>
|
||||
coezbek <c.oezbek@gmail.com>
|
||||
@ -835,6 +879,7 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
|
||||
devojony <61173062+devojony@users.noreply.github.com>
|
||||
ditsuke <ditsuke@protonmail.com>
|
||||
divinity76 <divinity76@gmail.com>
|
||||
dm4 <dm4@secondstate.io>
|
||||
dm4 <sunrisedm4@gmail.com>
|
||||
dotpy314 <33351922+dotpy314@users.noreply.github.com>
|
||||
drbh <david.richard.holtz@gmail.com>
|
||||
@ -849,6 +894,7 @@ fairydreaming <166155368+fairydreaming@users.noreply.github.com>
|
||||
fengerhu1 <2748250768@qq.com>
|
||||
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
|
||||
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
|
||||
gliptic <gliptic@users.noreply.github.com>
|
||||
gn64 <yukikaze.jp@gmail.com>
|
||||
@ -873,6 +919,7 @@ hydai <z54981220@gmail.com>
|
||||
iSma <ismail.senhaji@gmail.com>
|
||||
iacore <74560659+iacore@users.noreply.github.com>
|
||||
icppWorld <124377669+icppWorld@users.noreply.github.com>
|
||||
igardev <49397134+igardev@users.noreply.github.com>
|
||||
igarnier <igarnier@protonmail.com>
|
||||
intelmatt <61025942+intelmatt@users.noreply.github.com>
|
||||
iohub <rickyang.pro@gmail.com>
|
||||
@ -880,6 +927,7 @@ issixx <46835150+issixx@users.noreply.github.com>
|
||||
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
|
||||
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
|
||||
jameswu2014 <545426914@qq.com>
|
||||
jason_w <jason.wang@126.com>
|
||||
jdomke <28772296+jdomke@users.noreply.github.com>
|
||||
jiahao su <damow890@gmail.com>
|
||||
jiez <373447296@qq.com>
|
||||
@ -891,6 +939,7 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
|
||||
jp-x-g <jpxg-dev@protonmail.com>
|
||||
jukofyork <69222624+jukofyork@users.noreply.github.com>
|
||||
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
|
||||
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
|
||||
jwj7140 <32943891+jwj7140@users.noreply.github.com>
|
||||
k.h.lai <adrian.k.h.lai@outlook.com>
|
||||
kaizau <kaizau@users.noreply.github.com>
|
||||
@ -925,6 +974,7 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
|
||||
luoyu-intel <yu.luo@intel.com>
|
||||
m3ndax <adrian.goessl@outlook.com>
|
||||
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
|
||||
magicse <magicse@users.noreply.github.com>
|
||||
mahorozte <41834471+mahorozte@users.noreply.github.com>
|
||||
makomk <makosoft@googlemail.com>
|
||||
manikbhandari <mbbhandarimanik2@gmail.com>
|
||||
@ -935,6 +985,7 @@ matt23654 <matthew.webber@protonmail.com>
|
||||
matteo <matteogeniaccio@yahoo.it>
|
||||
mdrokz <mohammadmunshi@gmail.com>
|
||||
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
|
||||
midnight <midnightmagic@users.noreply.github.com>
|
||||
minarchist <minarchist@users.noreply.github.com>
|
||||
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
|
||||
mmyjona <jonathan.gonse@gmail.com>
|
||||
@ -958,10 +1009,12 @@ omahs <73983677+omahs@users.noreply.github.com>
|
||||
oobabooga <112222186+oobabooga@users.noreply.github.com>
|
||||
opparco <parco.opaai@gmail.com>
|
||||
ostix360 <55257054+ostix360@users.noreply.github.com>
|
||||
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
|
||||
pculliton <phillipculliton@gmail.com>
|
||||
peidaqi <peidaqi@gmail.com>
|
||||
pengxin99 <pengxin.yuan@intel.com>
|
||||
perserk <perserk@gmail.com>
|
||||
petterreinholdtsen <pere-github@hungry.com>
|
||||
piDack <104877312+piDack@users.noreply.github.com>
|
||||
pmysl <piotr.myslinski@outlook.com>
|
||||
postmasters <namnguyen@google.com>
|
||||
@ -983,6 +1036,7 @@ semidark <me@semidark.net>
|
||||
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
|
||||
sharpHL <132747147+sharpHL@users.noreply.github.com>
|
||||
shibe2 <shibe@tuta.io>
|
||||
simon886212 <37953122+simon886212@users.noreply.github.com>
|
||||
singularity <12184989+singularity-s0@users.noreply.github.com>
|
||||
sjinzh <sjinzh@gmail.com>
|
||||
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
|
||||
@ -1000,10 +1054,12 @@ tarcey <cey.tarik@gmail.com>
|
||||
tc-mb <157115220+tc-mb@users.noreply.github.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thement <40525767+thement@users.noreply.github.com>
|
||||
theraininsky <76763719+theraininsky@users.noreply.github.com>
|
||||
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
|
||||
tjohnman <tjohnman@users.noreply.github.com>
|
||||
toyer <2042519524@qq.com>
|
||||
tslmy <tslmy@users.noreply.github.com>
|
||||
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
|
||||
ubik2 <ubik2@users.noreply.github.com>
|
||||
uint256_t <konndennsa@gmail.com>
|
||||
uint256_t <maekawatoshiki1017@gmail.com>
|
||||
@ -1014,6 +1070,7 @@ valiray <133289098+valiray@users.noreply.github.com>
|
||||
vb <vaibhavs10@gmail.com>
|
||||
vik <vikhyatk@gmail.com>
|
||||
viric <viric@viric.name>
|
||||
vmobilis <75476228+vmobilis@users.noreply.github.com>
|
||||
vodkaslime <646329483@qq.com>
|
||||
vvhg1 <94630311+vvhg1@users.noreply.github.com>
|
||||
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
|
||||
@ -1028,6 +1085,8 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
|
||||
xaedes <xaedes@gmail.com>
|
||||
xaedes <xaedes@googlemail.com>
|
||||
xctan <axunlei@gmail.com>
|
||||
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
|
||||
xiaofei <hbuxiaofei@gmail.com>
|
||||
xloem <0xloem@gmail.com>
|
||||
yangli2 <yangli2@gmail.com>
|
||||
ymcki <84055651+ymcki@users.noreply.github.com>
|
||||
|
@ -29,6 +29,8 @@ else()
|
||||
set(LLAMA_STANDALONE OFF)
|
||||
endif()
|
||||
|
||||
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
|
||||
@ -79,7 +81,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
|
||||
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
@ -145,7 +147,13 @@ endif()
|
||||
# 3rd-party
|
||||
#
|
||||
|
||||
if (NOT TARGET ggml)
|
||||
if (LLAMA_USE_SYSTEM_GGML)
|
||||
message(STATUS "Using system-provided libggml, skipping ggml build")
|
||||
find_package(ggml REQUIRED)
|
||||
add_library(ggml ALIAS ggml::ggml)
|
||||
endif()
|
||||
|
||||
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
@ -160,6 +168,11 @@ add_subdirectory(src)
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
if (NOT LLAMA_BUILD_COMMON)
|
||||
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
|
||||
set(LLAMA_CURL OFF)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
@ -234,3 +247,20 @@ configure_file(cmake/llama.pc.in
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
|
||||
|
||||
#
|
||||
# copy the license files
|
||||
#
|
||||
|
||||
# Check if running in GitHub Actions
|
||||
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
|
||||
message(STATUS "Running inside GitHub Actions - copying license files")
|
||||
|
||||
# Copy all files from licenses/ to build/bin/
|
||||
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
|
||||
foreach(LICENSE_FILE ${LICENSE_FILES})
|
||||
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
|
||||
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
|
@ -1,10 +1,12 @@
|
||||
# Pull requests (for contributors)
|
||||
|
||||
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
|
||||
- Test your changes:
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
|
||||
@ -12,7 +14,7 @@
|
||||
|
||||
- Squash-merge PRs
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
|
||||
|
||||
# Coding guidelines
|
||||
@ -37,17 +39,17 @@
|
||||
|
||||
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
|
||||
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
|
||||
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||

|
||||
|
||||
# Naming guidelines
|
||||
|
||||
- Use `snake_case` for function, variable and type names
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggml-org/ggml/pull/302#discussion_r1243240963)
|
||||
|
||||
```cpp
|
||||
// not OK
|
||||
@ -122,4 +124,4 @@
|
||||
|
||||
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
|
||||
|
||||
https://github.com/ggerganov/llama.cpp/projects
|
||||
https://github.com/ggml-org/llama.cpp/projects
|
||||
|
26
Makefile
26
Makefile
@ -1,5 +1,5 @@
|
||||
ifndef LLAMA_MAKEFILE
|
||||
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
endif
|
||||
|
||||
# Define the default target now so that it is always the first target
|
||||
@ -463,7 +463,7 @@ endif
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
# https://github.com/ggml-org/llama.cpp/issues/2922
|
||||
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
|
||||
@ -680,6 +680,10 @@ ifdef GGML_CUDA_CCBIN
|
||||
MK_NVCCFLAGS += -ccbin $(GGML_CUDA_CCBIN)
|
||||
endif # GGML_CUDA_CCBIN
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
@ -800,6 +804,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
HIPFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
|
||||
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
|
||||
@ -828,7 +836,7 @@ ifdef GGML_MUSA
|
||||
else
|
||||
MUSA_PATH ?= /opt/musa
|
||||
endif
|
||||
MUSA_ARCHITECTURES ?= 21;22
|
||||
MUSA_ARCHITECTURES ?= 21;22;31
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
|
||||
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
|
||||
@ -847,7 +855,7 @@ ifdef GGML_MUSA
|
||||
CXX := $(MUSA_PATH)/bin/clang++
|
||||
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
|
||||
|
||||
MUSAFLAGS = -x musa -mtgpu
|
||||
MUSAFLAGS = -fsigned-char -x musa -mtgpu
|
||||
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
@ -876,6 +884,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
@ -1078,8 +1090,8 @@ endif
|
||||
ifdef REMOVE_WARNING
|
||||
$(info !!! REMOVAL WARNING !!!)
|
||||
$(info The following LLAMA_ options have been removed and are no longer supported)
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggml-org/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggml-org/llama.cpp/pull/9418))
|
||||
$(info )
|
||||
endif
|
||||
|
||||
@ -1364,7 +1376,7 @@ llama-server: \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
common/chat.cpp \
|
||||
common/chat.hpp \
|
||||
common/chat.h \
|
||||
common/chat-template.hpp \
|
||||
common/json.hpp \
|
||||
common/minja.hpp \
|
||||
|
@ -1,19 +0,0 @@
|
||||
// swift-tools-version:5.5
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
],
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
targets: [
|
||||
.systemLibrary(name: "llama", pkgConfig: "llama"),
|
||||
]
|
||||
)
|
109
README.md
109
README.md
@ -3,26 +3,26 @@
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
## Recent API changes
|
||||
|
||||
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
|
||||
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggml-org/llama.cpp/issues/9291)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggerganov/llama.cpp/pull/11427
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- Universal tool call support in `llama-server`: https://github.com/ggerganov/llama.cpp/pull/9639
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
|
||||
----
|
||||
|
||||
@ -39,7 +39,7 @@ range of hardware - locally and in the cloud.
|
||||
- Vulkan and SYCL backend support
|
||||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||||
|
||||
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggml-org/ggml) library.
|
||||
|
||||
<details>
|
||||
<summary>Models</summary>
|
||||
@ -59,23 +59,23 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423)
|
||||
- [X] [BERT](https://github.com/ggml-org/llama.cpp/pull/5423)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
|
||||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Starcoder models](https://github.com/ggml-org/llama.cpp/pull/3187)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [X] [MPT](https://github.com/ggml-org/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggml-org/llama.cpp/pull/3553)
|
||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||
- [X] [StableLM models](https://huggingface.co/stabilityai)
|
||||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||||
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
|
||||
- [x] [PLaMo-13B](https://github.com/ggml-org/llama.cpp/pull/3557)
|
||||
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
|
||||
- [x] [PhiMoE](https://github.com/ggerganov/llama.cpp/pull/11003)
|
||||
- [x] [PhiMoE](https://github.com/ggml-org/llama.cpp/pull/11003)
|
||||
- [x] [GPT-2](https://huggingface.co/gpt2)
|
||||
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
|
||||
- [x] [Orion 14B](https://github.com/ggml-org/llama.cpp/pull/5118)
|
||||
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
@ -97,6 +97,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
|
||||
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
|
||||
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
|
||||
- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
|
||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
@ -105,6 +106,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
|
||||
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
|
||||
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
|
||||
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
@ -146,10 +149,11 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggml-org/llama.cpp/pull/6326)
|
||||
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
|
||||
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
|
||||
|
||||
</details>
|
||||
|
||||
@ -164,6 +168,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
|
||||
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
|
||||
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
|
||||
- [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT)
|
||||
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
|
||||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||||
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
|
||||
@ -212,7 +217,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
|
||||
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
|
||||
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
|
||||
|
||||
- [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
@ -235,6 +240,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [HIP](docs/build.md#hip) | AMD GPU |
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
|
||||
|
||||
## Building the project
|
||||
|
||||
@ -244,7 +251,7 @@ The project also includes many example programs and tools using the `llama` libr
|
||||
- Clone this repository and build locally, see [how to build](docs/build.md)
|
||||
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
|
||||
- Use a Docker image, see [documentation for Docker](docs/docker.md)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
@ -253,18 +260,20 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
|
||||
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
|
||||
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
|
||||
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
|
||||
|
||||
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
|
||||
|
||||
After downloading a model, use the CLI tools to run it locally - see below.
|
||||
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggml-org/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
|
||||
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
|
||||
|
||||
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
|
||||
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
|
||||
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggml-org/llama.cpp/discussions/10123)
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
|
||||
|
||||
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
|
||||
|
||||
@ -487,9 +496,9 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
|
||||
- Collaborators will be invited based on contributions
|
||||
- Any help with managing issues, PRs and projects is very appreciated!
|
||||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggml-org/llama.cpp/discussions/205)
|
||||
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
||||
|
||||
## Other documentation
|
||||
@ -504,7 +513,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
- [Running on Docker](docs/docker.md)
|
||||
- [Build on Android](docs/android.md)
|
||||
- [Performance troubleshooting](docs/development/token_generation_performance_tips.md)
|
||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
- [GGML tips & tricks](https://github.com/ggml-org/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
|
||||
#### Seminal papers and background on the models
|
||||
|
||||
@ -518,5 +527,47 @@ If your issue is with model generation quality, then please at least scan the fo
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
#### References
|
||||
## XCFramework
|
||||
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
|
||||
and macOS. It can be used in Swift projects without the need to compile the
|
||||
library from source. For example:
|
||||
```swift
|
||||
// swift-tools-version: 5.10
|
||||
// The swift-tools-version declares the minimum version of Swift required to build this package.
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "MyLlamaPackage",
|
||||
targets: [
|
||||
.executableTarget(
|
||||
name: "MyLlamaPackage",
|
||||
dependencies: [
|
||||
"LlamaFramework"
|
||||
]),
|
||||
.binaryTarget(
|
||||
name: "LlamaFramework",
|
||||
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
|
||||
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
|
||||
)
|
||||
]
|
||||
)
|
||||
```
|
||||
The above example is using an intermediate build `b5046` of the library. This can be modified
|
||||
to use a different version by changing the URL and checksum.
|
||||
|
||||
## Completions
|
||||
Command-line completion is available for some environments.
|
||||
|
||||
#### Bash Completion
|
||||
```bash
|
||||
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
|
||||
$ source ~/.llama-completion.bash
|
||||
```
|
||||
Optionally this can be added to your `.bashrc` or `.bash_profile` to load it
|
||||
automatically. For example:
|
||||
```console
|
||||
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc
|
||||
```
|
||||
|
||||
## References
|
||||
|
@ -62,6 +62,6 @@ Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-
|
||||
<!-- normal version -->
|
||||
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
|
||||
|
||||
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
|
||||
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
|
||||
|
||||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
||||
|
@ -1,4 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <llama.h>
|
||||
|
@ -1,5 +0,0 @@
|
||||
module llama [system] {
|
||||
header "llama.h"
|
||||
link "llama"
|
||||
export *
|
||||
}
|
538
build-xcframework.sh
Executable file
538
build-xcframework.sh
Executable file
@ -0,0 +1,538 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Options
|
||||
IOS_MIN_OS_VERSION=16.4
|
||||
MACOS_MIN_OS_VERSION=13.3
|
||||
VISIONOS_MIN_OS_VERSION=1.0
|
||||
TVOS_MIN_OS_VERSION=16.4
|
||||
|
||||
BUILD_SHARED_LIBS=OFF
|
||||
LLAMA_BUILD_EXAMPLES=OFF
|
||||
LLAMA_BUILD_TESTS=OFF
|
||||
LLAMA_BUILD_SERVER=OFF
|
||||
GGML_METAL=ON
|
||||
GGML_METAL_EMBED_LIBRARY=ON
|
||||
GGML_BLAS_DEFAULT=ON
|
||||
GGML_METAL_USE_BF16=ON
|
||||
GGML_OPENMP=OFF
|
||||
|
||||
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
|
||||
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
|
||||
|
||||
# Common options for all builds
|
||||
COMMON_CMAKE_ARGS=(
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
|
||||
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
|
||||
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
|
||||
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
|
||||
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
|
||||
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
|
||||
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
|
||||
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
|
||||
-DGGML_METAL=${GGML_METAL}
|
||||
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
|
||||
-DGGML_NATIVE=OFF
|
||||
-DGGML_OPENMP=${GGML_OPENMP}
|
||||
)
|
||||
|
||||
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
|
||||
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
|
||||
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
|
||||
echo "Detected Xcode version: $XCODE_VERSION"
|
||||
|
||||
check_required_tool() {
|
||||
local tool=$1
|
||||
local install_message=$2
|
||||
|
||||
if ! command -v $tool &> /dev/null; then
|
||||
echo "Error: $tool is required but not found."
|
||||
echo "$install_message"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
echo "Checking for required tools..."
|
||||
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
|
||||
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
|
||||
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
|
||||
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
|
||||
|
||||
set -e
|
||||
|
||||
## Clean up previous builds
|
||||
rm -rf build-apple
|
||||
rm -rf build-ios-sim
|
||||
rm -rf build-ios-device
|
||||
rm -rf build-macos
|
||||
rm -rf build-visionos
|
||||
rm -rf build-visionos-sim
|
||||
rm -rf build-tvos-sim
|
||||
rm -rf build-tvos-device
|
||||
|
||||
# Setup the xcframework build directory structure
|
||||
setup_framework_structure() {
|
||||
local build_dir=$1
|
||||
local min_os_version=$2
|
||||
local platform=$3 # "ios", "macos", "visionos", or "tvos"
|
||||
local framework_name="llama"
|
||||
|
||||
echo "Creating ${platform}-style framework structure for ${build_dir}"
|
||||
|
||||
if [[ "$platform" == "macos" ]]; then
|
||||
# macOS versioned structure uses versioned directories
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
|
||||
|
||||
# Create symbolic links
|
||||
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
|
||||
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
|
||||
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
|
||||
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
|
||||
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
|
||||
|
||||
# Set header and module paths
|
||||
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
|
||||
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
|
||||
else
|
||||
# iOS/VisionOS/tvOS use a flat structure
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
|
||||
|
||||
# Remove any existing structure to ensure clean build
|
||||
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
|
||||
|
||||
# Set header and module paths
|
||||
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
|
||||
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
|
||||
fi
|
||||
|
||||
# Copy all required headers (common for all platforms)
|
||||
cp include/llama.h ${header_path}
|
||||
cp ggml/include/ggml.h ${header_path}
|
||||
cp ggml/include/ggml-alloc.h ${header_path}
|
||||
cp ggml/include/ggml-backend.h ${header_path}
|
||||
cp ggml/include/ggml-metal.h ${header_path}
|
||||
cp ggml/include/ggml-cpu.h ${header_path}
|
||||
cp ggml/include/ggml-blas.h ${header_path}
|
||||
cp ggml/include/gguf.h ${header_path}
|
||||
|
||||
# Create module map (common for all platforms)
|
||||
cat > ${module_path}module.modulemap << EOF
|
||||
framework module llama {
|
||||
header "llama.h"
|
||||
header "ggml.h"
|
||||
header "ggml-alloc.h"
|
||||
header "ggml-backend.h"
|
||||
header "ggml-metal.h"
|
||||
header "ggml-cpu.h"
|
||||
header "ggml-blas.h"
|
||||
header "gguf.h"
|
||||
|
||||
link "c++"
|
||||
link framework "Accelerate"
|
||||
link framework "Metal"
|
||||
link framework "Foundation"
|
||||
|
||||
export *
|
||||
}
|
||||
EOF
|
||||
|
||||
# Platform-specific settings for Info.plist
|
||||
local platform_name=""
|
||||
local sdk_name=""
|
||||
local supported_platform=""
|
||||
|
||||
case "$platform" in
|
||||
"ios")
|
||||
platform_name="iphoneos"
|
||||
sdk_name="iphoneos${min_os_version}"
|
||||
supported_platform="iPhoneOS"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=' <key>UIDeviceFamily</key>
|
||||
<array>
|
||||
<integer>1</integer>
|
||||
<integer>2</integer>
|
||||
</array>'
|
||||
;;
|
||||
"macos")
|
||||
platform_name="macosx"
|
||||
sdk_name="macosx${min_os_version}"
|
||||
supported_platform="MacOSX"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
|
||||
local device_family=""
|
||||
;;
|
||||
"visionos")
|
||||
platform_name="xros"
|
||||
sdk_name="xros${min_os_version}"
|
||||
supported_platform="XRPlatform"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=""
|
||||
;;
|
||||
"tvos")
|
||||
platform_name="appletvos"
|
||||
sdk_name="appletvos${min_os_version}"
|
||||
supported_platform="AppleTVOS"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=' <key>UIDeviceFamily</key>
|
||||
<array>
|
||||
<integer>3</integer>
|
||||
</array>'
|
||||
;;
|
||||
esac
|
||||
|
||||
# Create Info.plist
|
||||
cat > ${plist_path} << EOF
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>CFBundleDevelopmentRegion</key>
|
||||
<string>en</string>
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>llama</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
<string>org.ggml.llama</string>
|
||||
<key>CFBundleInfoDictionaryVersion</key>
|
||||
<string>6.0</string>
|
||||
<key>CFBundleName</key>
|
||||
<string>llama</string>
|
||||
<key>CFBundlePackageType</key>
|
||||
<string>FMWK</string>
|
||||
<key>CFBundleShortVersionString</key>
|
||||
<string>1.0</string>
|
||||
<key>CFBundleVersion</key>
|
||||
<string>1</string>
|
||||
<key>MinimumOSVersion</key>
|
||||
<string>${min_os_version}</string>
|
||||
<key>CFBundleSupportedPlatforms</key>
|
||||
<array>
|
||||
<string>${supported_platform}</string>
|
||||
</array>${device_family}
|
||||
<key>DTPlatformName</key>
|
||||
<string>${platform_name}</string>
|
||||
<key>DTSDKName</key>
|
||||
<string>${sdk_name}</string>
|
||||
</dict>
|
||||
</plist>
|
||||
EOF
|
||||
}
|
||||
|
||||
# Create dynamic libraries from static libraries.
|
||||
combine_static_libraries() {
|
||||
local build_dir="$1"
|
||||
local release_dir="$2"
|
||||
local platform="$3" # "ios", "macos", "visionos", or "tvos"
|
||||
local is_simulator="$4"
|
||||
local base_dir="$(pwd)"
|
||||
local framework_name="llama"
|
||||
|
||||
# Determine output path based on platform
|
||||
local output_lib=""
|
||||
if [[ "$platform" == "macos" ]]; then
|
||||
# macOS uses versioned structure
|
||||
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
|
||||
else
|
||||
# iOS, visionOS, and tvOS use a directory flat structure
|
||||
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
|
||||
fi
|
||||
|
||||
local libs=(
|
||||
"${base_dir}/${build_dir}/src/${release_dir}/libllama.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
|
||||
)
|
||||
|
||||
# Create temporary directory for processing
|
||||
local temp_dir="${base_dir}/${build_dir}/temp"
|
||||
mkdir -p "${temp_dir}"
|
||||
|
||||
# Since we have multiple architectures libtool will find object files that do not
|
||||
# match the target architecture. We suppress these warnings.
|
||||
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
|
||||
|
||||
# Determine SDK, architectures, and install_name based on platform and simulator flag.
|
||||
local sdk=""
|
||||
local archs=""
|
||||
local min_version_flag=""
|
||||
local install_name=""
|
||||
|
||||
case "$platform" in
|
||||
"ios")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="iphonesimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
|
||||
else
|
||||
sdk="iphoneos"
|
||||
archs="arm64"
|
||||
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
"macos")
|
||||
sdk="macosx"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
|
||||
install_name="@rpath/llama.framework/Versions/Current/llama"
|
||||
;;
|
||||
"visionos")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="xrsimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
|
||||
else
|
||||
sdk="xros"
|
||||
archs="arm64"
|
||||
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
# Use flat structure for visionOS, same as iOS
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
"tvos")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="appletvsimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
|
||||
else
|
||||
sdk="appletvos"
|
||||
archs="arm64"
|
||||
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
esac
|
||||
|
||||
# Build architecture flags
|
||||
local arch_flags=""
|
||||
for arch in $archs; do
|
||||
arch_flags+=" -arch $arch"
|
||||
done
|
||||
|
||||
# Create dynamic library
|
||||
echo "Creating dynamic library for ${platform}."
|
||||
xcrun -sdk $sdk clang++ -dynamiclib \
|
||||
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
|
||||
$arch_flags \
|
||||
$min_version_flag \
|
||||
-Wl,-force_load,"${temp_dir}/combined.a" \
|
||||
-framework Foundation -framework Metal -framework Accelerate \
|
||||
-install_name "$install_name" \
|
||||
-o "${base_dir}/${output_lib}"
|
||||
|
||||
# Platform-specific post-processing for device builds
|
||||
if [[ "$is_simulator" == "false" ]]; then
|
||||
if command -v xcrun vtool &>/dev/null; then
|
||||
case "$platform" in
|
||||
"ios")
|
||||
echo "Marking binary as a framework binary for iOS..."
|
||||
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"visionos")
|
||||
echo "Marking binary as a framework binary for visionOS..."
|
||||
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
|
||||
echo "Xcode version greater than 16.2, using visionOS."
|
||||
VISION_OS_BUILD_VERSION="visionos"
|
||||
else
|
||||
echo "Xcode version less than or equal to 16.2, using xros."
|
||||
VISION_OS_BUILD_VERSION="xros"
|
||||
fi
|
||||
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"tvos")
|
||||
echo "Marking binary as a framework binary for tvOS..."
|
||||
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
esac
|
||||
else
|
||||
echo "Warning: vtool not found. Binary may not pass App Store validation."
