cmake : do not include ./src as public for libllama (#13062)

* cmake : do not include ./src as public for libllama

ggml-ci

* cmake : rework tests

ggml-ci

* llguidance : remove unicode include

ggml-ci

* cmake : make c++17 private

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-04-24 16:00:10 +03:00
committed by GitHub
parent 572b3141d3
commit 13b4548877
17 changed files with 64 additions and 69 deletions

View File

@ -1,5 +1,17 @@
llama_add_compile_flags()
function(llama_build source)
if (DEFINED LLAMA_TEST_NAME)
set(TEST_TARGET ${LLAMA_TEST_NAME})
else()
get_filename_component(TEST_TARGET ${source} NAME_WE)
endif()
add_executable(${TEST_TARGET} ${source})
target_link_libraries(${TEST_TARGET} PRIVATE common)
install(TARGETS ${TEST_TARGET} RUNTIME)
endfunction()
function(llama_test target)
include(CMakeParseArguments)
set(options)
@ -36,7 +48,7 @@ endfunction()
# - LABEL: label for the test (defaults to main)
# - ARGS: arguments to pass to the test executable
# - WORKING_DIRECTORY
function(llama_target_and_test source)
function(llama_build_and_test source)
include(CMakeParseArguments)
set(options)
set(oneValueArgs NAME LABEL WORKING_DIRECTORY)
@ -58,6 +70,7 @@ function(llama_target_and_test source)
add_executable(${TEST_TARGET} ${source} get-model.cpp)
install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE common)
add_test(
NAME ${TEST_TARGET}
WORKING_DIRECTORY ${LLAMA_TEST_WORKING_DIRECTORY}
@ -68,9 +81,7 @@ function(llama_target_and_test source)
endfunction()
# build test-tokenizer-0 target once and add many tests
add_executable(test-tokenizer-0 test-tokenizer-0.cpp)
target_link_libraries(test-tokenizer-0 PRIVATE common)
install(TARGETS test-tokenizer-0 RUNTIME)
llama_build(test-tokenizer-0.cpp)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-bert-bge ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bert-bge.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-command-r ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-command-r.gguf)
@ -87,27 +98,27 @@ llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE
llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
if (LLAMA_LLGUIDANCE)
llama_target_and_test(test-grammar-llguidance.cpp ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf)
llama_build_and_test(test-grammar-llguidance.cpp ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf)
endif ()
if (NOT WIN32)
# these tests are disabled on Windows because they use internal functions not exported with LLAMA_API
llama_target_and_test(test-sampling.cpp)
llama_target_and_test(test-grammar-parser.cpp)
llama_target_and_test(test-grammar-integration.cpp)
llama_target_and_test(test-llama-grammar.cpp)
llama_target_and_test(test-chat.cpp)
llama_build_and_test(test-sampling.cpp)
llama_build_and_test(test-grammar-parser.cpp)
llama_build_and_test(test-grammar-integration.cpp)
llama_build_and_test(test-llama-grammar.cpp)
llama_build_and_test(test-chat.cpp)
# TODO: disabled on loongarch64 because the ggml-ci node lacks Python 3.8
if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
llama_build_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
endif()
llama_build(test-quantize-stats.cpp)
llama_build(test-gbnf-validator.cpp)
# build test-tokenizer-1-bpe target once and add many tests
add_executable(test-tokenizer-1-bpe test-tokenizer-1-bpe.cpp)
target_link_libraries(test-tokenizer-1-bpe PRIVATE common)
install(TARGETS test-tokenizer-1-bpe RUNTIME)
llama_build(test-tokenizer-1-bpe.cpp)
# TODO: disabled due to slowness
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-aquila ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
@ -120,37 +131,35 @@ if (NOT WIN32)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
# build test-tokenizer-1-spm target once and add many tests
add_executable(test-tokenizer-1-spm test-tokenizer-1-spm.cpp)
target_link_libraries(test-tokenizer-1-spm PRIVATE common)
install(TARGETS test-tokenizer-1-spm RUNTIME)
llama_build(test-tokenizer-1-spm.cpp)
llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-llama-spm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-spm.gguf)
#llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-baichuan ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
# llama_target_and_test(test-double-float.cpp) # SLOW
# llama_build_and_test(test-double-float.cpp) # SLOW
endif()
llama_target_and_test(test-log.cpp)
llama_target_and_test(test-chat-template.cpp)
llama_build_and_test(test-log.cpp)
llama_build_and_test(test-chat-template.cpp)
# this fails on windows (github hosted runner) due to curl DLL not found (exit code 0xc0000135)
if (NOT WIN32)
llama_target_and_test(test-arg-parser.cpp)
llama_build_and_test(test-arg-parser.cpp)
endif()
# llama_target_and_test(test-opt.cpp) # SLOW
llama_target_and_test(test-gguf.cpp)
llama_target_and_test(test-backend-ops.cpp)
# llama_build_and_test(test-opt.cpp) # SLOW
llama_build_and_test(test-gguf.cpp)
llama_build_and_test(test-backend-ops.cpp)
llama_target_and_test(test-model-load-cancel.cpp LABEL "model")
llama_target_and_test(test-autorelease.cpp LABEL "model")
llama_build_and_test(test-model-load-cancel.cpp LABEL "model")
llama_build_and_test(test-autorelease.cpp LABEL "model")
if (NOT GGML_BACKEND_DL)
# these tests use the backends directly and cannot be built with dynamic loading
llama_target_and_test(test-barrier.cpp)
llama_target_and_test(test-quantize-fns.cpp)
llama_target_and_test(test-quantize-perf.cpp)
llama_target_and_test(test-rope.cpp)
llama_build_and_test(test-barrier.cpp)
llama_build_and_test(test-quantize-fns.cpp)
llama_build_and_test(test-quantize-perf.cpp)
llama_build_and_test(test-rope.cpp)
endif()

