mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-15 20:53:00 -04:00
more cleaning on python code
This commit is contained in:
@@ -172,6 +172,7 @@ class Keys:
|
||||
TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
|
||||
GROUP_COUNT = "{arch}.ssm.group_count"
|
||||
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
|
||||
HEAD_DIM = "{arch}.ssm.head_dim"
|
||||
|
||||
class WKV:
|
||||
HEAD_SIZE = "{arch}.wkv.head_size"
|
||||
@@ -288,6 +289,7 @@ class MODEL_ARCH(IntEnum):
|
||||
LLAMA4 = auto()
|
||||
DECI = auto()
|
||||
FALCON = auto()
|
||||
FALCON_H1 = auto()
|
||||
BAICHUAN = auto()
|
||||
GROK = auto()
|
||||
GPT2 = auto()
|
||||
@@ -525,6 +527,7 @@ class MODEL_TENSOR(IntEnum):
|
||||
POSNET_ATTN_K = auto()
|
||||
POSNET_ATTN_V = auto()
|
||||
POSNET_ATTN_OUT = auto()
|
||||
SSM_MUP_VEC = auto()
|
||||
# vision
|
||||
V_MMPROJ = auto()
|
||||
V_MMPROJ_FC = auto()
|
||||
@@ -660,6 +663,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.DOTS1: "dots1",
|
||||
MODEL_ARCH.ARCEE: "arcee",
|
||||
MODEL_ARCH.ERNIE4_5: "ernie4_5",
|
||||
MODEL_ARCH.FALCON_H1: "falcon_h1",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
@@ -736,6 +740,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
MODEL_TENSOR.SSM_MUP_VEC: "blk.{bid}.ssm_mup_vec",
|
||||
MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0",
|
||||
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
|
||||
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
|
||||
@@ -2211,6 +2216,41 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.FALCON_H1: [
|
||||
# Token embedding
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
||||
# Input layernorm
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
|
||||
# Attention components
|
||||
MODEL_TENSOR.ATTN_Q, # Query projection
|
||||
MODEL_TENSOR.ATTN_K, # Key projection
|
||||
MODEL_TENSOR.ATTN_V, # Value projection
|
||||
MODEL_TENSOR.ATTN_OUT, # Output projection
|
||||
|
||||
# SSM components (Mamba2 specific)
|
||||
MODEL_TENSOR.SSM_MUP_VEC, # Mup vector
|
||||
MODEL_TENSOR.SSM_IN, # Input projection for SSM
|
||||
MODEL_TENSOR.SSM_CONV1D, # Convolution layer
|
||||
MODEL_TENSOR.SSM_DT, # Delta time projection
|
||||
MODEL_TENSOR.SSM_A, # A parameter (log form)
|
||||
MODEL_TENSOR.SSM_D, # D parameter
|
||||
MODEL_TENSOR.SSM_NORM, # Normalization in SSM
|
||||
MODEL_TENSOR.SSM_OUT, # Output projection
|
||||
|
||||
# Pre-feedforward layernorm
|
||||
MODEL_TENSOR.FFN_PRE_NORM,
|
||||
|
||||
# Feed-forward network components
|
||||
MODEL_TENSOR.FFN_GATE, # Gate projection (SwiGLU)
|
||||
MODEL_TENSOR.FFN_DOWN, # Down projection
|
||||
MODEL_TENSOR.FFN_UP, # Up projection
|
||||
|
||||
# Post-feedforward layernorm
|
||||
MODEL_TENSOR.OUTPUT_NORM, # Final layer norm
|
||||
MODEL_TENSOR.OUTPUT, # Output projection (lm_head)
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user