mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-27 12:05:03 +00:00
kv-cache : refactor + add llama_memory_state_i (#13746)
* kv-cache : simplify the "struct llama_kv_cache" interface ggml-ci * kv-cache : revert the (n_swa + n_ubatch) change (for next PR) ggml-ci * kv-cache : some comments ggml-ci * context : fix graph reserve for multiple sequences ggml-ci * kv-cache : fix typo [no ci] * kv-cache : fix find_slot() logic for free slots ggml-ci * llama : add TODO for deprecating the defrag API in the future * kv-cache : improve find_slot() using min/max seq pos info ggml-ci * llama : handle aborts and compute errors ggml-ci * memory : extract state into llama_memory_state ggml-ci * kv-cache : add comments ggml-ci * server : update batching logic to reset n_batch on successful decode * server : upon full re-processing, remove the sequence from the cache * kv-cache : add TODO for doing split_equal when split_simple fails ggml-ci
This commit is contained in:
@ -362,7 +362,9 @@ int main(int argc, char ** argv) {
|
||||
// process in chunks of params.n_batch
|
||||
int32_t n_batch = params.n_batch;
|
||||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
int32_t i_next = 0;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
|
||||
// experiment: process in powers of 2
|
||||
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
|
||||
// n_batch /= 2;
|
||||
@ -370,7 +372,7 @@ int main(int argc, char ** argv) {
|
||||
// continue;
|
||||
//}
|
||||
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
@ -396,13 +398,18 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
|
||||
|
||||
// move the head of the batch forward with the number of tokens we just processed
|
||||
i_next = i + n_tokens;
|
||||
|
||||
// on successful decode, restore the original batch size
|
||||
n_batch = params.n_batch;
|
||||
|
||||
for (auto & client : clients) {
|
||||
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
|
||||
continue;
|
||||
|
@ -259,9 +259,9 @@ extern "C" {
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
int8_t * logits; // TODO: rename this to "output"
|
||||
int32_t * n_seq_id; // TODO: remove, should belong to only 1 sequence
|
||||
llama_seq_id ** seq_id; // TODO: become llama_seq_id * seq_id;
|
||||
int8_t * logits; // TODO: rename this to "output"
|
||||
} llama_batch;
|
||||
|
||||
enum llama_model_kv_override_type {
|
||||
@ -677,12 +677,14 @@ extern "C" {
|
||||
|
||||
// Returns the smallest position present in the KV cache for the specified sequence
|
||||
// This is typically non-zero only for SWA caches
|
||||
// Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache
|
||||
// Return -1 if the sequence is empty
|
||||
LLAMA_API llama_pos llama_kv_self_seq_pos_min(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Returns the largest position present in the KV cache for the specified sequence
|
||||
// Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache
|
||||
// Return -1 if the sequence is empty
|
||||
LLAMA_API llama_pos llama_kv_self_seq_pos_max(
|
||||
struct llama_context * ctx,
|
||||
@ -692,12 +694,14 @@ extern "C" {
|
||||
// This will be applied:
|
||||
// - lazily on next llama_decode()
|
||||
// - explicitly with llama_kv_self_update()
|
||||
// TODO: deprecate and always update the cache lazily [TAG: API_KV_NO_DEFRAG]
|
||||
LLAMA_API void llama_kv_self_defrag(struct llama_context * ctx);
|
||||
|
||||
// Check if the context supports KV cache shifting
|
||||
LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx);
|
||||
|
||||
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
||||
// TODO: deprecate and always update the cache lazily [TAG: API_KV_NO_DEFRAG]
|
||||
LLAMA_API void llama_kv_self_update(struct llama_context * ctx);
|
||||
|
||||
//
|
||||
|
@ -15,24 +15,31 @@ llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
ubatch_token.resize(!has_embd ? n_ubatch : 0);
|
||||
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
|
||||