View File

@ -11,8 +11,9 @@
#include <string>
#include "chat.h"
#include "llama-grammar.h"
#include "unicode.h"
#include "../src/unicode.h"
#include "../src/llama-grammar.h"
using json = nlohmann::ordered_json;

View File

@ -0,0 +1,109 @@
#include "../src/unicode.h"
#include "../src/llama-grammar.h"
#include <cstdio>
#include <cstdlib>
#include <sstream>
#include <fstream>
#include <string>
#include <vector>
static bool llama_grammar_validate(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
const auto cpts = unicode_cpts_from_utf8(input_str);
auto & stacks_cur = llama_grammar_get_stacks(grammar);
size_t pos = 0;
for (const auto & cpt : cpts) {
llama_grammar_accept(grammar, cpt);
if (stacks_cur.empty()) {
error_pos = pos;
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(cpt) + "'";
return false;
}
++pos;
}
for (const auto & stack : stacks_cur) {
if (stack.empty()) {
return true;
}
}
error_pos = pos;
error_msg = "Unexpected end of input";
return false;
}
static void print_error_message(const std::string & input_str, size_t error_pos, const std::string & error_msg) {
fprintf(stdout, "Input string is invalid according to the grammar.\n");
fprintf(stdout, "Error: %s at position %zu\n", error_msg.c_str(), error_pos);
fprintf(stdout, "\n");
fprintf(stdout, "Input string:\n");
fprintf(stdout, "%s", input_str.substr(0, error_pos).c_str());
if (error_pos < input_str.size()) {
fprintf(stdout, "\033[1;31m%c", input_str[error_pos]);
if (error_pos+1 < input_str.size()) {
fprintf(stdout, "\033[0;31m%s", input_str.substr(error_pos+1).c_str());
}
fprintf(stdout, "\033[0m\n");
}
}
int main(int argc, char** argv) {
if (argc != 3) {
fprintf(stdout, "Usage: %s <grammar_filename> <input_filename>\n", argv[0]);
return 1;
}
const std::string grammar_filename = argv[1];
const std::string input_filename = argv[2];
// Read the GBNF grammar file
FILE* grammar_file = fopen(grammar_filename.c_str(), "r");
if (!grammar_file) {
fprintf(stdout, "Failed to open grammar file: %s\n", grammar_filename.c_str());
return 1;
}
std::string grammar_str;
{
std::ifstream grammar_file(grammar_filename);
GGML_ASSERT(grammar_file.is_open() && "Failed to open grammar file");
std::stringstream buffer;
buffer << grammar_file.rdbuf();
grammar_str = buffer.str();
}
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root", false, nullptr, 0, nullptr, 0);
if (grammar == nullptr) {
fprintf(stdout, "Failed to initialize llama_grammar\n");
return 1;
}
// Read the input file
std::string input_str;
{
std::ifstream input_file(input_filename);
GGML_ASSERT(input_file.is_open() && "Failed to open input file");
std::stringstream buffer;
buffer << input_file.rdbuf();
input_str = buffer.str();
}
// Validate the input string against the grammar
size_t error_pos;
std::string error_msg;
bool is_valid = llama_grammar_validate(grammar, input_str, error_pos, error_msg);
if (is_valid) {
fprintf(stdout, "Input string is valid according to the grammar.\n");
} else {
print_error_message(input_str, error_pos, error_msg);
}
// Clean up
llama_grammar_free_impl(grammar);
return 0;
}