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "Creating properly formatted dSYM..."
|
||||
# Create a separate directory for dSYMs for all platforms
|
||||
mkdir -p "${base_dir}/${build_dir}/dSYMs"
|
||||
|
||||
# iOS and visionOS style dSYM (flat structure)
|
||||
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
|
||||
# Generate dSYM in the dSYMs directory
|
||||
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
|
||||
|
||||
# Create a copy of the binary that will be stripped
|
||||
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
|
||||
|
||||
# Strip debug symbols from the copy
|
||||
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
|
||||
|
||||
# Replace the original with the stripped version
|
||||
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
|
||||
else
|
||||
# macOS style dSYM
|
||||
# First strip debug info to a separate file
|
||||
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
|
||||
|
||||
# Generate dSYM in the dSYMs directory
|
||||
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
|
||||
|
||||
# Replace original binary with stripped version
|
||||
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
|
||||
fi
|
||||
|
||||
# Remove any automatically generated dSYM files in the framework structure as they will
|
||||
# otherwise case Invalid Bundle Structure validation errors.
|
||||
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
|
||||
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
|
||||
rm -rf "${base_dir}/${output_lib}.dSYM"
|
||||
fi
|
||||
|
||||
# Clean up
|
||||
rm -rf "${temp_dir}"
|
||||
}
|
||||
|
||||
echo "Building for iOS simulator..."
|
||||
cmake -B build-ios-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
|
||||
-DIOS=ON \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_SYSROOT=iphonesimulator \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-sim --config Release -- -quiet
|
||||
|
||||
echo "Building for iOS devices..."
|
||||
cmake -B build-ios-device -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_SYSROOT=iphoneos \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-ios-device --config Release -- -quiet
|
||||
|
||||
echo "Building for macOS..."
|
||||
cmake -B build-macos -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-macos --config Release -- -quiet
|
||||
|
||||
echo "Building for visionOS..."
|
||||
cmake -B build-visionos -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_SYSROOT=xros \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos --config Release -- -quiet
|
||||
|
||||
echo "Building for visionOS simulator..."
|
||||
cmake -B build-visionos-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_SYSROOT=xrsimulator \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-visionos-sim --config Release -- -quiet
|
||||
|
||||
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
|
||||
echo "Building for tvOS simulator..."
|
||||
cmake -B build-tvos-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_SYSROOT=appletvsimulator \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DGGML_METAL=ON \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-sim --config Release -- -quiet
|
||||
|
||||
echo "Building for tvOS devices..."
|
||||
cmake -B build-tvos-device -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_SYSROOT=appletvos \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DGGML_METAL=ON \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-S .
|
||||
cmake --build build-tvos-device --config Release -- -quiet
|
||||
|
||||
# Setup frameworks and copy binaries and headers
|
||||
echo "Setting up framework structures..."
|
||||
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
|
||||
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
|
||||
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
|
||||
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
|
||||
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
|
||||
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
|
||||
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
|
||||
|
||||
# Create dynamic libraries from static libraries
|
||||
echo "Creating dynamic libraries from static libraries..."
|
||||
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
|
||||
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
|
||||
combine_static_libraries "build-macos" "Release" "macos" "false"
|
||||
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
|
||||
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
|
||||
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
|
||||
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
|
||||
|
||||
# Create XCFramework with correct debug symbols paths
|
||||
echo "Creating XCFramework..."
|
||||
xcodebuild -create-xcframework \
|
||||
-framework $(pwd)/build-ios-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-ios-device/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-macos/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
|
||||
-framework $(pwd)/build-visionos/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-visionos-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-tvos-device/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-tvos-device/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-tvos-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/llama.dSYM \
|
||||
-output $(pwd)/build-apple/llama.xcframework
|
43
ci/README.md
43
ci/README.md
@ -1,11 +1,11 @@
|
||||
# CI
|
||||
|
||||
In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
In addition to [Github Actions](https://github.com/ggml-org/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
|
||||
https://github.com/ggml-org/ci
|
||||
|
||||
It monitors the `master` branch for new commits and runs the
|
||||
[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
[ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
|
||||
to cover various hardware architectures, including GPU and Apple Silicon instances.
|
||||
|
||||
@ -26,4 +26,43 @@ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
# with SYCL support
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
# with MUSA support
|
||||
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
```
|
||||
|
||||
## Running MUSA CI in a Docker Container
|
||||
|
||||
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
|
||||
|
||||
### 1. Create a local directory to store cached models, configuration files and venv:
|
||||
|
||||
```bash
|
||||
mkdir -p $HOME/llama.cpp/ci-cache
|
||||
```
|
||||
|
||||
### 2. Create a local directory to store CI run results:
|
||||
|
||||
```bash
|
||||
mkdir -p $HOME/llama.cpp/ci-results
|
||||
```
|
||||
|
||||
### 3. Start a Docker container and run the CI:
|
||||
|
||||
```bash
|
||||
docker run --privileged -it \
|
||||
-v $HOME/llama.cpp/ci-cache:/ci-cache \
|
||||
-v $HOME/llama.cpp/ci-results:/ci-results \
|
||||
-v $PWD:/ws -w /ws \
|
||||
mthreads/musa:rc3.1.1-devel-ubuntu22.04
|
||||
```
|
||||
|
||||
Inside the container, execute the following commands:
|
||||
|
||||
```bash
|
||||
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
|
||||
git config --global --add safe.directory /ws
|
||||
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
|
||||
```
|
||||
|
||||
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.
|
||||
|
28
ci/run.sh
28
ci/run.sh
@ -16,6 +16,9 @@
|
||||
# # with VULKAN support
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with MUSA support
|
||||
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
@ -36,7 +39,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
@ -52,13 +55,24 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
echo "source /opt/intel/oneapi/setvars.sh"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Use only main GPU
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
# Enable sysman for correct memory reporting
|
||||
export ZES_ENABLE_SYSMAN=1
|
||||
# to circumvent precision issues on CPY operations
|
||||
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_MUSA} ]; then
|
||||
# Use qy1 by default (MTT S80)
|
||||
MUSA_ARCH=${MUSA_ARCH:-21}
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
@ -808,7 +822,7 @@ export LLAMA_LOG_PREFIX=1
|
||||
export LLAMA_LOG_TIMESTAMPS=1
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
|
||||
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models
|
||||
rm -rf ${SRC}/models-mnt
|
||||
mnt_models=${MNT}/models
|
||||
mkdir -p ${mnt_models}
|
||||
@ -826,8 +840,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
fi
|
||||
|
||||
ret=0
|
||||
|
||||
if [ -z ${GG_BUILD_SYCL} ]; then
|
||||
# SYCL build breaks with debug build flags
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
fi
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
@ -835,7 +851,9 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run rerank_tiny
|
||||
|
||||
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
|
||||
if [ -z ${GG_BUILD_SYCL} ]; then
|
||||
test $ret -eq 0 && gg_run test_scripts_debug
|
||||
fi
|
||||
test $ret -eq 0 && gg_run test_scripts_release
|
||||
fi
|
||||
|
||||
@ -846,7 +864,9 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run pythia_2_8b
|
||||
#test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
if [ -z ${GG_BUILD_SYCL} ]; then
|
||||
test $ret -eq 0 && gg_run ctest_with_model_debug
|
||||
fi
|
||||
test $ret -eq 0 && gg_run ctest_with_model_release
|
||||
fi
|
||||
fi
|
||||
|
@ -1,3 +1,5 @@
|
||||
include("ggml/cmake/common.cmake")
|
||||
|
||||
function(llama_add_compile_flags)
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
|
@ -57,8 +57,7 @@ add_library(${TARGET} STATIC
|
||||
arg.h
|
||||
base64.hpp
|
||||
chat.cpp
|
||||
chat.hpp
|
||||
chat-template.hpp
|
||||
chat.h
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
@ -68,7 +67,8 @@ add_library(${TARGET} STATIC
|
||||
llguidance.cpp
|
||||
log.cpp
|
||||
log.h
|
||||
minja.hpp
|
||||
minja/chat-template.hpp
|
||||
minja/minja.hpp
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
@ -85,7 +85,10 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
|
||||
|
||||
# Use curl to download model url
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
find_package(CURL)
|
||||
if (NOT CURL_FOUND)
|
||||
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
|
||||
endif()
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
@ -96,27 +99,44 @@ if (LLAMA_LLGUIDANCE)
|
||||
include(ExternalProject)
|
||||
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
|
||||
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
|
||||
|
||||
# Set the correct library file extension based on platform
|
||||
if (WIN32)
|
||||
set(LLGUIDANCE_LIB_NAME "llguidance.lib")
|
||||
# Add Windows-specific libraries
|
||||
set(LLGUIDANCE_PLATFORM_LIBS
|
||||
ws2_32 # Windows Sockets API
|
||||
userenv # For GetUserProfileDirectoryW
|
||||
ntdll # For NT functions
|
||||
bcrypt # For BCryptGenRandom
|
||||
)
|
||||
else()
|
||||
set(LLGUIDANCE_LIB_NAME "libllguidance.a")
|
||||
set(LLGUIDANCE_PLATFORM_LIBS "")
|
||||
endif()
|
||||
|
||||
ExternalProject_Add(llguidance_ext
|
||||
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
|
||||
# v0.6.12:
|
||||
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
|
||||
# v0.7.10:
|
||||
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
|
||||
PREFIX ${CMAKE_BINARY_DIR}/llguidance
|
||||
SOURCE_DIR ${LLGUIDANCE_SRC}
|
||||
BUILD_IN_SOURCE TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND cargo build --release
|
||||
INSTALL_COMMAND ""
|
||||
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/libllguidance.a ${LLGUIDANCE_PATH}/llguidance.h
|
||||
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
|
||||
UPDATE_COMMAND ""
|
||||
)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
|
||||
|
||||
add_library(llguidance STATIC IMPORTED)
|
||||
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/libllguidance.a)
|
||||
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME})
|
||||
add_dependencies(llguidance llguidance_ext)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance)
|
||||
# Add platform libraries to the main target
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
|
963
common/arg.cpp
963
common/arg.cpp
File diff suppressed because it is too large
Load Diff
1387
common/chat.cpp
1387
common/chat.cpp
File diff suppressed because it is too large
Load Diff
135
common/chat.h
Normal file
135
common/chat.h
Normal file
@ -0,0 +1,135 @@
|
||||
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct common_chat_templates;
|
||||
|
||||
struct common_chat_tool_call {
|
||||
std::string name;
|
||||
std::string arguments;
|
||||
std::string id;
|
||||
};
|
||||
|
||||
struct common_chat_msg_content_part {
|
||||
std::string type;
|
||||
std::string text;
|
||||
};
|
||||
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
std::vector<common_chat_msg_content_part> content_parts = {};
|
||||
std::vector<common_chat_tool_call> tool_calls = {};
|
||||
std::string reasoning_content;
|
||||
std::string tool_name;
|
||||
std::string tool_call_id;
|
||||
};
|
||||
|
||||
struct common_chat_tool {
|
||||
std::string name;
|
||||
std::string description;
|
||||
std::string parameters;
|
||||
};
|
||||
|
||||
enum common_chat_tool_choice {
|
||||
COMMON_CHAT_TOOL_CHOICE_AUTO,
|
||||
COMMON_CHAT_TOOL_CHOICE_REQUIRED,
|
||||
COMMON_CHAT_TOOL_CHOICE_NONE,
|
||||
};
|
||||
|
||||
enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
COMMON_CHAT_FORMAT_GENERIC,
|
||||
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
||||
struct common_chat_templates_inputs {
|
||||
std::vector<common_chat_msg> messages;
|
||||
std::string grammar;
|
||||
std::string json_schema;
|
||||
bool add_generation_prompt = true;
|
||||
bool use_jinja = true;
|
||||
// Parameters below only supported when use_jinja is true
|
||||
std::vector<common_chat_tool> tools;
|
||||
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||||
bool parallel_tool_calls = false;
|
||||
bool extract_reasoning = true;
|
||||
};
|
||||
|
||||
struct common_chat_params {
|
||||
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
std::string prompt;
|
||||
std::string grammar;
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_triggers;
|
||||
std::vector<std::string> preserved_tokens;
|
||||
std::vector<std::string> additional_stops;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
|
||||
|
||||
void common_chat_templates_free(struct common_chat_templates * tmpls);
|
||||
|
||||
struct common_chat_templates_deleter { void operator()(common_chat_templates * tmpls) { common_chat_templates_free(tmpls); } };
|
||||
|
||||
typedef std::unique_ptr<struct common_chat_templates, common_chat_templates_deleter> common_chat_templates_ptr;
|
||||
|
||||
common_chat_templates_ptr common_chat_templates_init(
|
||||
const struct llama_model * model,
|
||||
const std::string & chat_template_override,
|
||||
const std::string & bos_token_override = "",
|
||||
const std::string & eos_token_override = "");
|
||||
|
||||
bool common_chat_templates_was_explicit(const struct common_chat_templates * tmpls);
|
||||
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant = nullptr);
|
||||
|
||||
|
||||
struct common_chat_params common_chat_templates_apply(
|
||||
const struct common_chat_templates * tmpls,
|
||||
const struct common_chat_templates_inputs & inputs);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(
|
||||
const struct common_chat_templates * tmpls,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass,
|
||||
bool use_jinja);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(
|
||||
const struct common_chat_templates * tmpls,
|
||||
bool use_jinja);
|
||||
|
||||
std::string common_chat_format_name(common_chat_format format);
|
||||
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
// Parses a JSON array of messages in OpenAI's chat completion API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
|
||||
template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
|
||||
|
||||
// Parses a JSON array of tools in OpenAI's chat completion tool call API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
|
||||
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
|
@ -1,52 +0,0 @@
|
||||
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include <json.hpp>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
struct common_chat_inputs {
|
||||
json messages;
|
||||
json tools;
|
||||
json tool_choice;
|
||||
json json_schema;
|
||||
bool parallel_tool_calls;
|
||||
bool stream;
|
||||
std::string grammar;
|
||||
bool add_generation_prompt = true;
|
||||
};
|
||||
|
||||
enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
COMMON_CHAT_FORMAT_GENERIC,
|
||||
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
||||
struct common_chat_params {
|
||||
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
json prompt;
|
||||
std::string grammar;
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_triggers;
|
||||
std::vector<std::string> preserved_tokens;
|
||||
std::vector<std::string> additional_stops;
|
||||
};
|
||||
|
||||
struct common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & params);
|
||||
std::string common_chat_format_name(common_chat_format format);
|
||||
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
|
@ -7,13 +7,7 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "chat.hpp"
|
||||
#include "chat-template.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
@ -54,47 +48,11 @@
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
# if !defined(PATH_MAX)
|
||||
# define PATH_MAX MAX_PATH
|
||||
# endif
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@ -485,6 +443,11 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
for (size_t i = 0; i < values.size(); ++i) {
|
||||
@ -867,7 +830,7 @@ std::string fs_get_cache_directory() {
|
||||
if (getenv("LLAMA_CACHE")) {
|
||||
cache_directory = std::getenv("LLAMA_CACHE");
|
||||
} else {
|
||||
#ifdef __linux__
|
||||
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
|
||||
if (std::getenv("XDG_CACHE_HOME")) {
|
||||
cache_directory = std::getenv("XDG_CACHE_HOME");
|
||||
} else {
|
||||
@ -877,7 +840,9 @@ std::string fs_get_cache_directory() {
|
||||
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
||||
#elif defined(_WIN32)
|
||||
cache_directory = std::getenv("LOCALAPPDATA");
|
||||
#endif // __linux__
|
||||
#else
|
||||
# error Unknown architecture
|
||||
#endif
|
||||
cache_directory = ensure_trailing_slash(cache_directory);
|
||||
cache_directory += "llama.cpp";
|
||||
}
|
||||
@ -898,22 +863,14 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
|
||||
} else {
|
||||
model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
|
||||
return iparams;
|
||||
}
|
||||
|
||||
@ -948,13 +905,13 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
|
||||
llama_context * lctx = llama_init_from_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
|
||||
llama_model_free(model);
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
|
||||
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
|
||||
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
|
||||
@ -1031,6 +988,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (params.warmup) {
|
||||
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
|
||||
|
||||
llama_set_warmup(lctx, true);
|
||||
|
||||
std::vector<llama_token> tmp;
|
||||
llama_token bos = llama_vocab_bos(vocab);
|
||||
llama_token eos = llama_vocab_eos(vocab);
|
||||
@ -1058,9 +1017,10 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
if (llama_model_has_decoder(model)) {
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
||||
}
|
||||
llama_kv_cache_clear(lctx);
|
||||
llama_kv_self_clear(lctx);
|
||||
llama_synchronize(lctx);
|
||||
llama_perf_context_reset(lctx);
|
||||
llama_set_warmup(lctx, false);
|
||||
}
|
||||
|
||||
iparams.model.reset(model);
|
||||
@ -1069,6 +1029,19 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
std::string get_model_endpoint() {
|
||||
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
|
||||
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
|
||||
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
|
||||
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
|
||||
std::string model_endpoint = "https://huggingface.co/";
|
||||
if (endpoint_env) {
|
||||
model_endpoint = endpoint_env;
|
||||
if (model_endpoint.back() != '/') model_endpoint += '/';
|
||||
}
|
||||
return model_endpoint;
|
||||
}
|
||||
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
|
||||
llama_clear_adapter_lora(ctx);
|
||||
for (auto & la : lora) {
|
||||
@ -1084,15 +1057,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
@ -1100,6 +1076,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
if (params.tensor_buft_overrides.empty()) {
|
||||
mparams.tensor_buft_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
|
||||
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
@ -1159,451 +1142,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
|
||||
return tpp;
|
||||
}
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
#define CURL_MAX_RETRY 3
|
||||
#define CURL_RETRY_DELAY_SECONDS 2
|
||||
|
||||
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
|
||||
int remaining_attempts = max_attempts;
|
||||
|
||||
while (remaining_attempts > 0) {
|
||||
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl);
|
||||
if (res == CURLE_OK) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
|
||||
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
|
||||
|
||||
remaining_attempts--;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
|
||||
}
|
||||
|
||||
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
// Initialize libcurl
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
|
||||
// Check if the file already exists locally
|
||||
auto file_exists = std::filesystem::exists(path);
|
||||
|
||||
// If the file exists, check its JSON metadata companion file.
|
||||
std::string metadata_path = path + ".json";
|
||||
nlohmann::json metadata;
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
|
||||
if (file_exists) {
|
||||
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
|
||||
std::ifstream metadata_in(metadata_path);
|
||||
if (metadata_in.good()) {
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
|
||||
common_load_model_from_url_headers headers;
|
||||
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
|
||||
|
||||
std::string header(buffer, n_items);
|
||||
std::smatch match;
|
||||
if (std::regex_match(header, match, header_regex)) {
|
||||
const std::string & key = match[1];
|
||||
const std::string & value = match[2];
|
||||
if (std::regex_match(key, match, etag_regex)) {
|
||||
headers->etag = value;
|
||||
} else if (std::regex_match(key, match, last_modified_regex)) {
|
||||
headers->last_modified = value;
|
||||
}
|
||||
}
|
||||
return n_items;
|
||||
};
|
||||
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
|
||||
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
force_download = true;
|
||||
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_download = !file_exists || force_download;
|
||||
if (!should_download) {
|
||||
if (!etag.empty() && etag != headers.etag) {
|
||||
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
|
||||
should_download = true;
|
||||
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
|
||||
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
|
||||
should_download = true;
|
||||
}
|
||||
}
|
||||
if (should_download) {
|
||||
std::string path_temporary = path + ".downloadInProgress";
|
||||
if (file_exists) {
|
||||
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
|
||||
if (remove(path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
|
||||
struct FILE_deleter {
|
||||
void operator()(FILE * f) const {
|
||||
fclose(f);
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
|
||||
if (!outfile) {
|
||||
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
|
||||
return fwrite(data, size, nmemb, (FILE *)fd);
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
|
||||
|
||||
// display download progress
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
|
||||
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
|
||||
if (!was_perform_successful) {
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
|
||||
if (http_code < 200 || http_code >= 400) {
|
||||
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Causes file to be closed explicitly here before we rename it.
|
||||
outfile.reset();
|
||||
|
||||
// Write the updated JSON metadata file.