ubatch_pos.resize(n_ubatch);
|
||||
ubatch_n_seq_id.resize(n_ubatch);
|
||||
ubatch_seq_id.resize(n_ubatch);
|
||||
ubatch_output.resize(n_ubatch);
|
||||
|
||||
udatas.push_back({});
|
||||
|
||||
auto & udata = udatas.back();
|
||||
|
||||
udata.token.resize(!has_embd ? n_ubatch : 0);
|
||||
udata.embd.resize(has_embd ? n_embd * n_ubatch : 0);
|
||||
udata.pos.resize(n_ubatch);
|
||||
udata.n_seq_id.resize(n_ubatch);
|
||||
udata.seq_id.resize(n_ubatch);
|
||||
udata.output.resize(n_ubatch);
|
||||
|
||||
llama_ubatch ubatch = {
|
||||
/*equal_seqs =*/ true,
|
||||
/*n_tokens =*/ 0,
|
||||
/*n_seq_tokens =*/ 0,
|
||||
/*n_seqs =*/ 0,
|
||||
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
|
||||
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
|
||||
/*pos =*/ ubatch_pos.data(),
|
||||
/*n_seq_id =*/ ubatch_n_seq_id.data(),
|
||||
/*seq_id =*/ ubatch_seq_id.data(),
|
||||
/*output =*/ ubatch_output.data(),
|
||||
/*token =*/ !has_embd ? udata.token.data() : nullptr,
|
||||
/*embd =*/ has_embd ? udata.embd.data() : nullptr,
|
||||
/*pos =*/ udata.pos.data(),
|
||||
/*n_seq_id =*/ udata.n_seq_id.data(),
|
||||
/*seq_id =*/ udata.seq_id.data(),
|
||||
/*output =*/ udata.output.data(),
|
||||
};
|
||||
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
|
@ -11,15 +11,15 @@ struct llama_ubatch {
|
||||
bool equal_seqs;
|
||||
// TODO: whole_seqs for embeddings?
|
||||
|
||||
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
|
||||
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
|
||||
uint32_t n_seq_tokens; // tokens per sequence
|
||||
uint32_t n_seqs;
|
||||
|
||||
llama_token * token; // [n_tokens]
|
||||
float * embd; // [n_embd, n_tokens]
|
||||
llama_pos * pos; // [n_tokens]
|
||||
int32_t * n_seq_id; // [n_seqs]
|
||||
llama_seq_id ** seq_id; // [n_seqs]
|
||||
int32_t * n_seq_id; // [n_seqs] // TODO: remove, should belong to only 1 sequence
|
||||
llama_seq_id ** seq_id; // [n_seqs] // TODO: become llama_seq_id * seq_id;
|
||||
int8_t * output; // [n_tokens]
|
||||
};
|
||||
|
||||
@ -49,13 +49,18 @@ struct llama_sbatch {
|
||||
|
||||
const llama_batch * batch = nullptr;
|
||||
|
||||
// buffers for the ubatch
|
||||
std::vector<llama_token> ubatch_token;
|
||||
std::vector<float> ubatch_embd;
|
||||
std::vector<llama_pos> ubatch_pos;
|
||||
std::vector<int32_t> ubatch_n_seq_id;
|
||||
std::vector<llama_seq_id *> ubatch_seq_id;
|
||||
std::vector<int8_t> ubatch_output;
|
||||
// buffers for the ubatches
|
||||
// TODO: very hacky, this needs a complete rework
|
||||
struct ubatch_data {
|
||||
std::vector<llama_token> token;
|
||||
std::vector<float> embd;
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id *> seq_id;
|
||||
std::vector<int8_t> output;
|
||||
};
|
||||
|
||||
std::vector<ubatch_data> udatas;
|
||||
|
||||
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
|
||||
|
||||
|
@ -6,9 +6,10 @@
|
||||
#include "llama-model.h"
|
||||
#include "llama-kv-cache.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <cinttypes>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
|
||||
//
|
||||
// llama_context
|
||||
@ -259,15 +260,9 @@ llama_context::llama_context(
|
||||
|
||||
// reserve worst-case graph
|
||||
if (!hparams.vocab_only && memory) {
|
||||
const uint32_t n_seqs = 1; // TODO: worst-case number of sequences
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||
|
||||
// restore later
|
||||
// TODO: something cleaner
|
||||
const auto n_outputs_save = n_outputs;
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs);
|
||||
|
||||
int n_splits_pp = -1;
|
||||
@ -279,23 +274,17 @@ llama_context::llama_context(
|
||||
// simulate full KV cache
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->set_full();
|
||||
const auto kv_state = kv_self->init_full();
|
||||
if (!kv_state) {
|
||||
throw std::runtime_error("failed to initialize KV cache");
|
||||
}
|
||||
|
||||
cross.v_embd.clear();
|
||||
|
||||