View File

@ -2,10 +2,11 @@
#undef NDEBUG
#endif
#include "unicode.h"
#include "llama-grammar.h"
#include "json-schema-to-grammar.h"
#include "../src/unicode.h"
#include "../src/llama-grammar.h"
#include <cassert>
#include <string>
#include <vector>

View File

@ -2,7 +2,6 @@
# undef NDEBUG
#endif
#include "unicode.h"
#include "sampling.h"
#include <cassert>
@ -84,7 +83,7 @@ static void test(const std::string & test_desc, const std::string & grammar_str,
fprintf(stderr,
"\n NOTE: Debug grammar file generated. To analyze this failure in detail, run the following "
"command: ./llama-gbnf-validator test-grammar-integration.grammar.gbnf "
"command: ./test-gbnf-validator test-grammar-integration.grammar.gbnf "
"test-grammar-integration.string.txt\n\n");
} else {
fprintf(stdout, "✅︎\n");

View File

@ -3,7 +3,9 @@
#endif
#include "llama.h"
#include "llama-grammar.h"
// TODO: shold not include libllama sources
#include "../src/llama-grammar.h"
#include <cassert>

View File

@ -4,7 +4,7 @@
#include "json-schema-to-grammar.h"
#include "llama-grammar.h"
#include "../src/llama-grammar.h"
#include <cassert>
#include <fstream>

View File

@ -3,7 +3,8 @@
#endif
#include "llama.h"
#include "llama-grammar.h"
#include "../src/llama-grammar.h"
#include <cassert>
#include <stdexcept>