|
||||
metadata.update({
|
||||
{"url", url},
|
||||
{"etag", headers.etag},
|
||||
{"lastModified", headers.last_modified}
|
||||
});
|
||||
std::ofstream(metadata_path) << metadata.dump(4);
|
||||
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
|
||||
|
||||
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
|
||||
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// Basic validation of the model_url
|
||||
if (model_url.empty()) {
|
||||
LOG_ERR("%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!common_download_file(model_url, local_path, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
|
||||
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return llama_model_load_from_file(local_path.c_str(), params);
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params) {
|
||||
// construct hugging face model url:
|
||||
//
|
||||
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
|
||||
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
|
||||
//
|
||||
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
//
|
||||
|
||||
std::string model_url = "https://huggingface.co/";
|
||||
model_url += repo;
|
||||
model_url += "/resolve/main/";
|
||||
model_url += remote_path;
|
||||
|
||||
return common_load_model_from_url(model_url, local_path, hf_token, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
json model_info;
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
model_info = json::parse(res_str);
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (!model_info.contains("ggufFile")) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
json & gguf_file = model_info.at("ggufFile");
|
||||
if (!gguf_file.contains("rfilename")) {
|
||||
throw std::runtime_error("error: ggufFile does not have rfilename");
|
||||
}
|
||||
|
||||
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & /*model_url*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & /*repo*/,
|
||||
const std::string & /*remote_path*/,
|
||||
const std::string & /*local_path*/,
|
||||
const std::string & /*hf_token*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return std::make_pair("", "");
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
@ -1768,174 +1306,6 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
|
||||
return text;
|
||||
}
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja) {
|
||||
if (use_jinja) {
|
||||
try {
|
||||
auto chat_template = common_chat_template(tmpl, "<s>", "</s>");
|
||||
common_chat_inputs inputs;
|
||||
inputs.messages = json::array({{
|
||||
{"role", "user"},
|
||||
{"content", "test"},
|
||||
}});
|
||||
common_chat_params_init(chat_template, inputs);
|
||||
return true;
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("%s: failed to apply template: %s\n", __func__, e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string common_chat_apply_template(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass,
|
||||
bool use_jinja) {
|
||||
if (use_jinja) {
|
||||
auto messages = json::array();
|
||||
for (const auto & msg : msgs) {
|
||||
messages.push_back({{"role", msg.role}, {"content", msg.content}});
|
||||
}
|
||||
common_chat_inputs inputs;
|
||||
inputs.messages = messages;
|
||||
inputs.add_generation_prompt = add_ass;
|
||||
return common_chat_params_init(tmpl, inputs).prompt;
|
||||
}
|
||||
|
||||
int alloc_size = 0;
|
||||
std::vector<llama_chat_message> chat;
|
||||
for (const auto & msg : msgs) {
|
||||
chat.push_back({msg.role.c_str(), msg.content.c_str()});
|
||||
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
|
||||
}
|
||||
|
||||
std::vector<char> buf(alloc_size);
|
||||
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
|
||||
// error: chat template is not supported
|
||||
if (res < 0) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
}
|
||||
|
||||
std::string formatted_chat(buf.data(), res);
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string common_chat_format_single(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass,
|
||||
bool use_jinja) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(tmpl, past_msg, false, use_jinja);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
ss << "\n";
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = common_chat_apply_template(tmpl, chat_new, add_ass, use_jinja);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string common_chat_format_example(const common_chat_template & tmpl, bool use_jinja) {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant", {}},
|
||||
{"user", "Hello", {}},
|
||||
{"assistant", "Hi there", {}},
|
||||
{"user", "How are you?", {}},
|
||||
};
|
||||
return common_chat_apply_template(tmpl, msgs, true, use_jinja);
|
||||
}
|
||||
|
||||
#define CHATML_TEMPLATE_SRC \
|
||||
"{%- for message in messages -%}\n" \
|
||||
" {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' -}}\n" \
|
||||
"{%- endfor -%}\n" \
|
||||
"{%- if add_generation_prompt -%}\n" \
|
||||
" {{- '<|im_start|>assistant\n' -}}\n" \
|
||||
"{%- endif -%}"
|
||||
|
||||
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override)
|
||||
{
|
||||
std::string default_template_src;
|
||||
std::string template_tool_use_src;
|
||||
|
||||
bool has_explicit_template = !chat_template_override.empty();
|
||||
if (chat_template_override.empty()) {
|
||||
auto str = llama_model_chat_template(model, /* name */ nullptr);
|
||||
if (str) {
|
||||
default_template_src = str;
|
||||
has_explicit_template = true;
|
||||
}
|
||||
str = llama_model_chat_template(model, /* name */ "tool_use");
|
||||
if (str) {
|
||||
template_tool_use_src = str;
|
||||
has_explicit_template = true;
|
||||
}
|
||||
} else {
|
||||
default_template_src = chat_template_override;
|
||||
}
|
||||
if (default_template_src.empty() || default_template_src == "chatml") {
|
||||
if (!template_tool_use_src.empty()) {
|
||||
default_template_src = template_tool_use_src;
|
||||
} else {
|
||||
default_template_src = CHATML_TEMPLATE_SRC;
|
||||
}
|
||||
}
|
||||
auto vocab = llama_model_get_vocab(model);
|
||||
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
|
||||
if (token == LLAMA_TOKEN_NULL) {
|
||||
if (default_template_src.find(jinja_variable_name) != std::string::npos
|
||||
|| template_tool_use_src.find(jinja_variable_name) != std::string::npos) {
|
||||
LOG_WRN("%s: warning: vocab does not have a %s token, jinja template won't work as intended.\n", __func__, name);
|
||||
}
|
||||
return std::string();
|
||||
} else {
|
||||
return common_token_to_piece(vocab, token, true);
|
||||
}
|
||||
};
|
||||
auto token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
|
||||
auto token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
|
||||
try {
|
||||
return {
|
||||
has_explicit_template,
|
||||
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
|
||||
template_tool_use_src.empty()
|
||||
? nullptr
|
||||
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos),
|
||||
};
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("%s: failed to parse chat template: %s\n", __func__, e.what());
|
||||
return {
|
||||
has_explicit_template,
|
||||
std::make_unique<minja::chat_template>(CHATML_TEMPLATE_SRC, token_bos, token_eos),
|
||||
nullptr,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
@ -2195,4 +1565,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
145
common/common.h
145
common/common.h
@ -110,9 +110,17 @@ enum common_conversation_mode {
|
||||
COMMON_CONVERSATION_MODE_AUTO = 2,
|
||||
};
|
||||
|
||||
enum common_grammar_trigger_type {
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
};
|
||||
|
||||
struct common_grammar_trigger {
|
||||
std::string word;
|
||||
bool at_start;
|
||||
common_grammar_trigger_type type;
|
||||
std::string value;
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
@ -140,6 +148,7 @@ struct common_params_sampling {
|
||||
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
||||
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float top_n_sigma = -1.00f;// -1.0 = disabled
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool ignore_eos = false;
|
||||
@ -162,8 +171,7 @@ struct common_params_sampling {
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
|
||||
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
|
||||
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
|
||||
std::set<llama_token> preserved_tokens;
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
@ -172,36 +180,42 @@ struct common_params_sampling {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_model {
|
||||
std::string path = ""; // model local path // NOLINT
|
||||
std::string url = ""; // model url to download // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
struct common_params_model model;
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
struct common_params_model model;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string speaker_file = ""; // speaker file path // NOLINT
|
||||
|
||||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 4096; // context size
|
||||
@ -248,13 +262,12 @@ struct common_params {
|
||||
struct common_params_speculative speculative;
|
||||
struct common_params_vocoder vocoder;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
struct common_params_model model;
|
||||
|
||||
std::string model_alias = ""; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
@ -266,6 +279,7 @@ struct common_params {
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
@ -292,6 +306,7 @@ struct common_params {
|
||||
bool kl_divergence = false; // compute KL divergence
|
||||
|
||||
bool usage = false; // print usage
|
||||
bool completion = false; // print source-able completion script
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool special = false; // enable special token output
|
||||
bool interactive = false; // interactive mode
|
||||
@ -318,13 +333,15 @@ struct common_params {
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
struct common_params_model mmproj;
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
@ -346,6 +363,7 @@ struct common_params {
|
||||
std::string chat_template = ""; // NOLINT
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
@ -383,8 +401,6 @@ struct common_params {
|
||||
int32_t i_pos = -1; // position of the passkey in the junk text
|
||||
|
||||
// imatrix params
|
||||
std::string out_file = "imatrix.gguf"; // save the resulting imatrix to this file
|
||||
|
||||
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
||||
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||||
int32_t i_chunk = 0; // start processing from this chunk
|
||||
@ -396,16 +412,16 @@ struct common_params {
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_outfile = "control_vector.gguf";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
// batched-bench params
|
||||
bool batched_bench_output_jsonl = false;
|
||||
|
||||
// common params
|
||||
std::string out_file; // output filename for all example programs
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@ -424,7 +440,7 @@ bool set_process_priority(enum ggml_sched_priority prio);
|
||||
//
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
# if defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# else
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
@ -445,6 +461,8 @@ std::string string_repeat(const std::string & str, size_t n);
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
std::string regex_escape(const std::string & s);
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
|
||||
@ -522,26 +540,11 @@ struct llama_model_params common_model_params_to_llama ( common_params
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & hf_token);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
std::string get_model_endpoint();
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
@ -608,62 +611,6 @@ std::string common_detokenize(
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
struct common_tool_call {
|
||||
std::string name;
|
||||
std::string arguments;
|
||||
std::string id;
|
||||
};
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
std::vector<common_tool_call> tool_calls;
|
||||
std::string tool_plan = "";
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
|
||||
|
||||
namespace minja {
|
||||
class chat_template;
|
||||
}
|
||||
|
||||
typedef minja::chat_template common_chat_template;
|
||||
|
||||
struct common_chat_templates {
|
||||
bool has_explicit_template; // Model had builtin template or template overridde was specified.
|
||||
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
|
||||
std::unique_ptr<common_chat_template> template_tool_use;
|
||||
};
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string common_chat_apply_template(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass,
|
||||
bool use_jinja);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass,
|
||||
bool use_jinja);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(
|
||||
const common_chat_template & tmpl, bool use_jinja);
|
||||
|
||||
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
@ -264,7 +264,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
throw std::runtime_error("At least one of min_value or max_value must be set");
|
||||
}
|
||||
|
||||
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
|
||||
const std::string SPACE_RULE = "| \" \" | \"\\n\"{1,2} [ \\t]{0,20}";
|
||||
|
||||
struct BuiltinRule {
|
||||
std::string content;
|
||||
@ -764,11 +764,10 @@ private:
|
||||
public:
|
||||
SchemaConverter(
|
||||
const std::function<json(const std::string &)> & fetch_json,
|
||||
bool dotall,
|
||||
bool compact_spaces)
|
||||
bool dotall)
|
||||
: _fetch_json(fetch_json), _dotall(dotall)
|
||||
{
|
||||
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
|
||||
_rules["space"] = SPACE_RULE;
|
||||
}
|
||||
|
||||
void resolve_refs(json & schema, const std::string & url) {
|
||||
@ -1007,7 +1006,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
|
||||
}
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
|
||||
common_grammar_builder builder {
|
||||
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
|
||||
return converter._add_rule(name, rule);
|
||||
|
@ -16,7 +16,6 @@ struct common_grammar_builder {
|
||||
|
||||
struct common_grammar_options {
|
||||
bool dotall = false;
|
||||
bool compact_spaces = false;
|
||||
};
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});
|
||||
|
@ -11,12 +11,10 @@ struct llama_sampler_llg {
|
||||
std::string grammar_kind;
|
||||
std::string grammar_data;
|
||||
LlgTokenizer * tokenizer;
|
||||
LlgConstraint * grammar;
|
||||
LlgMaskResult llg_res;
|
||||
bool has_llg_res;
|
||||
LlgMatcher * grammar;
|
||||
};
|
||||
|
||||
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
|
||||
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
|
||||
const char * grammar_data) {
|
||||
LlgConstraintInit cinit;
|
||||
llg_constraint_init_set_defaults(&cinit, tokenizer);
|
||||
@ -24,12 +22,13 @@ static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const cha
|
||||
if (log_level && *log_level) {
|
||||
cinit.log_stderr_level = atoi(log_level);
|
||||
}
|
||||
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data);
|
||||
if (llg_get_error(c)) {
|
||||
LOG_ERR("llg error: %s\n", llg_get_error(c));
|
||||
llg_free_constraint(c);
|
||||
auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
|
||||
if (llg_matcher_get_error(c)) {
|
||||
LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
|
||||
llg_free_matcher(c);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
@ -40,33 +39,25 @@ static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
|
||||
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
|
||||
auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
if (ctx->grammar) {
|
||||
LlgCommitResult res;
|
||||
llg_commit_token(ctx->grammar, token, &res);
|
||||
ctx->has_llg_res = false;
|
||||
llg_matcher_consume_token(ctx->grammar, token);
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
if (ctx->grammar) {
|
||||
if (!ctx->has_llg_res) {
|
||||
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) {
|
||||
ctx->has_llg_res = true;
|
||||
const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
|
||||
if (mask == nullptr) {
|
||||
if (llg_matcher_compute_mask(ctx->grammar) == 0) {
|
||||
mask = llg_matcher_get_mask(ctx->grammar);
|
||||
} else {
|
||||
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar));
|
||||
llg_free_constraint(ctx->grammar);
|
||||
LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
|
||||
llg_free_matcher(ctx->grammar);
|
||||
ctx->grammar = nullptr;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (ctx->has_llg_res) {
|
||||
if (ctx->llg_res.is_stop) {
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
const uint32_t * mask = ctx->llg_res.sample_mask;
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
auto token = cur_p->data[i].id;
|
||||
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
|
||||
@ -75,19 +66,12 @@ static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_sampler_llg_reset(llama_sampler * smpl) {
|
||||
auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
if (!ctx->grammar) {
|
||||
return;
|
||||
if (ctx->grammar) {
|
||||
llg_matcher_reset(ctx->grammar);
|
||||
}
|
||||
|
||||
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str());
|
||||
llg_free_constraint(ctx->grammar);
|
||||
ctx->grammar = grammar_new;
|
||||
ctx->has_llg_res = false;
|
||||
}
|
||||
|
||||
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
|
||||
@ -102,7 +86,7 @@ static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
|
||||
if (ctx->grammar) {
|
||||
result_ctx->grammar_kind = ctx->grammar_kind;
|
||||
result_ctx->grammar_data = ctx->grammar_data;
|
||||
result_ctx->grammar = llg_clone_constraint(ctx->grammar);
|
||||
result_ctx->grammar = llg_clone_matcher(ctx->grammar);
|
||||
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
|
||||
}
|
||||
}
|
||||
@ -114,7 +98,7 @@ static void llama_sampler_llg_free(llama_sampler * smpl) {
|
||||
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
|
||||
|
||||
if (ctx->grammar) {
|
||||
llg_free_constraint(ctx->grammar);
|
||||
llg_free_matcher(ctx->grammar);
|
||||
llg_free_tokenizer(ctx->tokenizer);
|
||||
}
|
||||
|
||||
@ -239,9 +223,11 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
|
||||
/* .grammar_data = */ grammar_data,
|
||||
/* .tokenizer = */ tokenizer,
|
||||
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
|
||||
/* .llg_res = */ {},
|
||||
/* .has_llg_res = */ false,
|
||||
};
|
||||
if (ctx->grammar) {
|
||||
GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
|
||||
llg_matcher_get_mask_byte_size(ctx->grammar));
|
||||
}
|
||||
} else {
|
||||
*ctx = {
|
||||
/* .vocab = */ vocab,
|
||||
@ -249,15 +235,12 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
|
||||
/* .grammar_data = */ {},
|
||||
/* .tokenizer = */ nullptr,
|
||||
/* .grammar = */ nullptr,
|
||||
/* .llg_res = */ {},
|
||||
/* .has_llg_res = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
return llama_sampler_init(
|
||||
/* .iface = */ &llama_sampler_llg_i,
|
||||
/* .ctx = */ ctx
|
||||
);
|
||||
/* .ctx = */ ctx);
|
||||
}
|
||||
|
||||
#else
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
|
@ -15,7 +15,7 @@
|
||||
|
||||
#ifndef __GNUC__
|
||||
# define LOG_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
#elif defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
|
@ -9,10 +9,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "minja.hpp"
|
||||
#include <json.hpp>
|
||||
|
||||
#include <chrono>
|
||||
#include <cstddef>
|
||||
#include <cstdio>
|
||||
#include <exception>
|
||||
#include <iomanip>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
namespace minja {
|
||||
@ -249,16 +258,30 @@ class chat_template {
|
||||
inputs.add_generation_prompt = false;
|
||||
full = apply(inputs);
|
||||
}
|
||||
|
||||
if (full.find(prefix) != 0) {
|
||||
if (prefix.rfind(eos_token_) == prefix.size() - eos_token_.size()) {
|
||||
prefix = prefix.substr(0, prefix.size() - eos_token_.size());
|
||||
auto eos_pos_last = full.rfind(eos_token_);
|
||||
if (eos_pos_last == prefix.size() - eos_token_.size() ||
|
||||
(full[full.size() - 1] == '\n' && (eos_pos_last == full.size() - eos_token_.size() - 1))) {
|
||||
full = full.substr(0, eos_pos_last);
|
||||
}
|
||||
size_t common_prefix_length = 0;
|
||||
for (size_t i = 0; i < prefix.size() && i < full.size(); ++i) {
|
||||
if (prefix[i] != full[i]) {
|
||||
break;
|
||||
}
|
||||
if (full.find(prefix) != 0) {
|
||||
if (prefix[i] == '<') {
|
||||
// DeepSeek R1's template (as of 20250209) adds a trailing <think> if add_generation_prompt,
|
||||
// but it removes thinking tags for past messages.
|
||||
// The prefix and full strings diverge at <think> vs. <|tool▁calls▁begin|>, we avoid consuming the leading <.