// reserve pp graph first so that buffers are only allocated once
|
||||
{
|
||||
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||
|
||||
// max number of outputs
|
||||
n_outputs = ubatch_pp.n_tokens;
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);
|
||||
|
||||
auto * gf = graph_init();
|
||||
graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);
|
||||
|
||||
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
|
||||
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, kv_state.get());
|
||||
if (!gf) {
|
||||
throw std::runtime_error("failed to allocate compute pp buffers");
|
||||
}
|
||||
|
||||
@ -305,16 +294,8 @@ llama_context::llama_context(
|
||||
|
||||
// reserve with tg graph to get the number of splits and nodes
|
||||
{
|
||||
llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||
|
||||
n_outputs = ubatch_tg.n_tokens;
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_tg.n_tokens, ubatch_tg.n_seqs);
|
||||
|
||||
auto * gf = graph_init();
|
||||
graph_build(ctx_compute.get(), gf, ubatch_tg, LLM_GRAPH_TYPE_DEFAULT);
|
||||
|
||||
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
|
||||
auto * gf = graph_reserve(1, 1, 1, kv_state.get());
|
||||
if (!gf) {
|
||||
throw std::runtime_error("failed to allocate compute tg buffers");
|
||||
}
|
||||
|
||||
@ -324,22 +305,12 @@ llama_context::llama_context(
|
||||
|
||||
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
|
||||
{
|
||||
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||
|
||||
n_outputs = ubatch_pp.n_tokens;
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);
|
||||
|
||||
auto * gf = graph_init();
|
||||
graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);
|
||||
|
||||
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
|
||||
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, kv_state.get());
|
||||
if (!gf) {
|
||||
throw std::runtime_error("failed to allocate compute pp buffers");
|
||||
}
|
||||
}
|
||||
|
||||
n_outputs = n_outputs_save;
|
||||
|
||||
for (size_t i = 0; i < backend_ptrs.size(); ++i) {
|
||||
ggml_backend_t backend = backend_ptrs[i];
|
||||
ggml_backend_buffer_type_t buft = backend_buft[i];
|
||||
@ -454,33 +425,25 @@ const llama_kv_cache * llama_context::get_kv_self() const {
|
||||
}
|
||||
|
||||
void llama_context::kv_self_update() {
|
||||
bool need_reserve = false;
|
||||
if (!memory) {
|
||||
return;
|
||||
}
|
||||
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
need_reserve = kv_self->update(*this);
|
||||
if (kv_self->update(*this)) {
|
||||
// if the KV cache did any computation, we have to reserve a new worst-case graph
|
||||
const auto kv_state = kv_self->init_full();
|
||||
if (!kv_state) {
|
||||
throw std::runtime_error("failed to initialize KV cache");
|
||||
}
|
||||
|
||||
// reserve a worst case graph if needed
|
||||
if (need_reserve) {
|
||||
LLAMA_LOG_DEBUG("%s: reserving a worst case graph\n", __func__);
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
// build worst-case graph
|
||||
uint32_t n_seqs = 1; // TODO: worst-case number of sequences
|
||||
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
// simulate full KV cache
|
||||
kv_self->set_full();
|
||||
|
||||
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||
|
||||
auto * gf = graph_init();
|
||||
graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);
|
||||
|
||||
// initialize scheduler with the worst-case graph
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
||||
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, kv_state.get());
|
||||
if (!gf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to reserve graph after the KV cache update\n", __func__);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -676,6 +639,49 @@ bool llama_context::apply_adapter_cvec(
|
||||
return cvec.apply(model, data, len, n_embd, il_start, il_end);
|
||||
}
|
||||
|
||||
llm_graph_result_ptr llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_state_i * mstate, ggml_status & ret) {