View File

@ -0,0 +1,423 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "../src/llama-model.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <regex>
#include <string>
#include <vector>
#include <thread>
#include <mutex>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
struct quantize_stats_params {
std::string model = DEFAULT_MODEL_PATH;
bool verbose = false;
bool per_layer_stats = false;
bool print_histogram = false;
bool reference = false;
std::vector<std::string> include_layers;
std::vector<std::string> exclude_layers;
std::vector<enum ggml_type> include_types;
};
constexpr size_t HISTOGRAM_BUCKETS = 150;
constexpr double HISTOGRAM_RANGE = 0.03;
struct error_stats {
size_t num_samples;
double total_error;
double max_error;
uint64_t error_histogram[HISTOGRAM_BUCKETS];
};
static void quantize_stats_print_usage(int /*argc*/, char ** argv) {
quantize_stats_params params;
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -r, --reference\n");
fprintf(stderr, " use reference implementation (default: false)\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " verbose output (default: false)\n");
fprintf(stderr, " -p, --per-layer-stats\n");
fprintf(stderr, " print stats per layer (default: false)\n");
fprintf(stderr, " --histogram\n");
fprintf(stderr, " print error histogram (default: false)\n");
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
fprintf(stderr, " only test layers matching pattern\n");
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
fprintf(stderr, " exclude layers matching pattern\n");
fprintf(stderr, " -t TYPE, --type TYPE\n");
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
fprintf(stderr, "\n");
}
// Check if a layer is included/excluded by command line
static bool layer_included(const quantize_stats_params & params, const std::string & layer) {
for (const auto& excluded : params.exclude_layers) {
if (std::regex_search(layer, std::regex(excluded))) {
return false;
}
}
for (const auto& included : params.include_layers) {
if (std::regex_search(layer, std::regex(included))) {
return true;
}
}
return params.include_layers.empty();
}
// Update error statistics given vectors with the before/after result of quantization
static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
for (int64_t i = 0; i < nelements; i++) {
double diff = input[i] - output[i];
stats.total_error += diff * diff;
stats.max_error = fmax(fabs(diff), stats.max_error);
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
}
stats.num_samples += nelements;
}
static void combine_error_stats(error_stats & into, const error_stats & from) {
into.num_samples += from.num_samples;
into.total_error += from.total_error;
if (from.max_error > into.max_error) into.max_error = from.max_error;
for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
}
static double find_quantile(const error_stats & stats, double quantile) {
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
double accum = 0;
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
accum += stats.error_histogram[i];
if (accum >= sum*quantile) {
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
}
}
return INFINITY;
}
static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
double median = find_quantile(stats, .5);
double pct95 = find_quantile(stats, .95);
printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
if (print_histogram) {
printf("Error distribution:\n");
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
}
}
}
// copied from ggml.h - verify that we can access this as a flat array
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static void test_roundtrip_on_chunk(
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference,
float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats
) {
if (layer->type == GGML_TYPE_F16) {
for (int i = 0; i < chunk_size; i++) {
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
}
} else {
input_scratch = ggml_get_data_f32(layer) + offset;
}
if (use_reference) {
qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size);
} else {
qfns_cpu.from_float(input_scratch, quantized_scratch, chunk_size);
}
qfns.to_float(quantized_scratch, output_scratch, chunk_size);
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
}
// Run quantization function for a single layer and update error stats
static void test_roundtrip_on_layer(
std::string & name, bool print_layer_stats, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference,
const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0
) {
assert(tensor_is_contiguous(layer));
error_stats layer_error {};
uint64_t nelements = ggml_nelements(layer);
float* input_scratch_ptr = nullptr;
if (layer->type == GGML_TYPE_F16) {
if (input_scratch.size() < nelements) input_scratch.resize(nelements);
input_scratch_ptr = input_scratch.data();
}
if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
if (output_scratch.size() < nelements) output_scratch.resize(nelements);
if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
int chunk_size = 32*512;
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
if (num_chunks < 2 || max_thread < 2) {