|
||||
continue;
|
||||
}
|
||||
common_prefix_length = i + 1;
|
||||
}
|
||||
auto example = full.substr(common_prefix_length);
|
||||
if (example.find("tool_name") == std::string::npos && example.find("some_value") == std::string::npos) {
|
||||
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
|
||||
} else {
|
||||
tool_call_example_ = example;
|
||||
}
|
||||
tool_call_example_ = full.substr(prefix.size());
|
||||
}
|
||||
} catch (const std::exception & e) {
|
||||
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
|
||||
@ -363,7 +386,7 @@ class chat_template {
|
||||
if (polyfill_tools) {
|
||||
adjusted_messages = add_system(inputs.messages,
|
||||
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
|
||||
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_));
|
||||
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_ + "\n\n"));
|
||||
} else {
|
||||
adjusted_messages = inputs.messages;
|
||||
}
|
||||
@ -411,7 +434,7 @@ class chat_template {
|
||||
auto obj = json {
|
||||
{"tool_calls", tool_calls},
|
||||
};
|
||||
if (!content.is_null() && content != "") {
|
||||
if (!content.is_null() && !content.empty()) {
|
||||
obj["content"] = content;
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
@ -421,13 +444,12 @@ class chat_template {
|
||||
if (polyfill_tool_responses && role == "tool") {
|
||||
message["role"] = "user";
|
||||
auto obj = json {
|
||||
{"tool_response", {
|
||||
{"content", message.at("content")},
|
||||
}},
|
||||
{"tool_response", json::object()},
|
||||
};
|
||||
if (message.contains("name")) {
|
||||
obj["tool_response"]["name"] = message.at("name");
|
||||
obj["tool_response"]["tool"] = message.at("name");
|
||||
}
|
||||
obj["tool_response"]["content"] = message.at("content");
|
||||
if (message.contains("tool_call_id")) {
|
||||
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
|
||||
}
|
||||
@ -496,7 +518,7 @@ class chat_template {
|
||||
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
|
||||
json messages_with_system = messages;
|
||||
|
||||
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
|
||||
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
|
||||
std::string existing_system = messages_with_system.at(0).at("content");
|
||||
messages_with_system[0] = json {
|
||||
{"role", "system"},
|
@ -8,14 +8,26 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cctype>
|
||||
#include <cstddef>
|
||||
#include <cmath>
|
||||
#include <exception>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <iterator>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include <json.hpp>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@ -731,51 +743,51 @@ public:
|
||||
|
||||
struct TextTemplateToken : public TemplateToken {
|
||||
std::string text;
|
||||
TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {}
|
||||
TextTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, loc, pre, post), text(t) {}
|
||||
};
|
||||
|
||||
struct ExpressionTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> expr;
|
||||
ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {}
|
||||
ExpressionTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, loc, pre, post), expr(std::move(e)) {}
|
||||
};
|
||||
|
||||
struct IfTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> condition;
|
||||
IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {}
|
||||
IfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, loc, pre, post), condition(std::move(c)) {}
|
||||
};
|
||||
|
||||
struct ElifTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> condition;
|
||||
ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {}
|
||||
ElifTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, loc, pre, post), condition(std::move(c)) {}
|
||||
};
|
||||
|
||||
struct ElseTemplateToken : public TemplateToken {
|
||||
ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {}
|
||||
ElseTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct EndIfTemplateToken : public TemplateToken {
|
||||
EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {}
|
||||
EndIfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct MacroTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<VariableExpr> name;
|
||||
Expression::Parameters params;
|
||||
MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
|
||||
: TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {}
|
||||
MacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
|
||||
: TemplateToken(Type::Macro, loc, pre, post), name(std::move(n)), params(std::move(p)) {}
|
||||
};
|
||||
|
||||
struct EndMacroTemplateToken : public TemplateToken {
|
||||
EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {}
|
||||
EndMacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct FilterTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> filter;
|
||||
FilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
|
||||
: TemplateToken(Type::Filter, location, pre, post), filter(std::move(filter)) {}
|
||||
FilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
|
||||
: TemplateToken(Type::Filter, loc, pre, post), filter(std::move(filter)) {}
|
||||
};
|
||||
|
||||
struct EndFilterTemplateToken : public TemplateToken {
|
||||
EndFilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, location, pre, post) {}
|
||||
EndFilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct ForTemplateToken : public TemplateToken {
|
||||
@ -783,38 +795,38 @@ struct ForTemplateToken : public TemplateToken {
|
||||
std::shared_ptr<Expression> iterable;
|
||||
std::shared_ptr<Expression> condition;
|
||||
bool recursive;
|
||||
ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
|
||||
ForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
|
||||
std::shared_ptr<Expression> && c, bool r)
|
||||
: TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
|
||||
: TemplateToken(Type::For, loc, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
|
||||
};
|
||||
|
||||
struct EndForTemplateToken : public TemplateToken {
|
||||
EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {}
|
||||
EndForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct GenerationTemplateToken : public TemplateToken {
|
||||
GenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, location, pre, post) {}
|
||||
GenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct EndGenerationTemplateToken : public TemplateToken {
|
||||
EndGenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, location, pre, post) {}
|
||||
EndGenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct SetTemplateToken : public TemplateToken {
|
||||
std::string ns;
|
||||
std::vector<std::string> var_names;
|
||||
std::shared_ptr<Expression> value;
|
||||
SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
SetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateToken(Type::Set, loc, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
};
|
||||
|
||||
struct EndSetTemplateToken : public TemplateToken {
|
||||
EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {}
|
||||
EndSetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, loc, pre, post) {}
|
||||
};
|
||||
|
||||
struct CommentTemplateToken : public TemplateToken {
|
||||
std::string text;
|
||||
CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {}
|
||||
CommentTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, loc, pre, post), text(t) {}
|
||||
};
|
||||
|
||||
enum class LoopControlType { Break, Continue };
|
||||
@ -830,7 +842,7 @@ public:
|
||||
|
||||
struct LoopControlTemplateToken : public TemplateToken {
|
||||
LoopControlType control_type;
|
||||
LoopControlTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, location, pre, post), control_type(control_type) {}
|
||||
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
|
||||
};
|
||||
|
||||
class TemplateNode {
|
||||
@ -868,8 +880,8 @@ public:
|
||||
class SequenceNode : public TemplateNode {
|
||||
std::vector<std::shared_ptr<TemplateNode>> children;
|
||||
public:
|
||||
SequenceNode(const Location & location, std::vector<std::shared_ptr<TemplateNode>> && c)
|
||||
: TemplateNode(location), children(std::move(c)) {}
|
||||
SequenceNode(const Location & loc, std::vector<std::shared_ptr<TemplateNode>> && c)
|
||||
: TemplateNode(loc), children(std::move(c)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
for (const auto& child : children) child->render(out, context);
|
||||
}
|
||||
@ -878,7 +890,7 @@ public:
|
||||
class TextNode : public TemplateNode {
|
||||
std::string text;
|
||||
public:
|
||||
TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {}
|
||||
TextNode(const Location & loc, const std::string& t) : TemplateNode(loc), text(t) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> &) const override {
|
||||
out << text;
|
||||
}
|
||||
@ -887,7 +899,7 @@ public:
|
||||
class ExpressionNode : public TemplateNode {
|
||||
std::shared_ptr<Expression> expr;
|
||||
public:
|
||||
ExpressionNode(const Location & location, std::shared_ptr<Expression> && e) : TemplateNode(location), expr(std::move(e)) {}
|
||||
ExpressionNode(const Location & loc, std::shared_ptr<Expression> && e) : TemplateNode(loc), expr(std::move(e)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
if (!expr) throw std::runtime_error("ExpressionNode.expr is null");
|
||||
auto result = expr->evaluate(context);
|
||||
@ -904,8 +916,8 @@ public:
|
||||
class IfNode : public TemplateNode {
|
||||
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> cascade;
|
||||
public:
|
||||
IfNode(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
|
||||
: TemplateNode(location), cascade(std::move(c)) {}
|
||||
IfNode(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
|
||||
: TemplateNode(loc), cascade(std::move(c)) {}
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
for (const auto& branch : cascade) {
|
||||
auto enter_branch = true;
|
||||
@ -924,7 +936,7 @@ public:
|
||||
class LoopControlNode : public TemplateNode {
|
||||
LoopControlType control_type_;
|
||||
public:
|
||||
LoopControlNode(const Location & location, LoopControlType control_type) : TemplateNode(location), control_type_(control_type) {}
|
||||
LoopControlNode(const Location & loc, LoopControlType control_type) : TemplateNode(loc), control_type_(control_type) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> &) const override {
|
||||
throw LoopControlException(control_type_);
|
||||
}
|
||||
@ -938,9 +950,9 @@ class ForNode : public TemplateNode {
|
||||
bool recursive;
|
||||
std::shared_ptr<TemplateNode> else_body;
|
||||
public:
|
||||
ForNode(const Location & location, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
|
||||
ForNode(const Location & loc, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
|
||||
std::shared_ptr<Expression> && condition, std::shared_ptr<TemplateNode> && body, bool recursive, std::shared_ptr<TemplateNode> && else_body)
|
||||
: TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
|
||||
: TemplateNode(loc), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
|
||||
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
// https://jinja.palletsprojects.com/en/3.0.x/templates/#for
|
||||
@ -1025,8 +1037,8 @@ class MacroNode : public TemplateNode {
|
||||
std::shared_ptr<TemplateNode> body;
|
||||
std::unordered_map<std::string, size_t> named_param_positions;
|
||||
public:
|
||||
MacroNode(const Location & location, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
|
||||
MacroNode(const Location & loc, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(loc), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
const auto & name = params[i].first;
|
||||
if (!name.empty()) {
|
||||
@ -1072,8 +1084,8 @@ class FilterNode : public TemplateNode {
|
||||
std::shared_ptr<TemplateNode> body;
|
||||
|
||||
public:
|
||||
FilterNode(const Location & location, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(location), filter(std::move(f)), body(std::move(b)) {}
|
||||
FilterNode(const Location & loc, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
|
||||
: TemplateNode(loc), filter(std::move(f)), body(std::move(b)) {}
|
||||
|
||||
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
|
||||
if (!filter) throw std::runtime_error("FilterNode.filter is null");
|
||||
@ -1095,8 +1107,8 @@ class SetNode : public TemplateNode {
|
||||
std::vector<std::string> var_names;
|
||||
std::shared_ptr<Expression> value;
|
||||
public:
|
||||
SetNode(const Location & location, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
SetNode(const Location & loc, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
|
||||
: TemplateNode(loc), ns(ns), var_names(vns), value(std::move(v)) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
|
||||
if (!value) throw std::runtime_error("SetNode.value is null");
|
||||
if (!ns.empty()) {
|
||||
@ -1118,8 +1130,8 @@ class SetTemplateNode : public TemplateNode {
|
||||
std::string name;
|
||||
std::shared_ptr<TemplateNode> template_value;
|
||||
public:
|
||||
SetTemplateNode(const Location & location, const std::string & name, std::shared_ptr<TemplateNode> && tv)
|
||||
: TemplateNode(location), name(name), template_value(std::move(tv)) {}
|
||||
SetTemplateNode(const Location & loc, const std::string & name, std::shared_ptr<TemplateNode> && tv)
|
||||
: TemplateNode(loc), name(name), template_value(std::move(tv)) {}
|
||||
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
|
||||
if (!template_value) throw std::runtime_error("SetTemplateNode.template_value is null");
|
||||
Value value { template_value->render(context) };
|
||||
@ -1132,8 +1144,8 @@ class IfExpr : public Expression {
|
||||
std::shared_ptr<Expression> then_expr;
|
||||
std::shared_ptr<Expression> else_expr;
|
||||
public:
|
||||
IfExpr(const Location & location, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
|
||||
: Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
|
||||
IfExpr(const Location & loc, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
|
||||
: Expression(loc), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!condition) throw std::runtime_error("IfExpr.condition is null");
|
||||
if (!then_expr) throw std::runtime_error("IfExpr.then_expr is null");
|
||||
@ -1150,16 +1162,16 @@ public:
|
||||
class LiteralExpr : public Expression {
|
||||
Value value;
|
||||
public:
|
||||
LiteralExpr(const Location & location, const Value& v)
|
||||
: Expression(location), value(v) {}
|
||||
LiteralExpr(const Location & loc, const Value& v)
|
||||
: Expression(loc), value(v) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> &) const override { return value; }
|
||||
};
|
||||
|
||||
class ArrayExpr : public Expression {
|
||||
std::vector<std::shared_ptr<Expression>> elements;
|
||||
public:
|
||||
ArrayExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && e)
|
||||
: Expression(location), elements(std::move(e)) {}
|
||||
ArrayExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && e)
|
||||
: Expression(loc), elements(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
auto result = Value::array();
|
||||
for (const auto& e : elements) {
|
||||
@ -1173,8 +1185,8 @@ public:
|
||||
class DictExpr : public Expression {
|
||||
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> elements;
|
||||
public:
|
||||
DictExpr(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
|
||||
: Expression(location), elements(std::move(e)) {}
|
||||
DictExpr(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
|
||||
: Expression(loc), elements(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
auto result = Value::object();
|
||||
for (const auto& [key, value] : elements) {
|
||||
@ -1189,8 +1201,8 @@ public:
|
||||
class SliceExpr : public Expression {
|
||||
public:
|
||||
std::shared_ptr<Expression> start, end;
|
||||
SliceExpr(const Location & location, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
|
||||
: Expression(location), start(std::move(s)), end(std::move(e)) {}
|
||||
SliceExpr(const Location & loc, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
|
||||
: Expression(loc), start(std::move(s)), end(std::move(e)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> &) const override {
|
||||
throw std::runtime_error("SliceExpr not implemented");
|
||||
}
|
||||
@ -1200,8 +1212,8 @@ class SubscriptExpr : public Expression {
|
||||
std::shared_ptr<Expression> base;
|
||||
std::shared_ptr<Expression> index;
|
||||
public:
|
||||
SubscriptExpr(const Location & location, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
|
||||
: Expression(location), base(std::move(b)), index(std::move(i)) {}
|
||||
SubscriptExpr(const Location & loc, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
|
||||
: Expression(loc), base(std::move(b)), index(std::move(i)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!base) throw std::runtime_error("SubscriptExpr.base is null");
|
||||
if (!index) throw std::runtime_error("SubscriptExpr.index is null");
|
||||
@ -1243,8 +1255,8 @@ public:
|
||||
enum class Op { Plus, Minus, LogicalNot, Expansion, ExpansionDict };
|
||||
std::shared_ptr<Expression> expr;
|
||||
Op op;
|
||||
UnaryOpExpr(const Location & location, std::shared_ptr<Expression> && e, Op o)
|
||||
: Expression(location), expr(std::move(e)), op(o) {}
|
||||
UnaryOpExpr(const Location & loc, std::shared_ptr<Expression> && e, Op o)
|
||||
: Expression(loc), expr(std::move(e)), op(o) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!expr) throw std::runtime_error("UnaryOpExpr.expr is null");
|
||||
auto e = expr->evaluate(context);
|
||||
@ -1269,8 +1281,8 @@ private:
|
||||
std::shared_ptr<Expression> right;
|
||||
Op op;
|
||||
public:
|
||||
BinaryOpExpr(const Location & location, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
|
||||
: Expression(location), left(std::move(l)), right(std::move(r)), op(o) {}
|
||||
BinaryOpExpr(const Location & loc, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
|
||||
: Expression(loc), left(std::move(l)), right(std::move(r)), op(o) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!left) throw std::runtime_error("BinaryOpExpr.left is null");
|
||||
if (!right) throw std::runtime_error("BinaryOpExpr.right is null");
|
||||
@ -1378,13 +1390,34 @@ struct ArgumentsExpression {
|
||||
}
|
||||
};
|
||||
|
||||
static std::string strip(const std::string & s) {
|
||||
auto start = s.find_first_not_of(" \t\n\r");
|
||||
static std::string strip(const std::string & s, const std::string & chars = "", bool left = true, bool right = true) {
|
||||
auto charset = chars.empty() ? " \t\n\r" : chars;
|
||||
auto start = left ? s.find_first_not_of(charset) : 0;
|
||||
if (start == std::string::npos) return "";
|
||||
auto end = s.find_last_not_of(" \t\n\r");
|
||||
auto end = right ? s.find_last_not_of(charset) : s.size() - 1;
|
||||
return s.substr(start, end - start + 1);
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & s, const std::string & sep) {
|
||||
std::vector<std::string> result;
|
||||
size_t start = 0;
|
||||
size_t end = s.find(sep);
|
||||
while (end != std::string::npos) {
|
||||
result.push_back(s.substr(start, end - start));
|
||||
start = end + sep.length();
|
||||
end = s.find(sep, start);
|
||||
}
|
||||
result.push_back(s.substr(start));
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string capitalize(const std::string & s) {
|
||||
if (s.empty()) return s;
|
||||
auto result = s;
|
||||
result[0] = std::toupper(result[0]);
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string html_escape(const std::string & s) {
|
||||
std::string result;
|
||||
result.reserve(s.size());
|
||||
@ -1406,8 +1439,8 @@ class MethodCallExpr : public Expression {
|
||||
std::shared_ptr<VariableExpr> method;
|
||||
ArgumentsExpression args;
|
||||
public:
|
||||
MethodCallExpr(const Location & location, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
|
||||
: Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
|
||||
MethodCallExpr(const Location & loc, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
|
||||
: Expression(loc), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!object) throw std::runtime_error("MethodCallExpr.object is null");
|
||||
if (!method) throw std::runtime_error("MethodCallExpr.method is null");
|
||||
@ -1460,8 +1493,29 @@ public:
|
||||
} else if (obj.is_string()) {
|
||||
auto str = obj.get<std::string>();
|
||||
if (method->get_name() == "strip") {
|
||||
vargs.expectArgs("strip method", {0, 0}, {0, 0});
|
||||
return Value(strip(str));
|
||||
vargs.expectArgs("strip method", {0, 1}, {0, 0});
|
||||
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
|
||||
return Value(strip(str, chars));
|
||||
} else if (method->get_name() == "lstrip") {
|
||||
vargs.expectArgs("lstrip method", {0, 1}, {0, 0});
|
||||
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
|
||||
return Value(strip(str, chars, /* left= */ true, /* right= */ false));
|
||||
} else if (method->get_name() == "rstrip") {
|
||||
vargs.expectArgs("rstrip method", {0, 1}, {0, 0});
|
||||
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
|
||||
return Value(strip(str, chars, /* left= */ false, /* right= */ true));
|
||||
} else if (method->get_name() == "split") {
|
||||
vargs.expectArgs("split method", {1, 1}, {0, 0});
|
||||
auto sep = vargs.args[0].get<std::string>();
|
||||
auto parts = split(str, sep);
|
||||
Value result = Value::array();
|
||||
for (const auto& part : parts) {
|
||||
result.push_back(Value(part));
|
||||
}
|
||||
return result;
|
||||
} else if (method->get_name() == "capitalize") {
|
||||
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
|
||||
return Value(capitalize(str));
|
||||
} else if (method->get_name() == "endswith") {
|
||||
vargs.expectArgs("endswith method", {1, 1}, {0, 0});
|
||||
auto suffix = vargs.args[0].get<std::string>();
|
||||
@ -1484,8 +1538,8 @@ class CallExpr : public Expression {
|
||||
public:
|
||||
std::shared_ptr<Expression> object;
|
||||
ArgumentsExpression args;
|
||||
CallExpr(const Location & location, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
|
||||
: Expression(location), object(std::move(obj)), args(std::move(a)) {}
|
||||
CallExpr(const Location & loc, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
|
||||
: Expression(loc), object(std::move(obj)), args(std::move(a)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
if (!object) throw std::runtime_error("CallExpr.object is null");
|
||||
auto obj = object->evaluate(context);
|
||||
@ -1500,8 +1554,8 @@ public:
|
||||
class FilterExpr : public Expression {
|
||||
std::vector<std::shared_ptr<Expression>> parts;
|
||||
public:
|
||||
FilterExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && p)
|
||||
: Expression(location), parts(std::move(p)) {}
|
||||
FilterExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && p)
|
||||
: Expression(loc), parts(std::move(p)) {}
|
||||
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
|
||||
Value result;
|
||||
bool first = true;
|
||||
@ -1792,7 +1846,7 @@ private:
|
||||
auto left = parseStringConcat();
|
||||
if (!left) throw std::runtime_error("Expected left side of 'logical compare' expression");
|
||||
|
||||
static std::regex compare_tok(R"(==|!=|<=?|>=?|in\b|is\b|not[\r\n\s]+in\b)");
|
||||
static std::regex compare_tok(R"(==|!=|<=?|>=?|in\b|is\b|not\s+in\b)");
|
||||
static std::regex not_tok(R"(not\b)");
|
||||
std::string op_str;
|
||||
while (!(op_str = consumeToken(compare_tok)).empty()) {
|
||||
@ -2171,7 +2225,7 @@ private:
|
||||
using TemplateTokenIterator = TemplateTokenVector::const_iterator;
|
||||
|
||||
std::vector<std::string> parseVarNames() {
|
||||
static std::regex varnames_regex(R"(((?:\w+)(?:[\r\n\s]*,[\r\n\s]*(?:\w+))*)[\r\n\s]*)");
|
||||
static std::regex varnames_regex(R"(((?:\w+)(?:\s*,\s*(?:\w+))*)\s*)");
|
||||
|
||||
std::vector<std::string> group;
|
||||
if ((group = consumeTokenGroups(varnames_regex)).empty()) throw std::runtime_error("Expected variable names");
|
||||
@ -2194,13 +2248,13 @@ private:
|
||||
}
|
||||
|
||||
TemplateTokenVector tokenize() {
|
||||
static std::regex comment_tok(R"(\{#([-~]?)([\s\S\r\n]*?)([-~]?)#\})");
|
||||
static std::regex comment_tok(R"(\{#([-~]?)([\s\S]*?)([-~]?)#\})");
|
||||
static std::regex expr_open_regex(R"(\{\{([-~])?)");
|
||||
static std::regex block_open_regex(R"(^\{%([-~])?[\s\n\r]*)");
|
||||
static std::regex block_open_regex(R"(^\{%([-~])?\s*)");
|
||||
static std::regex block_keyword_tok(R"((if|else|elif|endif|for|endfor|generation|endgeneration|set|endset|block|endblock|macro|endmacro|filter|endfilter|break|continue)\b)");
|
||||
static std::regex non_text_open_regex(R"(\{\{|\{%|\{#)");
|
||||
static std::regex expr_close_regex(R"([\s\n\r]*([-~])?\}\})");
|
||||
static std::regex block_close_regex(R"([\s\n\r]*([-~])?%\})");
|
||||
static std::regex expr_close_regex(R"(\s*([-~])?\}\})");
|
||||
static std::regex block_close_regex(R"(\s*([-~])?%\})");
|
||||
|
||||
TemplateTokenVector tokens;
|
||||
std::vector<std::string> group;
|
||||
@ -2284,7 +2338,7 @@ private:
|
||||
auto post_space = parseBlockClose();
|
||||
tokens.push_back(std::make_unique<EndGenerationTemplateToken>(location, pre_space, post_space));
|
||||
} else if (keyword == "set") {
|
||||
static std::regex namespaced_var_regex(R"((\w+)[\s\n\r]*\.[\s\n\r]*(\w+))");
|
||||
static std::regex namespaced_var_regex(R"((\w+)\s*\.\s*(\w+))");
|
||||
|
||||
std::string ns;
|
||||
std::vector<std::string> var_names;
|
||||
@ -2336,6 +2390,11 @@ private:
|
||||
throw std::runtime_error("Unexpected block: " + keyword);
|
||||
}
|
||||
} else if (std::regex_search(it, end, match, non_text_open_regex)) {
|
||||
if (!match.position()) {
|
||||
if (match[0] != "{#")
|
||||
throw std::runtime_error("Internal error: Expected a comment");
|
||||
throw std::runtime_error("Missing end of comment tag");
|
||||
}
|
||||
auto text_end = it + match.position();
|
||||
text = std::string(it, text_end);
|
||||
it = text_end;
|
||||
@ -2400,7 +2459,7 @@ private:
|
||||
|
||||
auto text = text_token->text;
|
||||
if (post_space == SpaceHandling::Strip) {
|
||||
static std::regex trailing_space_regex(R"((\s|\r|\n)+$)");
|
||||
static std::regex trailing_space_regex(R"(\s+$)");
|
||||
text = std::regex_replace(text, trailing_space_regex, "");
|
||||
} else if (options.lstrip_blocks && it != end) {
|
||||
auto i = text.size();
|
||||
@ -2410,10 +2469,10 @@ private:
|
||||
}
|
||||
}
|
||||
if (pre_space == SpaceHandling::Strip) {
|
||||
static std::regex leading_space_regex(R"(^(\s|\r|\n)+)");
|
||||
static std::regex leading_space_regex(R"(^\s+)");
|
||||
text = std::regex_replace(text, leading_space_regex, "");
|
||||
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
|
||||
if (text.length() > 0 && text[0] == '\n') {
|
||||
if (!text.empty() && text[0] == '\n') {
|
||||
text.erase(0, 1);
|
||||
}
|
||||
}
|
||||
@ -2491,7 +2550,7 @@ public:
|
||||
TemplateTokenIterator begin = tokens.begin();
|
||||
auto it = begin;
|
||||
TemplateTokenIterator end = tokens.end();
|
||||
return parser.parseTemplate(begin, it, end, /* full= */ true);
|
||||
return parser.parseTemplate(begin, it, end, /* fully= */ true);
|
||||
}
|
||||
};
|
||||
|
||||
@ -2530,7 +2589,7 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
throw std::runtime_error(args.at("message").get<std::string>());
|
||||
}));
|
||||
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* tojson= */ true));
|
||||
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
|
||||
}));
|
||||
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto items = Value::array();
|
||||
@ -2552,21 +2611,25 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto items = args.at("items");
|
||||
if (!items.is_array()) throw std::runtime_error("object is not a list");
|
||||
if (items.size() == 0) return Value();
|
||||
if (items.empty()) return Value();
|
||||
return items.at(items.size() - 1);
|
||||
}));
|
||||
globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto & text = args.at("text");
|
||||
return text.is_null() ? text : Value(strip(text.get<std::string>()));
|
||||
}));
|
||||
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
|
||||
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
|
||||
return Value(res);
|
||||
}));
|
||||
});
|
||||
};
|
||||
globals.set("lower", char_transform_function("lower", ::tolower));
|
||||
globals.set("upper", char_transform_function("upper", ::toupper));
|
||||
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
|
||||
args.expectArgs("default", {2, 3}, {0, 1});
|
||||
auto & value = args.args[0];
|
||||
@ -2696,12 +2759,17 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
|
||||
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
|
||||
auto & items = args.args[0];
|
||||
if (items.is_null())
|
||||
if (items.is_null()) {
|
||||
return Value::array();
|
||||
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
}
|
||||
if (!items.is_array()) {
|
||||
throw std::runtime_error("object is not iterable: " + items.dump());
|
||||
}
|
||||
|
||||
auto filter_fn = context->get(args.args[1]);
|
||||
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
if (filter_fn.is_null()) {
|
||||
throw std::runtime_error("Undefined filter: " + args.args[1].dump());
|
||||
}
|
||||
|
||||
auto filter_args = Value::array();
|
||||
for (size_t i = 2, n = args.args.size(); i < n; i++) {
|
||||
@ -2827,10 +2895,15 @@ inline std::shared_ptr<Context> Context::builtins() {
|
||||
}
|
||||
for (auto & [name, value] : args.kwargs) {
|
||||
size_t i;
|
||||
if (name == "start") i = 0;
|
||||
else if (name == "end") i = 1;
|
||||
else if (name == "step") i = 2;
|
||||
else throw std::runtime_error("Unknown argument " + name + " for function range");
|
||||
if (name == "start") {
|
||||
i = 0;
|
||||
} else if (name == "end") {
|
||||
i = 1;
|
||||
} else if (name == "step") {
|
||||
i = 2;
|
||||
} else {
|
||||
throw std::runtime_error("Unknown argument " + name + " for function range");
|
||||
}
|
||||
|
||||
if (param_set[i]) {
|
||||
throw std::runtime_error("Duplicate argument " + name + " for function range");
|
@ -7,6 +7,7 @@
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
#include <algorithm>
|
||||
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
@ -134,11 +135,11 @@ std::string common_params_sampling::print() const {
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
@ -151,12 +152,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
std::vector<const char *> trigger_words;
|
||||
trigger_words.reserve(params.grammar_trigger_words.size());
|
||||
for (const auto & str : params.grammar_trigger_words) {
|
||||
trigger_words.push_back(str.word.c_str());
|
||||
}
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
@ -165,11 +160,57 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<std::string> patterns_at_start;
|
||||
std::vector<std::string> patterns_anywhere;
|
||||
std::vector<llama_token> trigger_tokens;
|
||||
for (const auto & trigger : params.grammar_triggers) {
|
||||
switch (trigger.type) {
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
|
||||
{
|
||||
const auto & word = trigger.value;
|
||||
patterns_anywhere.push_back(regex_escape(word));
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
|
||||
{
|
||||
const auto & pattern = trigger.value;
|
||||
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
||||
{
|
||||
const auto token = trigger.token;
|
||||
trigger_tokens.push_back(token);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown trigger type");
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> trigger_patterns;
|
||||
if (!patterns_at_start.empty()) {
|
||||
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
if (!patterns_anywhere.empty()) {
|
||||
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
|
||||
std::vector<const char *> trigger_patterns_c;
|
||||
trigger_patterns_c.reserve(trigger_patterns.size());
|
||||
for (const auto & regex : trigger_patterns) {
|
||||
trigger_patterns_c.push_back(regex.c_str());
|
||||
}
|
||||
|
||||
grmr = params.grammar_lazy
|
||||
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
|
||||
trigger_words.data(), trigger_words.size(),
|
||||
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
|
||||
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
|
||||
trigger_patterns_c.data(), trigger_patterns_c.size(),
|
||||
trigger_tokens.data(), trigger_tokens.size())
|
||||
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
|
||||
if (!grmr) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
auto * result = new common_sampler {
|
||||
@ -188,6 +229,11 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
@ -229,6 +275,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
@ -172,7 +173,7 @@ llama_tokens common_speculative_gen_draft(
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
@ -191,14 +192,14 @@ llama_tokens common_speculative_gen_draft(
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
|
||||
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
@ -252,11 +253,6 @@ llama_tokens common_speculative_gen_draft(
|
||||
// add drafted token for each sequence
|
||||
const llama_token id = cur_p->data[0].id;
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
@ -265,6 +261,11 @@ llama_tokens common_speculative_gen_draft(
|
||||
break;
|
||||
}
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
|
@ -9,7 +9,7 @@ struct common_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
|
||||
float p_min = 0.75f; // min probability required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
|
@ -65,6 +65,7 @@ class Model:
|
||||
model_name: str | None
|
||||
metadata_override: Path | None
|
||||
dir_model_card: Path
|
||||
remote_hf_model_id: str | None
|
||||
|
||||
# subclasses should define this!
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
@ -73,7 +74,7 @@ class Model:
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
|
||||
if type(self) is Model:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
@ -83,7 +84,20 @@ class Model:
|
||||
self.is_big_endian = is_big_endian
|
||||
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
|
||||
self.use_temp_file = use_temp_file
|
||||
self.lazy = not eager
|
||||
self.lazy = not eager or (remote_hf_model_id is not None)
|
||||
self.remote_hf_model_id = remote_hf_model_id
|
||||
if remote_hf_model_id is not None:
|
||||
self.is_safetensors = True
|
||||
|
||||
def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
|
||||
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
|
||||
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
|
||||
self.tensor_names = set(name for name in remote_tensors.keys())
|
||||
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
|
||||
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
|
||||
|
||||
self.get_tensors = get_remote_tensors
|
||||
else:
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
|
||||
self.is_safetensors = len(self.part_names) > 0
|
||||
if not self.is_safetensors:
|
||||
@ -180,7 +194,8 @@ class Model:
|
||||
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
|
||||
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
|
||||
if len(extra) == 0 and len(missing_files) > 0:
|
||||
raise ValueError(f"Missing or incomplete model files: {missing_files}")
|
||||
raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
|
||||
f"Missing tensors: {missing}")
|
||||
else:
|
||||
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
|
||||
f"Missing tensors: {missing}\n"
|
||||
@ -392,6 +407,10 @@ class Model:
|
||||
|
||||
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
|
||||
|
||||
# If we are using HF model id, set the metadata name to the model id
|
||||
if self.remote_hf_model_id:
|
||||
self.metadata.name = self.remote_hf_model_id
|
||||
|
||||
# Fallback to model directory name if metadata name is still missing
|
||||
if self.metadata.name is None:
|
||||
self.metadata.name = self.dir_model.name
|
||||
@ -528,6 +547,8 @@ class Model:
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
added_tokens_decoder = tokenizer.added_tokens_decoder
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
@ -537,13 +558,13 @@ class Model:
|
||||
if token in added_vocab:
|
||||
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
|
||||
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
|
||||
if not tokenizer.added_tokens_decoder[i].normalized:
|
||||
if not added_tokens_decoder[i].normalized:
|
||||
previous_token = token
|
||||
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
|
||||
if previous_token != token:
|
||||
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
|
||||
|
||||
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||||
if added_tokens_decoder[i].special or self.does_token_look_special(token):
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
# NOTE: this was added for Gemma.
|
||||
@ -558,7 +579,7 @@ class Model:
|
||||
|
||||
# NOTE: this function is generated by convert_hf_to_gguf_update.py
|
||||
# do not modify it manually!
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
# Marker: Start get_vocab_base_pre
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||||
@ -699,6 +720,24 @@ class Model:
|
||||
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
|
||||
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
||||
res = "deepseek-r1-qwen"
|
||||
if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
|
||||
# ref: https://huggingface.co/Xenova/gpt-4o
|
||||
res = "gpt-4o"
|
||||
if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
|
||||
# ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
|
||||
res = "superbpe"
|
||||
if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
|
||||
# ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
|
||||
res = "trillion"
|
||||
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
|
||||
# ref: https://huggingface.co/inclusionAI/Ling-lite
|
||||
res = "bailingmoe"
|
||||
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
|
||||
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
|
||||
res = "llama4"
|
||||
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
|
||||
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
|
||||
res = "glm4"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@ -708,7 +747,7 @@ class Model:
|
||||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {chkhsh}")
|
||||
logger.warning("**************************************************************************************")
|
||||
@ -858,6 +897,9 @@ class Model:
|
||||
for token_id, token_data in added_tokens_decoder.items():
|
||||
token_id = int(token_id)
|
||||
token: str = token_data["content"]
|
||||
if token_id >= vocab_size:
|
||||
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
|
||||
if tokens[token_id] != token.encode("utf-8"):
|
||||
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
|
||||
@ -902,6 +944,40 @@ class Model:
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_rwkv_world(self):
|
||||
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
|
||||
vocab_size = self.hparams.get("vocab_size", 65536)
|
||||
|
||||
tokens: list[bytes] = ['<s>'.encode("utf-8")]
|
||||
toktypes: list[int] = [gguf.TokenType.CONTROL]
|
||||
|
||||
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
parts = line.split(' ')
|
||||
assert len(parts) >= 3
|
||||
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
|
||||
token = token.encode("utf-8") if isinstance(token, str) else token
|
||||
assert isinstance(token, bytes)
|
||||
assert len(token) == token_len
|
||||
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
|
||||
tokens.append(token_text.encode("utf-8"))
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
remainder = vocab_size - len(tokens)
|
||||
assert remainder >= 0
|
||||
for i in range(len(tokens), vocab_size):
|
||||
tokens.append(f"[PAD{i}]".encode("utf-8"))
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("rwkv")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.chat_template = "rwkv-world"
|
||||
# hack: Add '\n\n' as the EOT token to make it chat normally
|
||||
special_vocab._set_special_token("eot", 261)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
|
||||
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
|
||||
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
|
||||
@ -1059,13 +1135,6 @@ class BloomModel(Model):
|
||||
|
||||
tensors.append((self.map_tensor_name(name), data_torch))
|
||||
|
||||
if name == "word_embeddings.weight":
|
||||
assert self.tensor_names is not None
|
||||
|
||||
# TODO: tie them at runtime, don't duplicate in the model file
|
||||
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
|
||||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
|
||||
@ -1563,6 +1632,7 @@ class StableLMModel(Model):
|
||||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
undo_permute = True
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
@ -1627,6 +1697,7 @@ class LlamaModel(Model):
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
|
||||
if self.undo_permute:
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
@ -1682,7 +1753,7 @@ class LlamaModel(Model):
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
assert low_freq_wavelen != high_freq_wavelen
|
||||
# assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
|
||||
|
||||
rope_factors = []
|
||||
for freq in freqs:
|
||||
@ -1707,6 +1778,76 @@ class LlamaModel(Model):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("Llama4ForConditionalGeneration")
|
||||
class Llama4Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA4
|
||||
has_vision: bool = False
|
||||
undo_permute = False
|
||||
|
||||
# TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
|
||||
# same with llama, but we need to merge the text_config into the root level of hparams
|
||||
def __init__(self, *args, **kwargs):
|
||||
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
|
||||
if "text_config" in hparams:
|
||||
hparams = {**hparams, **hparams["text_config"]}
|
||||
kwargs["hparams"] = hparams
|
||||
super().__init__(*args, **kwargs)
|
||||
if "vision_config" in hparams:
|
||||
logger.info("Has vision encoder, but it will be ignored")
|
||||
self.has_vision = True
|
||||
# IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
|
||||
self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
|
||||
self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
# split the gate_up into gate and up
|
||||
if "gate_up_proj" in name:
|
||||
name_up = name.replace("gate_up_proj", "up_proj.weight")
|
||||
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
|
||||
dim_half = data_torch.shape[-1] // 2
|
||||
gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
|
||||
return [
|
||||
(self.map_tensor_name(name_gate), gate_proj_weight),
|
||||
(self.map_tensor_name(name_up), up_proj_weight)
|
||||
]
|
||||
|
||||
if name.endswith("down_proj"):
|
||||
name += ".weight"
|
||||
data_torch = data_torch.transpose(-1, -2)
|
||||
|
||||
if "multi_modal_projector" in name or "vision_model" in name:
|
||||
return []
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("Mistral3ForConditionalGeneration")
|
||||
class Mistral3Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
# we need to merge the text_config into the root level of hparams
|
||||
def __init__(self, *args, **kwargs):
|
||||
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
|
||||
if "text_config" in hparams:
|
||||
hparams = {**hparams, **hparams["text_config"]}
|
||||
kwargs["hparams"] = hparams
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
name = name.replace("language_model.", "")
|
||||
if "multi_modal_projector" in name or "vision_tower" in name:
|
||||
return []
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("DeciLMForCausalLM")
|
||||
class DeciModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.DECI
|
||||
@ -2211,7 +2352,7 @@ class Qwen2Model(Model):
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@Model.register("Qwen2VLForConditionalGeneration")
|
||||
@Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||
class Qwen2VLModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN2VL
|
||||
|
||||
@ -2335,6 +2476,16 @@ class Qwen2MoeModel(Model):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("Qwen3ForCausalLM")
|
||||
class Qwen3Model(Qwen2Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3
|
||||
|
||||
|
||||
@Model.register("Qwen3MoeForCausalLM")
|
||||
class Qwen3MoeModel(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3MOE
|
||||
|
||||
|
||||
@Model.register("GPT2LMHeadModel")
|
||||
class GPT2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
@ -2364,10 +2515,6 @@ class GPT2Model(Model):
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
# note: GPT2 output is tied to (same as) wte in original model
|
||||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
|
||||
@ -2512,7 +2659,8 @@ class Phi3MiniModel(Model):
|
||||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||||
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||
rope_dims = n_embd // n_head
|
||||
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
|
||||
rope_dims = int(rot_pct * n_embd) // n_head
|
||||
|
||||
self.gguf_writer.add_context_length(max_pos_embds)
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||||
@ -2536,7 +2684,8 @@ class Phi3MiniModel(Model):
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||
rope_dims = n_embd // n_head
|
||||
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
|
||||
rope_dims = int(rot_pct * n_embd) // n_head
|
||||
|
||||
# write rope scaling for long context (128k) model
|
||||
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||||
@ -2565,7 +2714,7 @@ class Phi3MiniModel(Model):
|
||||
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||||
|
||||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
|
||||
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
|
||||
@ -2695,21 +2844,26 @@ class CodeShellModel(Model):
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
_has_tok_embd = False
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
|
||||
# assuming token_embd.weight is seen before output.weight
|
||||
if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
|
||||
# even though the tensor file(s) does not contain the word embeddings they are still in the weight map
|
||||
if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
|
||||
logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
|
||||
self.tensor_names.remove("transformer.wte.weight")
|
||||
elif new_name == tok_embd_name:
|
||||
self._has_tok_embd = True
|
||||
|
||||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||||
assert self.tensor_names is not None
|
||||
|
||||
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
|
||||
# copy tok_embd.weight to output.weight
|
||||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
|
||||
|
||||
return tensors
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
|
||||
@Model.register("InternLM2ForCausalLM")
|
||||
@ -2835,7 +2989,7 @@ class InternLM2Model(Model):
|
||||
if chat_eos_token_id is not None:
|
||||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||||
# TODO: this is a hack, should be fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
# https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
special_vocab.special_token_ids["eos"] = chat_eos_token_id
|
||||
logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
|
||||
" in chat mode so that the conversation can end normally.")
|
||||
@ -3317,6 +3471,83 @@ class Gemma2Model(Model):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
|
||||
class Gemma3Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GEMMA3
|
||||
has_vision: bool = False
|
||||
|
||||
# we need to merge the text_config into the root level of hparams
|
||||
def __init__(self, *args, **kwargs):
|
||||
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
|
||||
if "text_config" in hparams:
|
||||
hparams = {**hparams, **hparams["text_config"]}
|
||||
kwargs["hparams"] = hparams
|
||||
super().__init__(*args, **kwargs)
|
||||
if "vision_config" in hparams:
|
||||
logger.info("Has vision encoder, but it will be ignored")
|
||||
self.has_vision = True
|
||||
|
||||
def write(self):
|
||||
super().write()
|
||||
if self.has_vision:
|
||||
logger.info("NOTE: this script only convert the language model to GGUF")
|
||||
logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
self.gguf_writer.add_add_space_prefix(False)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
# some default values are not specified in the hparams
|
||||
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
|
||||
self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
|
||||
self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
|
||||
# both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
|
||||
assert hparams.get("attn_logit_softcapping") is None
|
||||
assert hparams.get("final_logit_softcapping") is None
|
||||
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
|
||||
self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
|
||||
if hparams.get("rope_scaling") is not None:
|
||||
assert hparams["rope_scaling"]["rope_type"] == "linear"
|
||||
# important: this rope_scaling is only applied for global layers, and not used by 1B model
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
if name.startswith("language_model."):
|
||||
name = name.replace("language_model.", "")
|
||||
elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
|
||||
or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
|
||||
# ignore vision tensors
|
||||
return []
|
||||
|
||||
# remove OOV (out-of-vocabulary) rows in token_embd
|
||||
if "embed_tokens.weight" in name:
|
||||
vocab = self._create_vocab_sentencepiece()
|
||||
tokens = vocab[0]
|
||||
data_torch = data_torch[:len(tokens)]
|
||||
|
||||
# ref code in Gemma3RMSNorm
|
||||
# output = output * (1.0 + self.weight.float())
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("Starcoder2ForCausalLM")
|
||||
class StarCoder2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
@ -3327,38 +3558,7 @@ class Rwkv6Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.RWKV6
|
||||
|
||||
def set_vocab(self):
|
||||
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
|
||||
vocab_size = self.hparams.get("vocab_size", 65536)
|
||||
|
||||
tokens: list[bytes] = ['<s>'.encode("utf-8")]
|
||||
toktypes: list[int] = [gguf.TokenType.CONTROL]
|
||||
|
||||
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
parts = line.split(' ')
|
||||
assert len(parts) >= 3
|
||||
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
|
||||
token = token.encode("utf-8") if isinstance(token, str) else token
|
||||
assert isinstance(token, bytes)
|
||||
assert len(token) == token_len
|
||||
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
|
||||
tokens.append(token_text.encode("utf-8"))
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
remainder = vocab_size - len(tokens)
|
||||
assert remainder >= 0
|
||||
for i in range(len(tokens), vocab_size):
|
||||
tokens.append(f"[PAD{i}]".encode("utf-8"))
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("rwkv")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.chat_template = "rwkv-world"
|
||||
# hack: Add '\n\n' as the EOT token to make it chat normally
|
||||
special_vocab._set_special_token("eot", 261)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
self._set_vocab_rwkv_world()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
@ -3444,8 +3644,8 @@ class RWKV6Qwen2Model(Rwkv6Model):
|
||||
head_size = hidden_size // num_attention_heads
|
||||
rms_norm_eps = self.hparams["rms_norm_eps"]
|
||||
intermediate_size = self.hparams["intermediate_size"]
|
||||
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
|
||||
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
|
||||
time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
|
||||
time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
@ -3480,6 +3680,168 @@ class RWKV6Qwen2Model(Rwkv6Model):
|
||||
yield (new_name, data)
|
||||
|
||||
|
||||
@Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
|
||||
class Rwkv7Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.RWKV7
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_rwkv_world()
|
||||
|
||||
def calc_lora_rank(self, hidden_size, exponent, multiplier):
|
||||
return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
try:
|
||||
head_size = self.hparams["head_size"]
|
||||
layer_norm_eps = self.hparams["layer_norm_epsilon"]
|
||||
except KeyError:
|
||||
head_size = self.hparams["head_dim"]
|
||||
layer_norm_eps = self.hparams["norm_eps"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
|
||||
|
||||
# ICLR: In-Context-Learning-Rate
|
||||
try:
|
||||
lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
|
||||
lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
|
||||
lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
|
||||
lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
|
||||
except KeyError:
|
||||
lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
|
||||
lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
|
||||
lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
|
||||
lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
|
||||
self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
|
||||
self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
|
||||
self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
|
||||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
# required by llama.cpp, unused
|
||||
self.gguf_writer.add_head_count(0)
|
||||
|
||||
lerp_weights: dict[int, dict[str, Tensor]] = {}
|
||||
lora_needs_transpose: bool = True
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# unify tensor names here to make life easier
|
||||
name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
|
||||
name = name.replace("self_attn", "attention").replace("attn", "attention")
|
||||
name = name.replace("time_mixer.", "")
|
||||
# lora layer names in fla-hub's impl
|
||||
if "_lora.lora" in name:
|
||||
self.lora_needs_transpose = False
|
||||
name = name.replace("_lora.lora.0.weight", "1.weight")
|
||||
name = name.replace("_lora.lora.2.weight", "2.weight")
|
||||
name = name.replace("_lora.lora.2.bias", "0.weight")
|
||||
|
||||
name = name.replace("feed_forward_norm", "ln2")
|
||||
name = name.replace("g_norm", "ln_x")
|
||||
|
||||
if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
|
||||
# some models have dummy v0/v1/v2 on first layer while others don't
|
||||
# ignore them all since they are not used
|
||||
return
|
||||
|
||||
wkv_has_gate = self.hparams.get("wkv_has_gate", True)
|
||||
lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
|
||||
|
||||
if bid is not None and "attention.x_" in name:
|
||||
if "attention.x_x" in name:
|
||||
# already concatenated
|
||||
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
|
||||
data = data_torch.reshape(len(lerp_list), 1, 1, -1)
|
||||
yield (new_name, data)
|
||||
else:
|
||||
try:
|
||||
self.lerp_weights[bid][name] = data_torch
|
||||
except KeyError:
|
||||
self.lerp_weights[bid] = {name: data_torch}
|
||||
if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
|
||||
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
|
||||
data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
|
||||
yield (new_name, data)
|
||||
return
|
||||
else:
|
||||
data_torch = data_torch.squeeze()
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
|
||||
new_name += ".weight"
|
||||
|
||||
if self.lora_needs_transpose and any(
|
||||
new_name.endswith(t) for t in [
|
||||
"time_mix_w1.weight", "time_mix_w2.weight",
|
||||
"time_mix_a1.weight", "time_mix_a2.weight",
|
||||
"time_mix_v1.weight", "time_mix_v2.weight",
|
||||
"time_mix_g1.weight", "time_mix_g2.weight",
|
||||
]
|
||||
):
|
||||
data_torch = data_torch.transpose(0, 1)
|
||||
|
||||
if 'r_k' in new_name:
|
||||
data_torch = data_torch.flatten()
|
||||
|
||||
if bid == 0 and "time_mix_a" in new_name:
|
||||
# dummy v0/v1/v2 on first layer
|
||||
# easist way to make llama happy
|
||||
yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
|
||||
|
||||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@Model.register("RwkvHybridForCausalLM")
|
||||
class ARwkv7Model(Rwkv7Model):
|
||||
model_arch = gguf.MODEL_ARCH.ARWKV7
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
head_size = self.hparams["head_size"]
|
||||
rms_norm_eps = self.hparams["rms_norm_eps"]
|
||||
intermediate_size = self.hparams["intermediate_size"]
|
||||
wkv_has_gate = self.hparams["wkv_has_gate"]
|
||||
assert self.hparams["wkv_version"] == 7
|
||||
|
||||
# ICLR: In-Context-Learning-Rate
|
||||
lora_rank_decay = 64
|
||||
lora_rank_iclr = 64
|
||||
lora_rank_value_residual_mix = 32
|
||||
lora_rank_gate = 128 if wkv_has_gate else 0
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
|
||||
self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
|
||||
self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
|
||||
self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
|
||||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_token_shift_count(1)
|
||||
|
||||
# required by llama.cpp, unused
|
||||
self.gguf_writer.add_head_count(0)
|
||||
|
||||
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||||
class MambaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||||
@ -3534,8 +3896,6 @@ class MambaModel(Model):
|
||||
_tok_embd = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
|
||||
|
||||
@ -3545,6 +3905,10 @@ class MambaModel(Model):
|
||||
logger.debug("A_log --> A ==> " + new_name)
|
||||
data_torch = -torch.exp(data_torch)
|
||||
|
||||
# [4 1 8192 1] -> [4 8192 1 1]
|
||||
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
|
||||
data_torch = data_torch.squeeze()
|
||||
|
||||
# assuming token_embd.weight is seen before output.weight
|
||||
if self._tok_embd is not None and new_name == output_name:
|
||||
if torch.equal(self._tok_embd, data_torch):
|
||||
@ -4148,6 +4512,29 @@ class DeepseekV2Model(Model):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("PLMForCausalLM")
|
||||
class PLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PLM
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
|
||||
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
|
||||
self.gguf_writer.add_value_length(hparams["v_head_dim"])
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
|
||||
@Model.register("T5WithLMHeadModel")
|
||||
@Model.register("T5ForConditionalGeneration")
|
||||
@Model.register("MT5ForConditionalGeneration")
|
||||
@ -4513,6 +4900,22 @@ class JaisModel(Model):
|
||||
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
|
||||
|
||||
|
||||
@Model.register("Glm4ForCausalLM")
|
||||
class Glm4Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GLM4
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||
|
||||
|
||||
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
|
||||
class ChatGLMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.CHATGLM
|
||||
@ -4836,6 +5239,105 @@ class GraniteMoeModel(GraniteModel):
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@Model.register("BailingMoeForCausalLM")
|
||||
class BailingMoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BAILINGMOE
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_weights_scale(1.0)
|
||||
self.gguf_writer.add_expert_count(hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
|
||||
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_embd = self.hparams["hidden_size"]
|
||||
head_dim = self.hparams.get("head_dim") or n_embd // n_head
|
||||
|
||||
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
|
||||
|
||||
if name.endswith("attention.dense.weight"):
|
||||
return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
|
||||
elif name.endswith("query_key_value.weight"):
|
||||
q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
|
||||
|
||||
return [
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
|
||||
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
|
||||
]
|
||||
elif name.find("mlp.experts") != -1:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
return tensors
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if new_name == output_name and self.hparams.get("norm_head"):
|
||||
data_torch = data_torch.float()
|
||||
data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
|
||||
|
||||
return [(new_name, data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@Model.register("ChameleonForConditionalGeneration")
|
||||
@Model.register("ChameleonForCausalLM") # obsolete
|
||||
class ChameleonModel(Model):
|
||||
@ -4934,6 +5436,14 @@ class LazyTorchTensor(gguf.LazyBase):
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
|
||||
dtype = cls._dtype_str_map[remote_tensor.dtype]
|
||||
shape = remote_tensor.shape
|
||||
meta = cls.meta_with_dtype_and_shape(dtype, shape)
|
||||
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||
del types # unused
|
||||
@ -5011,6 +5521,10 @@ def parse_args() -> argparse.Namespace:
|
||||
"--print-supported-models", action="store_true",
|
||||
help="Print the supported models"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--remote", action="store_true",
|
||||
help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if not args.print_supported_models and args.model is None:
|
||||
@ -5051,6 +5565,14 @@ def main() -> None:
|
||||
|
||||
dir_model = args.model
|
||||
|
||||
if args.remote:
|
||||
from huggingface_hub import snapshot_download
|
||||
local_dir = snapshot_download(
|
||||
repo_id=str(dir_model),
|
||||
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
|
||||
dir_model = Path(local_dir)
|
||||
logger.info(f"Downloaded config and tokenizer to {local_dir}")
|
||||
|
||||
if not dir_model.is_dir():
|
||||
logger.error(f'Error: {args.model} is not a directory')
|
||||
sys.exit(1)
|
||||
@ -5072,6 +5594,9 @@ def main() -> None:
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
elif args.remote:
|
||||
# if remote, use the model ID as the output file name
|
||||
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
|
||||
else:
|
||||
fname_out = dir_model
|
||||
|
||||
@ -5082,20 +5607,20 @@ def main() -> None:
|
||||
with torch.inference_mode():
|
||||
output_type = ftype_map[args.outtype]
|
||||
model_architecture = hparams["architectures"][0]
|
||||
|
||||
try:
|
||||
model_class = Model.from_model_architecture(model_architecture)
|
||||
except NotImplementedError:
|
||||
logger.error(f"Model {model_architecture} is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
|
||||
model_instance = model_class(dir_model, output_type, fname_out,
|
||||
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
|
||||
eager=args.no_lazy,
|
||||
metadata_override=args.metadata, model_name=args.model_name,
|
||||
split_max_tensors=args.split_max_tensors,
|
||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||
small_first_shard=args.no_tensor_first_split)
|
||||
small_first_shard=args.no_tensor_first_split,
|
||||
remote_hf_model_id=str(args.model) if args.remote else None)