test_roundtrip_on_chunk(layer, 0, nelements, qfns, qfns_cpu, use_reference, input_scratch_ptr, quantized_scratch.data(),
output_scratch.data(), print_layer_stats ? layer_error : total_error);
} else {
auto & stats = print_layer_stats ? layer_error : total_error;
std::mutex mutex;
uint64_t counter = 0;
auto compute = [&mutex, &counter, &stats, &qfns, &qfns_cpu, nelements, layer, use_reference, input_scratch_ptr,
&quantized_scratch, &output_scratch, chunk_size] () {
error_stats local_stats {};
while (true) {
std::unique_lock<std::mutex> lock(mutex);
uint64_t offset = counter; counter += chunk_size;
if (offset >= nelements) {
combine_error_stats(stats, local_stats);
break;
}
lock.unlock();
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
test_roundtrip_on_chunk(layer, offset, chunk, qfns, qfns_cpu, use_reference, input_scratch_ptr + offset,
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
}
};
int nthread = std::min(num_chunks, max_thread);
std::vector<std::thread> workers(nthread-1);
for (auto& w : workers) w = std::thread(compute);
compute();
for (auto& w : workers) w.join();
}
if (print_layer_stats) {
print_error_stats(name, layer_error, false);
combine_error_stats(total_error, layer_error);
}
}
int main(int argc, char ** argv) {
ggml_time_init();
quantize_stats_params params;
// read command line
int max_thread = 0;
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-h" || arg == "--help") {
quantize_stats_print_usage(argc, argv);
exit(0);
} else if (arg == "-r" || arg == "--reference") {
params.reference = true;
} else if (arg == "-v") {
params.verbose = true;
} else if (arg == "-p" || arg == "--per-layer-stats") {
params.per_layer_stats = true;
} else if (arg == "--histogram") {
params.print_histogram = true;
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-l" || arg == "--include-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.include_layers.emplace_back(argv[i]);
} else if (arg == "-L" || arg == "--exclude-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.exclude_layers.emplace_back(argv[i]);
} else if (arg == "-t" || arg == "--type") {
if (++i >= argc) {
invalid_param = true;
break;
}
int j;
for (j = 0; j < GGML_TYPE_COUNT; ++j) {
const auto * name = ggml_type_name((ggml_type) j);
if (name && strcmp(argv[i], name) == 0) break;
}
if (j < GGML_TYPE_COUNT) {
params.include_types.push_back((ggml_type) j);
} else {
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
invalid_param = true;
}
} else if (arg == "-n" || arg == "--num-threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
max_thread = atoi(argv[i]);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
print_build_info();
// load the model
fprintf(stderr, "Loading model\n");
const int64_t t_main_start_us = ggml_time_us();
llama_model * model;
llama_context * ctx;
{
auto mparams = llama_model_default_params();
mparams.use_mlock = false;
model = llama_model_load_from_file(params.model.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
ctx = llama_init_from_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_model_free(model);
return 1;
}
}
const auto & tensors = llama_internal_get_tensor_map(model);
// check layer tensors
int included_layers = 0;
int64_t max_nelements = 0;
bool is_f16 = false;
for (const auto & kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
}
if (kv_tensor.second->type == GGML_TYPE_F16) {
is_f16 = true;
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
llama_model_free(model);
return 1;
}
included_layers++;
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
}
if (is_f16) {
printf("note: source model is f16\n");
}
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
// allocate scratch space
std::vector<float> input_scratch;
std::vector<char> quantized_scratch;
std::vector<float> output_scratch;
// loop throught quantization types
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
const ggml_type type = (ggml_type) i;
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
const auto * qfns = ggml_get_type_traits(type);
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
if (qfns_cpu->from_float && qfns->to_float) {
if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type));
}
ggml_quantize_init(type);
error_stats global_stats {};
for (const auto & kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf(" %s ...\n", kv_tensor.first.c_str());
}
std::string layer_name { ggml_type_name(type) };
layer_name += "::" + kv_tensor.first;
test_roundtrip_on_layer(
layer_name,
params.per_layer_stats,
*qfns, *qfns_cpu,
params.reference,
kv_tensor.second,
input_scratch,
quantized_scratch,
output_scratch,
global_stats,
max_thread
);
}
print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
}
}
llama_free(ctx);
llama_model_free(model);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
return 0;
}

View File

@ -1,8 +1,9 @@
#include "llama.h"
#include "common.h"
#include "unicode.h"
#include "console.h"
#include "../src/unicode.h"
#include <cassert>
#include <codecvt>
#include <cstdio>

View File

@ -1,8 +1,9 @@
#include "llama.h"
#include "common.h"
#include "unicode.h"
#include "console.h"
#include "../src/unicode.h"
#include <cassert>
#include <codecvt>
#include <cstdio>