|
||||
|
||||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
|
@ -8,7 +8,7 @@
|
||||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
# the same pre-tokenizer.
|
||||
#
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
#
|
||||
# Instructions:
|
||||
#
|
||||
@ -109,6 +109,12 @@ models = [
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
|
||||
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
|
||||
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
|
||||
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
|
||||
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
|
||||
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
|
||||
]
|
||||
|
||||
|
||||
@ -131,6 +137,10 @@ def download_model(model):
|
||||
|
||||
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||||
|
||||
if name == "gpt-4o":
|
||||
# Xenova/gpt-4o is tokenizer-only, it does not contain config.json
|
||||
files = ["tokenizer.json", "tokenizer_config.json"]
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
files.append("tokenizer.model")
|
||||
|
||||
@ -246,7 +256,7 @@ src_func = f"""
|
||||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {{chkhsh}}")
|
||||
logger.warning("**************************************************************************************")
|
||||
|
@ -395,7 +395,7 @@ if __name__ == '__main__':
|
||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
|
||||
logger.error("Please refer to https://github.com/ggml-org/llama.cpp/pull/9948")
|
||||
sys.exit(1)
|
||||
|
||||
if base_name in tensor_map:
|
||||
@ -419,7 +419,7 @@ if __name__ == '__main__':
|
||||
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
||||
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
||||
# therefore, we ignore them for now
|
||||
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
||||
# see: https://github.com/ggml-org/llama.cpp/issues/9065
|
||||
if name == "lm_head.weight" and len(dest) == 0:
|
||||
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||
for dest_name, dest_data in dest:
|
||||
|
@ -12,7 +12,7 @@ $ apt update && apt upgrade -y
|
||||
$ apt install git cmake
|
||||
```
|
||||
|
||||
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
Then, follow the [build instructions](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
|
||||
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:
|
||||
|
||||
|
@ -14,9 +14,7 @@ In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox
|
||||
- [Creating a Fedora Toolbox Environment](#creating-a-fedora-toolbox-environment)
|
||||
- [Installing Essential Development Tools](#installing-essential-development-tools)
|
||||
- [Adding the CUDA Repository](#adding-the-cuda-repository)
|
||||
- [Installing `nvidia-driver-libs`](#installing-nvidia-driver-libs)
|
||||
- [Manually Resolving Package Conflicts](#manually-resolving-package-conflicts)
|
||||
- [Finalizing the Installation of `nvidia-driver-libs`](#finalizing-the-installation-of-nvidia-driver-libs)
|
||||
- [Installing Nvidia Driver Libraries](#installing-nvidia-driver-libraries)
|
||||
- [Installing the CUDA Meta-Package](#installing-the-cuda-meta-package)
|
||||
- [Configuring the Environment](#configuring-the-environment)
|
||||
- [Verifying the Installation](#verifying-the-installation)
|
||||
@ -67,7 +65,7 @@ This guide focuses on Fedora hosts, but with small adjustments, it can work for
|
||||
sudo dnf distro-sync
|
||||
```
|
||||
|
||||
2. **Install the Default Text Editor (Optional):**
|
||||
2. **Install **Vim** the default text editor (Optional):**
|
||||
|
||||
```bash
|
||||
sudo dnf install vim-default-editor --allowerasing
|
||||
@ -97,36 +95,48 @@ After adding the repository, synchronize the package manager again:
|
||||
sudo dnf distro-sync
|
||||
```
|
||||
|
||||
## Installing `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
|
||||
## Installing Nvidia Driver Libraries
|
||||
|
||||
We need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go).
|
||||
First, we need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go):
|
||||
|
||||
```bash
|
||||
ls -la /usr/lib64/libcuda.so.1
|
||||
```
|
||||
|
||||
### If *`libcuda.so.1`* is missing:
|
||||
|
||||
```
|
||||
ls: cannot access '/usr/lib64/libcuda.so.1': No such file or directory
|
||||
```
|
||||
|
||||
**Explanation:**
|
||||
The host dose not supply the CUDA drivers, **install them now:**
|
||||
|
||||
- `nvidia-driver-libs` and `nvidia-driver-cuda-libs` contains necessary NVIDIA driver libraries required by CUDA,
|
||||
on hosts with NVIDIA drivers installed the Fedora Container will supply the host libraries.
|
||||
|
||||
### Install Nvidia Driver Libraries on Guest (if `libcuda.so.1` was NOT found).
|
||||
#### Install the Nvidia Driver Libraries on Guest:
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
|
||||
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
|
||||
```
|
||||
|
||||
### Manually Updating the RPM database for host-supplied NVIDIA drivers (if `libcuda.so.1` was found).
|
||||
### If *`libcuda.so.1`* exists:
|
||||
```
|
||||
lrwxrwxrwx. 1 root root 21 Mar 24 11:26 /usr/lib64/libcuda.so.1 -> libcuda.so.570.133.07
|
||||
```
|
||||
|
||||
If the installation fails due to conflicts, we'll manually download and install the required packages, excluding conflicting files.
|
||||
**Explanation:**
|
||||
The host is supply the CUDA drivers, **we need to update the guest RPM Database accordingly:**
|
||||
|
||||
#### 1. Download `nvidia-driver-libs` and `nvidia-driver-cuda-libs` RPM's (with dependencies)
|
||||
#### Update the Toolbox RPM Database to include the Host-Supplied Libraries:
|
||||
|
||||
Note: we do not actually install the libraries, we just update the DB so that the guest system knows they are supplied by the host.
|
||||
|
||||
##### 1. Download `nvidia-` parts that are supplied by the host RPM's (with dependencies)
|
||||
|
||||
```bash
|
||||
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-libs nvidia-driver-cuda-libs
|
||||
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
|
||||
```
|
||||
|
||||
#### 2. Update the RPM database to assume the installation of these packages.
|
||||
##### 2. Update the RPM database to assume the installation of these packages.
|
||||
|
||||
```bash
|
||||
sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
|
||||
@ -134,23 +144,26 @@ sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
|
||||
|
||||
**Note:**
|
||||
|
||||
- The `--justdb` option only updates the RPM database, without touching the filesystem.
|
||||
- The `--justdb` option only updates the RPM database, without touching the filesystem elsewhere.
|
||||
|
||||
#### Finalizing the Installation of `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
|
||||
##### Check that the RPM Database has been correctly updated:
|
||||
|
||||
**Note:** This is the same command as in the *"Install the Nvidia Driver Libraries on Guest"* for if *`libcuda.so.1`* was missing.
|
||||
|
||||
After manually installing the dependencies, run:
|
||||
|
||||
```bash
|
||||
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
|
||||
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
|
||||
```
|
||||
|
||||
You should receive a message indicating the package is already installed:
|
||||
*(this time it will not install anything, as the database things that these packages are already installed)*
|
||||
|
||||
```
|
||||
Updating and loading repositories:
|
||||
Repositories loaded.
|
||||
Package "nvidia-driver-libs-3:570.86.10-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-cuda-libs-3:570.86.10-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-cuda-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-libs-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-driver-cuda-libs-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
Package "nvidia-persistenced-3:570.124.06-1.fc41.x86_64" is already installed.
|
||||
|
||||
Nothing to do.
|
||||
```
|
||||
@ -207,9 +220,9 @@ You should see output similar to:
|
||||
```
|
||||
nvcc: NVIDIA (R) Cuda compiler driver
|
||||
Copyright (c) 2005-2025 NVIDIA Corporation
|
||||
Built on Wed_Jan_15_19:20:09_PST_2025
|
||||
Cuda compilation tools, release 12.8, V12.8.61
|
||||
Build cuda_12.8.r12.8/compiler.35404655_0
|
||||
Built on Fri_Feb_21_20:23:50_PST_2025
|
||||
Cuda compilation tools, release 12.8, V12.8.93
|
||||
Build cuda_12.8.r12.8/compiler.35583870_0
|
||||
```
|
||||
|
||||
This output confirms that the CUDA compiler is accessible and indicates the installed version.
|
||||
@ -248,7 +261,7 @@ You have successfully set up CUDA on Fedora within a toolbox environment using t
|
||||
|
||||
- **Building `llama.cpp`:**
|
||||
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- Ensure that any CUDA-specific build flags or paths are correctly set in your build configuration.
|
||||
|
||||
- **Using the Toolbox Environment:**
|
209
docs/backend/OPENCL.md
Normal file
209
docs/backend/OPENCL.md
Normal file
@ -0,0 +1,209 @@
|
||||
# llama.cpp for OpenCL
|
||||
|
||||
- [Background](#background)
|
||||
- [OS](#os)
|
||||
- [Hardware](#hardware)
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Model Preparation](#model-preparation)
|
||||
- [CMake Options](#cmake-options)
|
||||
- [Android](#android)
|
||||
- [Windows 11 Arm64](#windows-11-arm64)
|
||||
- [Known Issue](#known-issues)
|
||||
- [TODO](#todo)
|
||||
|
||||
## Background
|
||||
|
||||
OpenCL (Open Computing Language) is an open, royalty-free standard for cross-platform, parallel programming of diverse accelerators found in supercomputers, cloud servers, personal computers, mobile devices and embedded platforms. OpenCL specifies a programming language (based on C99) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices. Similar to CUDA, OpenCL has been widely used to program GPUs and is supported by most GPU vendors.
|
||||
|
||||
### Llama.cpp + OpenCL
|
||||
|
||||
The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adreno GPU** firstly via OpenCL. Thanks to the portabilty of OpenCL, the OpenCL backend can also run on certain Intel GPUs although the performance is not optimal.
|
||||
|
||||
## OS
|
||||
|
||||
| OS | Status | Verified |
|
||||
|---------|---------|------------------------------------------------|
|
||||
| Android | Support | Snapdragon 8 Gen 3, Snapdragon 8 Elite |
|
||||
| Windows | Support | Windows 11 Arm64 with Snapdragon X Elite |
|
||||
| Linux | Support | Ubuntu 22.04 WSL2 with Intel 12700H |
|
||||
|
||||
## Hardware
|
||||
|
||||
### Adreno GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Adreno GPU | Status |
|
||||
|:------------------------------------:|:-------:|
|
||||
| Adreno 750 (Snapdragon 8 Gen 3) | Support |
|
||||
| Adreno 830 (Snapdragon 8 Elite) | Support |
|
||||
| Adreno X85 (Snapdragon X Elite) | Support |
|
||||
|
||||
## DataType Supports
|
||||
|
||||
| DataType | Status |
|
||||
|:----------------------:|:--------------------------:|
|
||||
| Q4_0 | Support |
|
||||
| Q6_K | Support, but not optimized |
|
||||
|
||||
## Model Preparation
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
|
||||
|
||||
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
|
||||
|
||||
```sh
|
||||
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
|
||||
```
|
||||
|
||||
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
|
||||
|
||||
## CMake Options
|
||||
|
||||
The OpenCL backend has the following CMake options that control the behavior of the backend.
|
||||
|
||||
| CMake options | Default value | Description |
|
||||
|:---------------------------------:|:--------------:|:------------------------------------------|
|
||||
| `GGML_OPENCL_EMBED_KERNELS` | `ON` | Embed OpenCL kernels into the executable. |
|
||||
| `GGML_OPENCL_USE_ADRENO_KERNELS` | `ON` | Use kernels optimized for Adreno. |
|
||||
|
||||
## Android
|
||||
|
||||
Ubuntu 22.04 is used for targeting Android. Make sure the following tools are accessible from command line,
|
||||
|
||||
* Git
|
||||
* CMake 3.29
|
||||
* Ninja
|
||||
* Python3
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install NDK**
|
||||
|
||||
```sh
|
||||
cd ~
|
||||
wget https://dl.google.com/android/repository/commandlinetools-linux-8512546_latest.zip && \
|
||||
unzip commandlinetools-linux-8512546_latest.zip && \
|
||||
mkdir -p ~/android-sdk/cmdline-tools && \
|
||||
mv cmdline-tools latest && \
|
||||
mv latest ~/android-sdk/cmdline-tools/ && \
|
||||
rm -rf commandlinetools-linux-8512546_latest.zip
|
||||
|
||||
yes | ~/android-sdk/cmdline-tools/latest/bin/sdkmanager "ndk;26.3.11579264"
|
||||
```
|
||||
|
||||
2. **Install OpenCL Headers and Library**
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk26 && cd build_ndk26 && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$HOME/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
## Windows 11 Arm64
|
||||
|
||||
A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the following tools are accessible from command line,
|
||||
|
||||
* Git
|
||||
* CMake 3.29
|
||||
* Clang 19
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
* Powershell 7
|
||||
|
||||
Visual Studio provides necessary headers and libraries although it is not directly used for building.
|
||||
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
Powershell 7 is used for the following commands.
|
||||
If an older version of Powershell is used, these commands may not work as they are.
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install OpenCL Headers and Library**
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```powershell
|
||||
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && cd llama.cpp
|
||||
mkdir build && cd build
|
||||
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
|
||||
|
||||
## TODO
|
||||
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@ -36,12 +36,22 @@ The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2025.2
|
||||
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|
||||
|GPU|Base tokens/s|Increased tokens/s|Percent|
|
||||
|-|-|-|-|
|
||||
|PVC 1550|39|73|+87%|
|
||||
|Flex 170|39|50|+28%|
|
||||
|Arc770|42|55|+30%|
|
||||
|MTL|13|16|+23%|
|
||||
|ARL-H|14|17|+21%|
|
||||
|
||||
- 2024.11
|
||||
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
|
||||
|
||||
@ -58,7 +68,7 @@ The following release is verified with good quality:
|
||||
- 2024.3
|
||||
- Release binary files of Windows.
|
||||
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggml-org/llama.cpp/tree/b2437).
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
@ -97,8 +107,8 @@ SYCL backend supports Intel GPU Family:
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k,iGPU in 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
@ -217,30 +227,19 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
|
||||
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithCublas --config Release
|
||||
git clone https://github.com/oneapi-src/oneDNN.git
|
||||
cd oneDNN
|
||||
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build build-nvidia --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
# Find your HIPTARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithrocBLAS --config Release
|
||||
```
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
@ -303,37 +302,39 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
@ -424,13 +425,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@ -474,6 +475,12 @@ b. Enable oneAPI running environment:
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
- if you are using Powershell, enable the runtime environment with the following:
|
||||
|
||||
```
|
||||
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
|
||||
```
|
||||
|
||||
c. Verify installation
|
||||
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
@ -504,13 +511,13 @@ You could download the release package for Windows directly, which including bin
|
||||
|
||||
Choose one of following methods to build from source code.
|
||||
|
||||
1. Script
|
||||
#### 1. Script
|
||||
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
2. CMake
|
||||
#### 2. CMake
|
||||
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
@ -539,13 +546,84 @@ cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
3. Visual Studio
|
||||
#### 3. Visual Studio
|
||||
|
||||
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
You have two options to use Visual Studio to build llama.cpp:
|
||||
- As CMake Project using CMake presets.
|
||||
- Creating a Visual Studio solution to handle the project.
|
||||
|
||||
**Note**:
|
||||
|
||||
All following commands are executed in PowerShell.
|
||||
|
||||
##### - Open as a CMake Project
|
||||
|
||||
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
|
||||
|
||||
- `x64-windows-sycl-release`
|
||||
|
||||
- `x64-windows-sycl-debug`
|
||||
|
||||
*Notes:*
|
||||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
|
||||
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
|
||||
|
||||
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
|
||||
```
|
||||
|
||||
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
|
||||
|
||||
```Powershell
|
||||
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
|
||||
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
|
||||
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
|
||||
```
|
||||
|
||||
If successful the build files have been written to: *path/to/llama.cpp/build*
|
||||
Open the project file **build/llama.cpp.sln** with Visual Studio.
|
||||
|
||||
Once the Visual Studio solution is created, follow these steps:
|
||||
|
||||
1. Open the solution in Visual Studio.
|
||||
|
||||
2. Right-click on `ggml-sycl` and select **Properties**.
|
||||
|
||||
3. In the left column, expand **C/C++** and select **DPC++**.
|
||||
|
||||
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
|
||||
|
||||
5. Apply the changes and save.
|
||||
|
||||
|
||||
*Navigation Path:*
|
||||
|
||||
```
|
||||
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
|
||||
```
|
||||
|
||||
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
|
||||
To do it from menu: `Build -> Build Solution`.
|
||||
Once it is completed, final results will be in **build/Release/bin**
|
||||
|
||||
*Additional Note*
|
||||
|
||||
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
|
||||
|
||||
- `SYCL_INCLUDE_DIR_HINT`
|
||||
|
||||
- `SYCL_LIBRARY_DIR_HINT`
|
||||
|
||||
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
@ -619,13 +697,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
|
||||
|
||||
@ -652,6 +730,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
@ -660,8 +739,11 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
|
||||
|
||||
## Known Issues
|
||||
|
||||
- `Split-mode:[row]` is not supported.
|
||||
|
173
docs/build.md
173
docs/build.md
@ -3,7 +3,7 @@
|
||||
**To get the Code:**
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
@ -46,7 +46,7 @@ cmake --build build --config Release
|
||||
```
|
||||
|
||||
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Tab Workload: Desktop-development with C++
|
||||
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
|
||||
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
|
||||
@ -132,12 +132,14 @@ You may find the official downloads here: [NVIDIA developer site](https://develo
|
||||
|
||||
|
||||
#### Compile and run inside a Fedora Toolbox Container
|
||||
We also have a [guide](./cuda-fedora.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
|
||||
We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
|
||||
|
||||
**Recommended for:**
|
||||
|
||||
- ***Particularly*** *convenient* for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
|
||||
- Toolbox is installed by default: [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde).
|
||||
- ***Necessary*** for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
|
||||
- (there are no supported CUDA packages for these systems)
|
||||
- ***Necessary*** for users that have a host that is not a: [Supported Nvidia CUDA Release Platform](https://developer.nvidia.com/cuda-downloads).
|
||||
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your your host operating system)
|
||||
- ***Convenient*** For those running [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde), and want to keep their host system clean.
|
||||
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
|
||||
|
||||
|
||||
@ -189,7 +191,7 @@ The following compilation options are also available to tweak performance:
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
|
||||
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
@ -197,21 +199,54 @@ The following compilation options are also available to tweak performance:
|
||||
|
||||
## MUSA
|
||||
|
||||
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
|
||||
This provides GPU acceleration using a Moore Threads GPU. Make sure to have the [MUSA SDK](https://developer.mthreads.com/musa/musa-sdk) installed.
|
||||
|
||||
- Using `CMake`:
|
||||
#### Download directly from Moore Threads
|
||||
|
||||
You may find the official downloads here: [Moore Threads developer site](https://developer.mthreads.com/sdk/download/musa).
|
||||
|
||||
### Compilation
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
|
||||
#### Override Compute Capability Specifications
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
|
||||
By default, all supported compute capabilities are enabled. To customize this behavior, you can specify the `MUSA_ARCHITECTURES` option in the CMake command:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
|
||||
|
||||
#### Compilation options
|
||||
|
||||
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
|
||||
|
||||
- For static builds, add `-DBUILD_SHARED_LIBS=OFF` and `-DCMAKE_POSITION_INDEPENDENT_CODE=ON`:
|
||||
```
|
||||
cmake -B build -DGGML_MUSA=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Runtime MUSA environmental variables
|
||||
|
||||
You may set the [musa environmental variables](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) at runtime.
|
||||
|
||||
```bash
|
||||
# Use `MUSA_VISIBLE_DEVICES` to hide the first compute device.
|
||||
MUSA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
|
||||
```
|
||||
|
||||
### Unified Memory
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
|
||||
|
||||
## HIP
|
||||
|
||||
This provides GPU acceleration on HIP-supported AMD GPUs.
|
||||
@ -227,6 +262,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
|
||||
|
||||
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
|
||||
|
||||
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
|
||||
|
||||
Note that if you get the following error:
|
||||
```
|
||||
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||||
@ -395,6 +436,116 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
|
||||
|
||||
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
|
||||
|
||||
## Arm® KleidiAI™
|
||||
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
|
||||
|
||||
To enable KleidiAI, go to the llama.cpp directory and build using CMake
|
||||
```bash
|
||||
cmake -B build -DGGML_CPU_KLEIDIAI=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
You can verify that KleidiAI is being used by running
|
||||
```bash
|
||||
./build/bin/llama-cli -m PATH_TO_MODEL -p "What is a car?"
|
||||
```
|
||||
If KleidiAI is enabled, the ouput will contain a line similar to:
|
||||
```
|
||||
load_tensors: CPU_KLEIDIAI model buffer size = 3474.00 MiB
|
||||
```
|
||||
KleidiAI's microkernels implement optimized tensor operations using Arm CPU features such as dotprod, int8mm and SME. llama.cpp selects the most efficient kernel based on runtime CPU feature detection. However, on platforms that support SME, you must manually enable SME microkernels by setting the environment variable `GGML_KLEIDIAI_SME=1`.
|
||||
|
||||
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
|
||||
|
||||
## OpenCL
|
||||
|
||||
This provides GPU acceleration through OpenCL on recent Adreno GPU.
|
||||
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
|
||||
|
||||
### Android
|
||||
|
||||
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk && cd build_ndk && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
### Windows Arm64
|
||||
|
||||
First, install OpenCL headers and ICD loader library if not available,
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
Then build llama.cpp with OpenCL enabled,
|
||||
|
||||
```powershell
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Android
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
@ -104,16 +104,16 @@ Note: to debug the inference graph: you can use [llama-eval-callback](/examples/
|
||||
|
||||
## GGUF specification
|
||||
|
||||
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
|
||||
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
|
||||
|
||||
## Resources
|
||||
|
||||
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
|
||||
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
|
||||
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
|
||||
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
|
||||
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
|
||||
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
|
||||
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
|
||||
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
|
||||
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948
|
||||
- YaRN RoPE scaling https://github.com/ggml-org/llama.cpp/pull/2268
|
||||
- support Baichuan serial models https://github.com/ggml-org/llama.cpp/pull/3009
|
||||
- support attention bias https://github.com/ggml-org/llama.cpp/pull/4283
|
||||
- Mixtral support https://github.com/ggml-org/llama.cpp/pull/4406
|
||||
- BERT embeddings https://github.com/ggml-org/llama.cpp/pull/5423
|
||||
- Grok-1 support https://github.com/ggml-org/llama.cpp/pull/6204
|
||||
- Command R Plus support https://github.com/ggml-org/llama.cpp/pull/6491
|
||||
- support arch DBRX https://github.com/ggml-org/llama.cpp/pull/6515
|
||||
- How to convert HuggingFace model to GGUF format https://github.com/ggml-org/llama.cpp/discussions/2948
|
||||
|
@ -7,21 +7,21 @@
|
||||
## Images
|
||||
We have three Docker images available for this project:
|
||||
|
||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
Additionally, there the following images, similar to the above:
|
||||
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
|
||||
|
||||
@ -32,25 +32,25 @@ The easiest way to download the models, convert them to ggml and optimize them i
|
||||
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-one "/models/" 7B
|
||||
```
|
||||
|
||||
On completion, you are ready to play!
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a light image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a server image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||
```
|
||||
|
||||
## Docker With CUDA
|
||||
@ -69,7 +69,7 @@ You may want to pass in some different `ARGS`, depending on the CUDA environment
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `CUDA_VERSION` set to `12.6.0`
|
||||
- `CUDA_VERSION` set to `12.4.0`
|
||||
- `CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
|
||||
|
||||
The resulting images, are essentially the same as the non-CUDA images:
|
||||
@ -104,7 +104,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `MUSA_VERSION` set to `rc3.1.0`
|
||||
- `MUSA_VERSION` set to `rc3.1.1`
|
||||
|
||||
The resulting images, are essentially the same as the non-MUSA images:
|
||||
|
||||
|
394
docs/function-calling.md
Normal file
394
docs/function-calling.md
Normal file
@ -0,0 +1,394 @@
|
||||
# Function Calling
|
||||
|
||||
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
|
||||
- `llama-server` when started w/ `--jinja` flag
|
||||
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
|
||||
|
||||
## Universal support w/ Native & Generic handlers
|
||||
|
||||
Function calling is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
|
||||
|
||||
- Native tool call formats supported:
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
|
||||
|
||||
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
|
||||
- Use `--chat-template-file` to override the template when appropriate (see examples below)
|
||||
- Generic support may consume more tokens and be less efficient than a model's native format.
|
||||
|
||||
<details>
|
||||
<summary>Show some common templates and which format handler they use</summary>
|
||||
|
||||
| Template | Format |
|
||||
|----------|--------|
|
||||
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
|
||||
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| CohereForAI-aya-expanse-8b.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
|
||||
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
|
||||
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
|
||||
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
|
||||
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
|
||||
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
|
||||
| HelpingAI-HAI-SER.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
|
||||
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
|
||||
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
|
||||
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
|
||||
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
|
||||
| LatitudeGames-Wayfarer-12B.jinja | Generic |
|
||||
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
|
||||
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| NexaAIDev-Octopus-v2.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| OnlyCheeini-greesychat-turbo.jinja | Generic |
|
||||
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
|
||||
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
|
||||
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
|
||||
| Qwen-QVQ-72B-Preview.jinja | Generic |
|
||||
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
|
||||
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
|
||||
| THUDM-glm-4-9b-chat.jinja | Generic |
|
||||
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
|
||||
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
|
||||
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
|
||||
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
|
||||
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
|
||||
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
|
||||
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
|
||||
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
|
||||
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
|
||||
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
|
||||
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| databricks-dbrx-instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
|
||||
| dicta-il-dictalm2.0-instruct.jinja | Generic |
|
||||
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
|
||||
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
|
||||
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
|
||||
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
|
||||
| google-gemma-2-27b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-jpn-it.jinja | Generic |
|
||||
| google-gemma-7b-it.jinja | Generic |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
|
||||
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
|
||||
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
|
||||
| jinaai-ReaderLM-v2.jinja | Generic |
|
||||
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
|
||||
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
|
||||
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
|
||||
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
|
||||
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
|
||||
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
|
||||
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
|
||||
| microsoft-phi-4.jinja | Generic |
|
||||
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
|
||||
| ministral-Ministral-3b-instruct.jinja | Generic |
|
||||
| mistralai-Codestral-22B-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
|
||||
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | Generic |
|
||||
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
|
||||
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
|
||||
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| netcat420-MFANNv0.20.jinja | Generic |
|
||||
| netcat420-MFANNv0.24.jinja | Generic |
|
||||
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
|
||||
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
|
||||
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
|
||||
| openchat-openchat-3.5-0106.jinja | Generic |
|
||||
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
|
||||
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
|
||||
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
|
||||
| prithivMLmods-GWQ2b.jinja | Generic |
|
||||
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
|
||||
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
|
||||
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
|
||||
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
|
||||
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
|
||||
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
|
||||
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
|
||||
| sthenno-tempesthenno-icy-0130.jinja | Generic |
|
||||
| sumink-qwft.jinja | Hermes 2 Pro |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
|
||||
| thirdeyeai-elevate360m.jinja | Generic |
|
||||
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
|
||||
| upstage-solar-pro-preview-instruct.jinja | Generic |
|
||||
| whyhow-ai-PatientSeek.jinja | Generic |
|
||||
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
|
||||
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
|
||||
|
||||
This table can be generated with:
|
||||
|
||||
```bash
|
||||
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
# Usage - need tool-aware Jinja template
|
||||
|
||||
First, start a server with any model, but make sure it has a tools-enabled template: you can verify this by inspecting the `chat_template` or `chat_template_tool_use` properties in `http://localhost:8080/props`).
|
||||
|
||||
Here are some models known to work (w/ chat template override when needed):
|
||||
|
||||
```shell
|
||||
# Native support:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
|
||||
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
|
||||
|
||||
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
# Native support requires the right template for these GGUFs:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
|
||||
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
|
||||
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
|
||||
|
||||
# Generic format support
|
||||
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
|
||||
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
|
||||
```
|
||||
|
||||
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
|
||||
|
||||
> [!TIP]
|
||||
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
|
||||
|
||||
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Show output</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "tool",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": null,
|
||||
"tool_calls": [
|
||||
{
|
||||
"name": "python",
|
||||
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
|
||||
}
|
||||
],
|
||||
"role": "assistant"
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 1727287211,
|
||||
"model": "gpt-3.5-turbo",
|
||||
"object": "chat.completion",
|
||||
"usage": {
|
||||
"completion_tokens": 16,
|
||||
"prompt_tokens": 44,
|
||||
"total_tokens": 60
|
||||
},
|
||||
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
@ -7,7 +7,14 @@ On Mac and Linux, the homebrew package manager can be used via
|
||||
```sh
|
||||
brew install llama.cpp
|
||||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
|
||||
|
||||
## MacPorts
|
||||
|
||||
```sh
|
||||
sudo port install llama.cpp
|
||||
```
|
||||
see also: https://ports.macports.org/port/llama.cpp/details/
|
||||
|
||||
## Nix
|
||||
|
||||
|
@ -13,13 +13,15 @@ cmake -B build -DLLAMA_LLGUIDANCE=ON
|
||||
make -C build -j
|
||||
```
|
||||
|
||||
For Windows use `cmake --build build --config Release` instead of `make`.
|
||||
|
||||
This requires the Rust compiler and the `cargo` tool to be [installed](https://www.rust-lang.org/tools/install).
|
||||
|
||||
## Interface
|
||||
|
||||
There are no new command-line arguments or modifications to `common_params`. When enabled, grammars starting with `%llguidance` are passed to LLGuidance instead of the [current](../grammars/README.md) llama.cpp grammars. Additionally, JSON Schema requests (e.g., using the `-j` argument in `llama-cli`) are also passed to LLGuidance.
|
||||
|
||||
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/scripts/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
|
||||
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/python/llguidance/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
|
||||
|
||||
## Performance
|
||||
|
||||
|
@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
@ -132,7 +132,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
@ -141,7 +141,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (is_pp_shared) {
|
||||
for (int32_t i = 1; i < pl; ++i) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
||||
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
|
||||
}
|
||||
|
||||
for i in 1 ..< n_parallel {
|
||||
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
|
@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
|
@ -3,9 +3,9 @@
|
||||
This example demonstrates how to generate a control vector using gguf models.
|
||||
|
||||
Related PRs:
|
||||
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
|
||||
- [Add support for control vectors](https://github.com/ggml-org/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggml-org/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggml-org/llama.cpp/pull/7514)
|
||||
|
||||
## Examples
|
||||
|
||||
|
@ -342,7 +342,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
}
|
||||
|
||||
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
@ -394,6 +394,8 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "control_vector.gguf";
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
@ -498,7 +500,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// write output vectors to gguf
|
||||
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
|
||||
export_gguf(ctx_train.v_final, params.out_file, model_hint);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
#include "llama.h"
|
||||
|
||||
#include <ctime>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
@ -37,7 +38,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
const struct llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
// run model
|
||||
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
|
@ -413,20 +413,22 @@ static void print_usage(int, char ** argv) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_verbose = (params.verbosity > 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
||||
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
printf("done, output file is %s\n", params.lora_outfile.c_str());
|
||||
printf("done, output file is %s\n", params.out_file.c_str());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -408,8 +408,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
|
||||
@ -453,7 +451,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@ -466,7 +463,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@ -479,7 +475,6 @@ static void gguf_merge(const split_params & split_params) {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
@ -500,9 +495,11 @@ static void gguf_merge(const split_params & split_params) {
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
std::ofstream fout;
|
||||
if (!split_params.dry_run) {
|
||||
fout.open(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
// placeholder for the meta data
|
||||
{
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
::zeros(fout, meta_size);
|
||||
}
|
||||
@ -518,7 +515,9 @@ static void gguf_merge(const split_params & split_params) {
|
||||
ggml_free(ctx_metas[i]);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
if (!split_params.dry_run) {
|
||||
fout.close();
|
||||
}
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
|
||||
@ -540,11 +539,12 @@ static void gguf_merge(const split_params & split_params) {
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
if (!split_params.dry_run) {
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
@ -552,16 +552,15 @@ static void gguf_merge(const split_params & split_params) {
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
{
|
||||
if (!split_params.dry_run) {
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
|
||||
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
|
||||
__func__, split_params.output.c_str(), n_split, total_tensors);
|
||||
|
@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_set_embeddings(ctx, true);
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_token eos_token = llama_vocab_eos(vocab);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
llama_set_causal_attn(ctx, true);
|
||||
|
||||
@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx = llama_init_from_model(model, cparams);
|
||||
|
@ -1,7 +1,7 @@
|
||||
# llama.cpp/examples/imatrix
|
||||
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enhance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggml-org/llama.cpp/pull/4861
|
||||
|
||||
## Usage
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
#include "llama.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
@ -111,7 +112,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
||||
|
||||
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
// ids -> [n_experts_used, n_tokens]
|
||||
// src1 -> [cols, n_expert_used, n_tokens]
|
||||
@ -231,9 +232,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
|
||||
void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
|
||||
auto fname = m_params.out_file;
|
||||
if (fname.empty()) {
|
||||
fname = "imatrix.gguf";
|
||||
}
|
||||
|
||||
if (n_chunk > 0) {
|
||||
fname += ".at_";
|
||||
@ -584,7 +582,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params, c
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// clear the KV cache
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
const int batch_start = start + j * n_batch;
|
||||
@ -687,6 +685,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params, c
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "imatrix.dat" ;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
@ -332,8 +332,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
|
@ -195,7 +195,7 @@ class BuiltinRule:
|
||||
self.deps = deps or []
|
||||
|
||||
# Constraining spaces to prevent model "running away".
|
||||
SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}'
|
||||
SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}'
|
||||
|
||||
PRIMITIVE_RULES = {
|
||||
'boolean' : BuiltinRule('("true" | "false") space', []),
|
||||
|
@ -876,8 +876,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
struct test {
|
||||
static const std::string build_commit;
|
||||
static const int build_number;
|
||||
static const std::string cpu_info;
|
||||
static const std::string gpu_info;
|
||||
const std::string cpu_info;
|
||||
const std::string gpu_info;
|
||||
std::string model_filename;
|
||||
std::string model_type;
|
||||
uint64_t model_size;
|
||||
@ -903,7 +903,10 @@ struct test {
|
||||
std::string test_time;
|
||||
std::vector<uint64_t> samples_ns;
|
||||
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
|
||||
cpu_info(get_cpu_info()),
|
||||
gpu_info(get_gpu_info()) {
|
||||
|
||||
model_filename = inst.model;
|
||||
char buf[128];
|
||||
llama_model_desc(lmodel, buf, sizeof(buf));
|
||||
@ -1058,8 +1061,6 @@ struct test {
|
||||
|
||||
const std::string test::build_commit = LLAMA_COMMIT;
|
||||
const int test::build_number = LLAMA_BUILD_NUMBER;
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
struct printer {
|
||||
virtual ~printer() {}
|
||||
@ -1577,7 +1578,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
test t(inst, lmodel, ctx);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
// cool off before the test
|
||||
if (params.delay) {
|
||||
@ -1617,7 +1618,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
for (int i = 0; i < params.reps; i++) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_kv_self_clear(ctx);
|
||||
|
||||
uint64_t t_start = get_time_ns();
|
||||
|
||||
|
@ -18,6 +18,7 @@ android {
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DLLAMA_CURL=OFF"
|
||||
arguments += "-DLLAMA_BUILD_COMMON=ON"
|
||||
arguments += "-DGGML_LLAMAFILE=OFF"
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
|
@ -14,7 +14,7 @@ project("llama-android")
|
||||
#include(FetchContent)
|
||||
#FetchContent_Declare(
|
||||
# llama
|
||||
# GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||
# GIT_REPOSITORY https://github.com/ggml-org/llama.cpp
|
||||
# GIT_TAG master
|
||||
#)
|
||||
|
||||
|
@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
llama_kv_cache_clear(context);
|
||||
llama_kv_self_clear(context);
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
LOGi("Benchmark text generation (tg)");
|
||||
|
||||
llama_kv_cache_clear(context);
|
||||
llama_kv_self_clear(context);
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
llama_kv_cache_clear(context);
|
||||
llama_kv_self_clear(context);
|
||||
|
||||
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
|
||||
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
|
||||
@ -361,7 +361,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
const auto tokens_list = common_tokenize(context, text, true, parse_special);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
auto n_kv_req = tokens_list.size() + n_len;
|
||||
|
||||
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);
|
||||
|
||||
@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
|
||||
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
|
||||
}
|
||||
|
@ -3,9 +3,24 @@
|
||||
Local inference of llama.cpp on an iPhone. This is a sample app that can be used as a starting
|
||||
point for more advanced projects.
|
||||
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggerganov/llama.cpp/discussions/4508
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
|
||||
|
||||

|
||||
|
||||
### Building
|
||||
First llama.cpp need to be built and a XCFramework needs to be created. This can be done by running
|
||||
the following script from the llama.cpp project root:
|
||||
```console
|
||||
$ ./build-xcframework.sh
|
||||
```
|
||||
Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
|
||||
a simulator or a real device.
|
||||
|
||||
To use the framework with a different project, the XCFramework can be added to the project by
|
||||
adding `build-apple/llama.xcframework` by dragging and dropping it into the project navigator, or
|
||||
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
|
||||
of the project settings.
|
||||
|
||||

|
||||
|
||||
Video demonstration:
|
||||
|
||||
|
@ -210,7 +210,7 @@ actor LlamaContext {
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
|
||||
|
||||
llama_kv_cache_clear(context)
|
||||
llama_kv_self_clear(context)
|
||||
|
||||
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@ -223,7 +223,7 @@ actor LlamaContext {
|
||||
|
||||
// bench text generation
|
||||
|
||||
llama_kv_cache_clear(context)
|
||||
llama_kv_self_clear(context)
|
||||
|
||||
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
@ -242,7 +242,7 @@ actor LlamaContext {
|
||||
|
||||
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
|
||||
|
||||
llama_kv_cache_clear(context)
|
||||
llama_kv_self_clear(context)
|
||||
|
||||
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
|
||||
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
|
||||
@ -292,7 +292,7 @@ actor LlamaContext {
|
||||
func clear() {
|
||||
tokens_list.removeAll()
|
||||
temporary_invalid_cchars.removeAll()
|
||||
llama_kv_cache_clear(context)
|
||||
llama_kv_self_clear(context)
|
||||
}
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
|
@ -7,7 +7,6 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
|
||||
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
|
||||
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
|
||||
@ -18,9 +17,25 @@
|
||||
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
|
||||
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
|
||||
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
|
||||
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; };
|
||||
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
|
||||
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXCopyFilesBuildPhase section */
|
||||
DD84C9FF2D747FED007778EC /* Embed Frameworks */ = {
|
||||
isa = PBXCopyFilesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
dstPath = "";
|
||||
dstSubfolderSpec = 10;
|
||||
files = (
|
||||
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */,
|
||||
);
|
||||
name = "Embed Frameworks";
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
|
||||
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
|
||||
@ -33,6 +48,7 @@
|
||||
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
|
||||
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
|
||||
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
|
||||
DD84C9FC2D747FED007778EC /* llama.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = llama.xcframework; path = "../../build-apple/llama.xcframework"; sourceTree = "<group>"; };
|
||||
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
|
||||
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
@ -42,9 +58,9 @@
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
|
||||
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
|
||||
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
@ -86,6 +102,7 @@
|
||||
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
DD84C9FC2D747FED007778EC /* llama.xcframework */,
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */,
|
||||
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
|
||||
);
|
||||
@ -144,6 +161,7 @@
|
||||
8A1C836F2AC328BD0096AF73 /* Sources */,
|
||||
8A1C83702AC328BD0096AF73 /* Frameworks */,
|
||||
8A1C83712AC328BD0096AF73 /* Resources */,
|
||||
DD84C9FF2D747FED007778EC /* Embed Frameworks */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@ -151,7 +169,6 @@
|
||||
);
|
||||
name = llama.swiftui;
|
||||
packageProductDependencies = (
|
||||
1809696C2D05A39F00400EE8 /* llama */,
|
||||
);
|
||||
productName = llama.swiftui;
|
||||
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
|
||||
@ -427,13 +444,6 @@
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
/* End XCConfigurationList section */
|
||||
|
||||
/* Begin XCSwiftPackageProductDependency section */
|
||||
1809696C2D05A39F00400EE8 /* llama */ = {
|
||||
isa = XCSwiftPackageProductDependency;
|
||||
productName = llama;
|
||||
};
|
||||
/* End XCSwiftPackageProductDependency section */
|
||||
};
|
||||
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
|
||||
}
|
||||
|
@ -124,6 +124,7 @@ struct ContentView: View {
|
||||
}
|
||||
}
|
||||
}.sheet(isPresented: $showingHelp) { // Sheet for help modal
|
||||
NavigationView {
|
||||
VStack(alignment: .leading) {
|
||||
VStack(alignment: .leading) {
|
||||
Text("1. Make sure the model is in GGUF Format")
|
||||
@ -133,6 +134,16 @@ struct ContentView: View {
|
||||
}
|
||||
Spacer()
|
||||
}
|
||||
.navigationTitle("Help")
|
||||
.navigationBarTitleDisplayMode(.inline)
|
||||
.toolbar {
|
||||
ToolbarItem(placement: .navigationBarTrailing) {
|
||||
Button("Done") {
|
||||
showingHelp = false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -39,7 +39,7 @@
|
||||
"
|
||||
" :call llama#init()
|
||||
"
|
||||
" more info: https://github.com/ggerganov/llama.cpp/pull/9787
|
||||
" more info: https://github.com/ggml-org/llama.cpp/pull/9787
|
||||
"
|
||||
|
||||
" colors (adjust to your liking)
|
||||
|
@ -1,3 +1,5 @@
|
||||
# llava (legacy)
|
||||
|
||||
add_library(llava OBJECT
|
||||
llava.cpp
|
||||
llava.h
|
||||
@ -22,12 +24,41 @@ if (BUILD_SHARED_LIBS)
|
||||
install(TARGETS llava_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
# mtmd
|
||||
|
||||
add_library(mtmd OBJECT
|
||||
mtmd.cpp
|
||||
mtmd.h
|
||||
clip.cpp
|
||||
clip.h
|
||||
clip-impl.h
|
||||
)
|
||||
|
||||
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
target_include_directories(mtmd PUBLIC .)
|
||||
target_include_directories(mtmd PRIVATE ../..)
|
||||
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
|
||||
|
||||
target_compile_features(mtmd PRIVATE cxx_std_17)
|
||||
|
||||
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
|
||||
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
install(TARGETS mtmd_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
endif()
|
||||
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(llava BUILD_INFO)
|
||||
add_dependencies(mtmd BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET llama-llava-cli)
|
||||
@ -51,6 +82,13 @@ install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
set(TARGET llama-gemma3-cli)
|
||||
add_executable(${TARGET} gemma3-cli.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
set(TARGET llama-llava-clip-quantize-cli)
|
||||
add_executable(${TARGET} clip-quantize-cli.cpp)
|
||||
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)
|
||||
|
50
examples/llava/README-gemma3.md
Normal file
50
examples/llava/README-gemma3.md
Normal file
@ -0,0 +1,50 @@
|
||||
# Gemma 3 vision
|
||||
|
||||
> [!IMPORTANT]
|
||||
>
|
||||
> This is very experimental, only used for demo purpose.
|
||||
|
||||
## Quick started
|
||||
|
||||
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
|
||||
|
||||
```bash
|
||||
# build
|
||||
cmake -B build
|
||||
cmake --build build --target llama-gemma3-cli
|
||||
|
||||
# alternatively, install from brew (MacOS)
|
||||
brew install llama.cpp
|
||||
|
||||
# run it
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
|
||||
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
|
||||
|
||||
# note: 1B model does not support vision
|
||||
```
|
||||
|
||||
## How to get mmproj.gguf?
|
||||
|
||||
```bash
|
||||
cd gemma-3-4b-it
|
||||
python ../llama.cpp/examples/llava/gemma3_convert_encoder_to_gguf.py .
|
||||
|
||||
# output file is mmproj.gguf
|
||||
```
|
||||
|
||||
## How to run it?
|
||||
|
||||
What you need:
|
||||
- The text model GGUF, can be converted using `convert_hf_to_gguf.py`
|
||||
- The mmproj file from step above
|
||||
- An image file
|
||||
|
||||
```bash
|
||||
# build
|
||||
cmake -B build
|
||||
cmake --build build --target llama-gemma3-cli
|
||||
|
||||
# run it
|
||||
./build/bin/llama-gemma3-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg
|
||||
```
|
190
examples/llava/README-granitevision.md
Normal file
190
examples/llava/README-granitevision.md
Normal file
@ -0,0 +1,190 @@
|
||||
# Granite Vision
|
||||
|
||||
Download the model and point your `GRANITE_MODEL` environment variable to the path.
|
||||
|
||||
```bash
|
||||
$ git clone https://huggingface.co/ibm-granite/granite-vision-3.2-2b
|
||||
$ export GRANITE_MODEL=./granite-vision-3.2-2b
|
||||
```
|
||||
|
||||
|
||||
### 1. Running llava surgery v2.
|
||||
First, we need to run the llava surgery script as shown below:
|
||||
|
||||
`python llava_surgery_v2.py -C -m $GRANITE_MODEL`
|
||||
|
||||
You should see two new files (`llava.clip` and `llava.projector`) written into your model's directory, as shown below.
|
||||
|
||||
```bash
|
||||
$ ls $GRANITE_MODEL | grep -i llava
|
||||
llava.clip
|
||||
llava.projector
|
||||
```
|
||||
|
||||
We should see that the projector and visual encoder get split out into the llava files. Quick check to make sure they aren't empty:
|
||||
```python
|
||||
import os
|
||||
import torch
|
||||
|
||||
MODEL_PATH = os.getenv("GRANITE_MODEL")
|
||||
if not MODEL_PATH:
|
||||
raise ValueError("env var GRANITE_MODEL is unset!")
|
||||
|
||||
encoder_tensors = torch.load(os.path.join(MODEL_PATH, "llava.clip"))
|
||||
projector_tensors = torch.load(os.path.join(MODEL_PATH, "llava.projector"))
|
||||
|
||||
assert len(encoder_tensors) > 0
|
||||
assert len(projector_tensors) > 0
|
||||
```
|
||||
|
||||
If you actually inspect the `.keys()` of the loaded tensors, you should see a lot of `vision_model` tensors in the `encoder_tensors`, and 5 tensors (`'multi_modal_projector.linear_1.bias'`, `'multi_modal_projector.linear_1.weight'`, `'multi_modal_projector.linear_2.bias'`, `'multi_modal_projector.linear_2.weight'`, `'image_newline'`) in the multimodal `projector_tensors`.
|
||||
|
||||
|
||||
### 2. Creating the Visual Component GGUF
|
||||
Next, create a new directory to hold the visual components, and copy the llava.clip/projector files, as shown below.
|
||||
|
||||
```bash
|
||||
$ ENCODER_PATH=$PWD/visual_encoder
|
||||
$ mkdir $ENCODER_PATH
|
||||
|
||||
$ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin
|
||||
$ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/
|
||||
```
|
||||
|
||||
Now, we need to write a config for the visual encoder. In order to convert the model, be sure to use the correct `image_grid_pinpoints`, as these may vary based on the model. You can find the `image_grid_pinpoints` in `$GRANITE_MODEL/config.json`.
|
||||
|
||||
```json
|
||||
{
|
||||
"_name_or_path": "siglip-model",
|
||||
"architectures": [
|
||||
"SiglipVisionModel"
|
||||
],
|
||||
"image_grid_pinpoints": [
|
||||
[384,384],
|
||||
[384,768],
|
||||
[384,1152],
|
||||
[384,1536],
|
||||
[384,1920],
|
||||
[384,2304],
|
||||
[384,2688],
|
||||
[384,3072],
|
||||
[384,3456],
|
||||
[384,3840],
|
||||
[768,384],
|
||||
[768,768],
|
||||
[768,1152],
|
||||
[768,1536],
|
||||
[768,1920],
|
||||
[1152,384],
|
||||
[1152,768],
|
||||
[1152,1152],
|
||||
[1536,384],
|
||||
[1536,768],
|
||||
[1920,384],
|
||||
[1920,768],
|
||||
[2304,384],
|
||||
[2688,384],
|
||||
[3072,384],
|
||||
[3456,384],
|
||||
[3840,384]
|
||||
],
|
||||
"mm_patch_merge_type": "spatial_unpad",
|
||||
"hidden_size": 1152,
|
||||
"image_size": 384,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "siglip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 14,
|
||||
"layer_norm_eps": 1e-6,
|
||||
"hidden_act": "gelu_pytorch_tanh",
|
||||
"projection_dim": 0,
|
||||
"vision_feature_layer": [-24, -20, -12, -1]
|
||||
}
|
||||
```
|
||||
|
||||
At this point you should have something like this:
|
||||
```bash
|
||||
$ ls $ENCODER_PATH
|
||||
config.json llava.projector pytorch_model.bin
|
||||
```
|
||||
|
||||
Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the SigLIP visual encoder - in the transformers model, you can find these numbers in the `preprocessor_config.json`.
|
||||
```bash
|
||||
$ python convert_image_encoder_to_gguf.py \
|
||||
-m $ENCODER_PATH \
|
||||
--llava-projector $ENCODER_PATH/llava.projector \
|
||||
--output-dir $ENCODER_PATH \
|
||||
--clip-model-is-vision \
|
||||
--clip-model-is-siglip \
|
||||
--image-mean 0.5 0.5 0.5 \
|
||||
--image-std 0.5 0.5 0.5
|
||||
```
|
||||
|
||||
This will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the absolute path of this file as the `$VISUAL_GGUF_PATH.`
|
||||
|
||||
|
||||
### 3. Creating the LLM GGUF.
|
||||
The granite vision model contains a granite LLM as its language model. For now, the easiest way to get the GGUF for LLM is by loading the composite model in `transformers` and exporting the LLM so that it can be directly converted with the normal conversion path.
|
||||
|
||||
First, set the `LLM_EXPORT_PATH` to the path to export the `transformers` LLM to.
|
||||
```bash
|
||||
$ export LLM_EXPORT_PATH=$PWD/granite_vision_llm
|
||||
```
|
||||
|
||||
```python
|
||||
import os
|
||||
import transformers
|
||||
|
||||
MODEL_PATH = os.getenv("GRANITE_MODEL")
|
||||
if not MODEL_PATH:
|
||||
raise ValueError("env var GRANITE_MODEL is unset!")
|
||||
|
||||
LLM_EXPORT_PATH = os.getenv("LLM_EXPORT_PATH")
|
||||
if not LLM_EXPORT_PATH:
|
||||
raise ValueError("env var LLM_EXPORT_PATH is unset!")
|
||||
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_PATH)
|
||||
|
||||
# NOTE: granite vision support was added to transformers very recently (4.49);
|
||||
# if you get size mismatches, your version is too old.
|
||||
# If you are running with an older version, set `ignore_mismatched_sizes=True`
|
||||
# as shown below; it won't be loaded correctly, but the LLM part of the model that
|
||||
# we are exporting will be loaded correctly.
|
||||
model = transformers.AutoModelForImageTextToText.from_pretrained(MODEL_PATH, ignore_mismatched_sizes=True)
|
||||
|
||||
tokenizer.save_pretrained(LLM_EXPORT_PATH)
|
||||
model.language_model.save_pretrained(LLM_EXPORT_PATH)
|
||||
```
|
||||
|
||||
Now you can convert the exported LLM to GGUF with the normal converter in the root of the llama cpp project.
|
||||
```bash
|
||||
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm.gguf
|
||||
...
|
||||
$ python convert_hf_to_gguf.py --outfile $LLM_GGUF_PATH $LLM_EXPORT_PATH
|
||||
```
|
||||
|
||||
|
||||
### 4. Quantization
|
||||
If you want to quantize the LLM, you can do so with `llama-quantize` as you would any other LLM. For example:
|
||||
```bash
|
||||
$ ./build/bin/llama-quantize $LLM_EXPORT_PATH/granite_llm.gguf $LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf Q4_K_M
|
||||
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf
|
||||
```
|
||||
|
||||
Note that currently you cannot quantize the visual encoder because granite vision models use SigLIP as the visual encoder, which has tensor dimensions that are not divisible by 32.
|
||||
|
||||
|
||||
### 5. Running the Model in Llama cpp
|
||||
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. As an example, we pass the the llama.cpp banner.
|
||||
|
||||
```bash
|
||||
$ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \
|
||||
--mmproj $VISUAL_GGUF_PATH \
|
||||
--image ./media/llama0-banner.png \
|
||||
-c 16384 \
|
||||
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat does the text in this image say?\n<|assistant|>\n" \
|
||||
--temp 0
|
||||
```
|
||||
|
||||
Sample output: `The text in the image reads "LLAMA C++ Can it run DOOM Llama?"`
|
@ -5,13 +5,25 @@ Currently, this readme only supports minicpm-omni's image capabilities, and we w
|
||||
|
||||
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone git@github.com:OpenBMB/llama.cpp.git
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
git checkout minicpm-omni
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-o 2.6
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
@ -22,25 +34,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
./build/bin/llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md
|
||||
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
```bash
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
@ -4,13 +4,26 @@
|
||||
|
||||
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
### Usage
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-Llama3-V 2.5
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
@ -20,80 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
./build/bin/llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build for Linux or Mac
|
||||
|
||||
```bash
|
||||
make
|
||||
make llama-minicpmv-cli
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
```bash
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
|
||||
### Android
|
||||
|
||||
#### Build on Android device using Termux
|
||||
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||
|
||||
Install tools in Termux:
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
|
||||
```bash
|
||||
mkdir build-android
|
||||
cd build-android
|
||||
export NDK=/your_ndk_path
|
||||
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
@ -4,13 +4,25 @@
|
||||
|
||||
Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone git@github.com:OpenBMB/llama.cpp.git
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
git checkout minicpmv-main
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-V 2.6
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
@ -21,87 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
./build/bin/llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build for Linux or Mac
|
||||
|
||||
```bash
|
||||
make
|
||||
make llama-minicpmv-cli
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
```bash
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
|
||||
### Video
|
||||
Install FFmpeg
|
||||
```
|
||||
brew install ffmpeg
|
||||
brew install pkg-config
|
||||
```
|
||||
|
||||
### Android
|
||||
|
||||
#### Build on Android device using Termux
|
||||
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||
|
||||
Install tools in Termux:
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
|
||||
```bash
|
||||
mkdir build-android
|
||||
cd build-android
|
||||
export NDK=/your_ndk_path
|
||||
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
@ -101,8 +101,27 @@ python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknow
|
||||
```
|
||||
|
||||
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
||||
|
||||
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
|
||||
|
||||
**note** if the language model in step `6)` is incompatible with the legacy conversion script, the easiest way handle the LLM model conversion is to load the model in transformers, and export only the LLM from the llava next model.
|
||||
|
||||
```python
|
||||
import os
|
||||
import transformers
|
||||
|
||||
model_path = ...
|
||||
llm_export_path = ...
|
||||
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
|
||||
model = transformers.AutoModelForImageTextToText.from_pretrained(model_path)
|
||||
|
||||
tokenizer.save_pretrained(llm_export_path)
|
||||
model.language_model.save_pretrained(llm_export_path)
|
||||
```
|
||||
|
||||
Then, you can convert the LLM using the `convert_hf_to_gguf.py` script, which handles more LLM architectures.
|
||||
|
||||
## llava-cli templating and llava-1.6 prompting
|
||||
|
||||
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
|
||||
|
344
examples/llava/clip-impl.h
Normal file
344
examples/llava/clip-impl.h
Normal file
@ -0,0 +1,344 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
#include "clip.h"
|
||||
|
||||
#include "clip.h"
|
||||
|
||||
#include <climits>
|
||||
#include <cstdarg>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
// Internal header for clip.cpp
|
||||
|
||||
#define KEY_FTYPE "general.file_type"
|
||||
#define KEY_NAME "general.name"
|
||||
#define KEY_DESCRIPTION "general.description"
|
||||
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
|
||||
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
|
||||
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
|
||||
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
|
||||
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
|
||||
#define KEY_USE_GELU "clip.use_gelu"
|
||||
#define KEY_USE_SILU "clip.use_silu"
|
||||
#define KEY_N_EMBD "clip.%s.embedding_length"
|
||||
#define KEY_N_FF "clip.%s.feed_forward_length"
|
||||
#define KEY_N_BLOCK "clip.%s.block_count"
|
||||
#define KEY_N_HEAD "clip.%s.attention.head_count"
|
||||
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
|
||||
#define KEY_PROJ_DIM "clip.%s.projection_dim"
|
||||
#define KEY_TOKENS "tokenizer.ggml.tokens"
|
||||
#define KEY_N_POSITIONS "clip.text.context_length"
|
||||
#define KEY_IMAGE_SIZE "clip.vision.image_size"
|
||||
#define KEY_PATCH_SIZE "clip.vision.patch_size"
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
|
||||
|
||||
//
|
||||
// tensor name constants
|
||||
//
|
||||
|
||||
#define TN_TOKEN_EMBD "%s.token_embd.weight"
|
||||
#define TN_POS_EMBD "%s.position_embd.weight"
|
||||
#define TN_CLASS_EMBD "v.class_embd"
|
||||
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
|
||||
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
|
||||
#define TN_PATCH_BIAS "v.patch_embd.bias"
|
||||
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
|
||||
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
|
||||
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
|
||||
#define TN_LN_1 "%s.blk.%d.ln1.%s"
|
||||
#define TN_LN_2 "%s.blk.%d.ln2.%s"
|
||||
#define TN_LN_PRE "%s.pre_ln.%s"
|
||||
#define TN_LN_POST "%s.post_ln.%s"
|
||||
#define TN_TEXT_PROJ "text_projection.weight"
|
||||
#define TN_VIS_PROJ "visual_projection.weight"
|
||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
|
||||
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
|
||||
|
||||
// mimicpmv
|
||||
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
|
||||
#define TN_MINICPMV_QUERY "resampler.query"
|
||||
#define TN_MINICPMV_PROJ "resampler.proj.weight"
|
||||
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
|
||||
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
|
||||
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
|
||||
|
||||
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
|
||||
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
|
||||
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
|
||||
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
|
||||
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
|
||||
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
|
||||
#define TN_GLM_BOI_W "adapter.boi"
|
||||
#define TN_GLM_EOI_W "adapter.eoi"
|
||||
|
||||
enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_RESAMPLER,
|
||||
PROJECTOR_TYPE_GLM_EDGE,
|
||||
PROJECTOR_TYPE_MERGER,
|
||||
PROJECTOR_TYPE_GEMMA3,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
|
||||
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
|
||||
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
|
||||
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
|
||||
if (pair.second == str) {
|
||||
return pair.first;
|
||||
}
|
||||
}
|
||||
return PROJECTOR_TYPE_UNKNOWN;
|
||||
}
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<uint8_t> buf;
|
||||
};
|
||||
|
||||
// RGB float32 image (NHWC)
|
||||
// Memory layout: RGBRGBRGB...
|
||||
struct clip_image_f32 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<float> buf;
|
||||
};
|
||||
|
||||
//
|
||||
// logging
|
||||
//
|
||||
|
||||
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) user_data;
|
||||
fputs(text, stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
struct clip_logger_state {
|
||||
ggml_log_level verbosity_thold;
|
||||
ggml_log_callback log_callback;
|
||||
void * log_callback_user_data;
|
||||
};
|
||||
|
||||
extern struct clip_logger_state g_logger_state;
|
||||
|
||||
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
|
||||
if (format == NULL) {
|
||||
return;
|
||||
}
|
||||
va_list args_copy;
|
||||
va_copy(args_copy, args);
|
||||
char buffer[128];
|
||||
int len = vsnprintf(buffer, 128, format, args);
|
||||
if (len < 128) {
|
||||
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
|
||||
} else {
|
||||
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
|
||||
vsnprintf(buffer2, len + 1, format, args_copy);
|
||||
buffer2[len] = 0;
|
||||
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
|
||||
free(buffer2);
|
||||
}
|
||||
va_end(args_copy);
|
||||
}
|
||||
|
||||
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
clip_log_internal_v(level, format, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
#define LOG_TMPL(level, ...) \
|
||||
do { \
|
||||
if ((level) >= g_logger_state.verbosity_thold) { \
|
||||
clip_log_internal((level), __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// cpp wrappers
|
||||
//
|
||||
|
||||
// wrapper for clip_image_size
|
||||
struct clip_image_size_deleter {
|
||||
void operator()(clip_image_size * val) { clip_image_size_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
|
||||
|
||||
// wrapper for clip_image_u8
|
||||
struct clip_image_u8_deleter {
|
||||
void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
|
||||
|
||||
// wrapper for clip_image_f32
|
||||
struct clip_image_f32_deleter {
|
||||
void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
|
||||
};
|
||||
typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
std::vector<clip_image_u8_ptr> entries;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
std::vector<clip_image_f32_ptr> entries;
|
||||
};
|
||||
|
||||
//
|
||||
// common utils
|
||||
//
|
||||
|
||||
static std::string string_format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), buf.size());
|
||||
}
|
||||
|
||||
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
// split string by a `std::string delim` instead of `char delim`
|
||||
static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t pos = 0;
|
||||
std::string token;
|
||||
while ((pos = s.find(delimiter)) != std::string::npos) {
|
||||
token = s.substr(0, pos);
|
||||
tokens.push_back(token);
|
||||
s.erase(0, pos + delimiter.length());
|
||||
}
|
||||
tokens.push_back(s);
|
||||
return tokens;
|
||||
}
|
||||
|
||||
//
|
||||
// gguf utils
|
||||
//
|
||||
|
||||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||||
switch (type) {
|
||||
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
|
||||
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
|
||||
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
|
||||
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
|
||||
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
|
||||
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
|
||||
default: return string_format("unknown type %d", type);
|
||||
}
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
|
||||
switch (type) {
|
||||
case GGUF_TYPE_STRING:
|
||||
return gguf_get_val_str(ctx_gguf, i);
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
if (arr_type == GGUF_TYPE_STRING) {
|
||||
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
|
||||
// escape quotes
|
||||
string_replace_all(val, "\\", "\\\\");
|
||||
string_replace_all(val, "\"", "\\\"");
|
||||
ss << '"' << val << '"';
|
||||
} else if (arr_type == GGUF_TYPE_ARRAY) {
|
||||
ss << "???";
|
||||
} else {
|
||||
ss << gguf_data_to_str(arr_type, data, j);
|
||||
}
|
||||
if (j < arr_n - 1) {
|
||||
ss << ", ";
|
||||
}
|
||||
}
|
||||
ss << "]";
|
||||
return ss.str();
|
||||
}
|
||||
default:
|
||||
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// API used internally with mtmd
|
||||
//
|
||||
|
||||
projector_type clip_get_projector_type(const struct clip_ctx * ctx);
|
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,7 @@
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
@ -29,32 +30,33 @@ struct clip_image_size {
|
||||
int height;
|
||||
};
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
struct clip_image_f32 * data;
|
||||
size_t size;
|
||||
struct clip_image_u8_batch;
|
||||
struct clip_image_f32_batch;
|
||||
|
||||
struct clip_context_params {
|
||||
bool use_gpu;
|
||||
ggml_log_level verbosity;
|
||||
};
|
||||
|
||||
// deprecated, use clip_init
|
||||
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
|
||||
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
|
||||
|
||||
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
|
||||
|
||||
// TODO: should be enum, not string
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
@ -67,12 +69,29 @@ CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx
|
||||
CLIP_API struct clip_image_size * clip_image_size_init();
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
|
||||
|
||||
// nx, ny are the output image dimensions
|
||||
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
|
||||
|
||||
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
// use for accessing underlay data of clip_image_f32_batch
|
||||
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
|
||||
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
|
||||
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
|
||||
CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
|
||||
|
||||
/**
|
||||
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
|
||||
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
|
||||
*/
|
||||
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
@ -89,11 +108,15 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
|
||||
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -6,7 +6,7 @@ import re
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
|
||||
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel
|
||||
|
||||
TEXT = "clip.text"
|
||||
VISION = "clip.vision"
|
||||
@ -37,6 +37,18 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
# Standardize the transformers llava next keys for
|
||||
# image newline / mm projector with the classes in haotian-liu LLaVA
|
||||
if name == "image_newline":
|
||||
return "model.image_newline"
|
||||
if name.startswith("multi_modal_projector"):
|
||||
name = name.replace("multi_modal_projector", "mm")
|
||||
if "linear_1" in name:
|
||||
name = name.replace("linear_1", "0")
|
||||
if "linear_2" in name:
|
||||
name = name.replace("linear_2", "2")
|
||||
return name
|
||||
|
||||
if "projection" in name:
|
||||
return name
|
||||
if "mm_projector" in name:
|
||||
@ -77,14 +89,21 @@ def bytes_to_unicode():
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
|
||||
# Selectable visual encoders that are compatible with this script
|
||||
encoder_group = ap.add_mutually_exclusive_group()
|
||||
encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False,
|
||||
help="the visual encoder is Siglip.")
|
||||
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
@ -109,7 +128,12 @@ if args.use_f32:
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||
if (
|
||||
args.clip_model_is_vision or
|
||||
not os.path.exists(dir_model + "/vocab.json") or
|
||||
args.clip_model_is_openclip or
|
||||
args.clip_model_is_siglip
|
||||
):
|
||||
vocab = None
|
||||
tokens = None
|
||||
else:
|
||||
@ -137,7 +161,10 @@ ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
if args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||
if args.clip_model_is_siglip:
|
||||
model = SiglipVisionModel.from_pretrained(dir_model)
|
||||
processor = None
|
||||
elif args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||
model = CLIPVisionModel.from_pretrained(dir_model)
|
||||
processor = None
|
||||
else:
|
||||
@ -165,7 +192,7 @@ output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG)
|
||||
|
||||
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||
@ -187,25 +214,70 @@ else:
|
||||
if has_text_encoder:
|
||||
assert t_hparams is not None
|
||||
assert tokens is not None
|
||||
if args.clip_model_is_siglip:
|
||||
text_projection_dim = 0
|
||||
else:
|
||||
text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"])
|
||||
# text_model hparams
|
||||
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32("clip.text.projection_dim", text_projection_dim)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
||||
fout.add_token_list(tokens)
|
||||
|
||||
|
||||
|
||||
def get_non_negative_vision_feature_layers(v_hparams):
|
||||
"""
|
||||
Determine the vision feature layer(s) for the llava model, which are indices into the
|
||||
hidden states of the visual encoder. Note that the hidden states array generally takes the
|
||||
form:
|
||||
|
||||
[<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>]
|
||||
|
||||
so feature indices should be offset as n+1 to get the output of encoder block n.
|
||||
We convert all vision feature layers to non-negative so that -1 can be used in
|
||||
the model as an unset value. If no vision feature layer is found, we leave it unset.
|
||||
"""
|
||||
num_hidden_layers = v_hparams["num_hidden_layers"]
|
||||
to_non_negative = lambda layer_idx: layer_idx if layer_idx >= 0 else num_hidden_layers + layer_idx + 1
|
||||
feature_layers_key = None
|
||||
# Key used for llava models in transformers
|
||||
if "vision_feature_layer" in config:
|
||||
feature_layers_key = "vision_feature_layer"
|
||||
# Key used for llava models in the original format
|
||||
elif "mm_vision_select_layer" in config:
|
||||
feature_layers_key = "mm_vision_select_layer"
|
||||
if feature_layers_key is not None:
|
||||
feature_layers = config[feature_layers_key]
|
||||
if isinstance(feature_layers, int):
|
||||
feature_layers = [feature_layers]
|
||||
return [to_non_negative(feature_layer) for feature_layer in feature_layers]
|
||||
|
||||
# Determine if we have explicitly specified vision feature layers in our config
|
||||
feature_layers = get_non_negative_vision_feature_layers(v_hparams)
|
||||
|
||||
if has_vision_encoder:
|
||||
# vision_model hparams
|
||||
# Siglip does not have a visual projector; set projection dim to 0
|
||||
if args.clip_model_is_siglip:
|
||||
visual_projection_dim = 0
|
||||
else:
|
||||
visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"])
|
||||
|
||||
# set vision_model hparams
|
||||
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
||||
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32("clip.vision.projection_dim", visual_projection_dim)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||
if feature_layers:
|
||||
block_count = max(feature_layers)
|
||||
else:
|
||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
# /**
|
||||
@ -258,7 +330,8 @@ if has_vision_encoder:
|
||||
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
|
||||
if "mm_projector_type" in v_hparams:
|
||||
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
|
||||
|
||||
if feature_layers:
|
||||
fout.add_array("clip.vision.feature_layer", feature_layers)
|
||||
|
||||
if processor is not None:
|
||||
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
|
||||
@ -274,7 +347,13 @@ fout.add_bool("clip.use_gelu", use_gelu)
|
||||
|
||||
|
||||
if has_llava_projector:
|
||||
# By default, we drop the last layer for llava projector
|
||||
# models unless we have explicitly set vision feature layers
|
||||
if feature_layers is None:
|
||||
model.vision_model.encoder.layers.pop(-1)
|
||||
else:
|
||||
model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)]
|
||||
|
||||
projector = torch.load(args.llava_projector)
|
||||
for name, data in projector.items():
|
||||
name = get_tensor_name(name)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user