|
||||
if (mstate && !mstate->apply()) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply memory state\n", __func__);
|
||||
ret = GGML_STATUS_FAILED;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto * gf = graph_init();
|
||||
if (!gf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize graph\n", __func__);
|
||||
ret = GGML_STATUS_FAILED;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto res = graph_build(ctx_compute.get(), gf, ubatch, gtype, mstate);
|
||||
if (!res) {
|
||||
LLAMA_LOG_ERROR("%s: failed to build graph\n", __func__);
|
||||
ret = GGML_STATUS_FAILED;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||
|
||||
if (!ggml_backend_sched_alloc_graph(sched.get(), gf)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate graph\n", __func__);
|
||||
ret = GGML_STATUS_ALLOC_FAILED;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
res->set_inputs(&ubatch);
|
||||
|
||||
const auto status = graph_compute(gf, ubatch.n_tokens > 1);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
LLAMA_LOG_ERROR("%s: failed to compute graph, compute status: %d\n", __func__, status);
|
||||
ret = status;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ret = GGML_STATUS_SUCCESS;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int llama_context::encode(llama_batch & inp_batch) {
|
||||
if (inp_batch.n_tokens == 0) {
|
||||
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
|
||||
@ -737,8 +743,6 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||
|
||||
n_outputs = n_tokens;
|
||||
|
||||
//batch_manager->prepare(ubatch);
|
||||
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
||||
|
||||
@ -749,26 +753,18 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/12181#issuecomment-2730451223
|
||||
cparams.causal_attn = false;
|
||||
|
||||
auto * gf = graph_init();
|
||||
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_ENCODER);
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
||||
|
||||
res->set_inputs(&ubatch);
|
||||
ggml_status status;
|
||||
const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status);
|
||||
|
||||
cparams.causal_attn = causal_attn_org;
|
||||
|
||||
const auto compute_status = graph_compute(gf, n_tokens > 1);
|
||||
switch (compute_status) {
|
||||
case GGML_STATUS_SUCCESS:
|
||||
break;
|
||||
case GGML_STATUS_ABORTED:
|
||||
return 2;
|
||||
case GGML_STATUS_ALLOC_FAILED:
|
||||
return -2;
|
||||
case GGML_STATUS_FAILED:
|
||||
default:
|
||||
return -3;
|
||||
if (!res) {
|
||||
switch (status) {
|
||||
case GGML_STATUS_ABORTED: return 2;
|
||||
case GGML_STATUS_ALLOC_FAILED: return -2;
|
||||
case GGML_STATUS_FAILED: return -3;
|
||||
case GGML_STATUS_SUCCESS: GGML_ABORT("should not happen");
|
||||
}
|
||||
}
|
||||
|
||||
auto * t_embd = res->get_embd_pooled() ? res->get_embd_pooled() : res->get_embd();
|
||||
@ -889,8 +885,6 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
const int64_t n_tokens_all = batch.n_tokens;
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
llama_kv_cache_guard kv_guard(kv_self);
|
||||
|
||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||
|
||||
// TODO: move the validation to the llama_batch_allocr
|
||||
@ -936,7 +930,28 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
n_outputs_all = 1;
|
||||
}
|
||||
|
||||
llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);
|
||||
// handle any pending defrags/shifts
|
||||
kv_self_update();
|
||||
|
||||
auto kv_state = kv_self->init_batch(batch, cparams.n_ubatch, embd_pooled, /* logits_all */ n_outputs_all == n_tokens_all);
|
||||
if (!kv_state) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
switch (kv_state->get_status()) {
|
||||
case LLAMA_MEMORY_STATUS_SUCCESS:
|
||||
{
|
||||
} break;
|
||||
case LLAMA_MEMORY_STATUS_FAILED_PREPARE:
|
||||
{
|
||||
// not a fatal error, we can re-try with a different batch
|
||||
return 1;
|
||||
}
|
||||
case LLAMA_MEMORY_STATUS_FAILED_COMPUTE:
|
||||
{
|
||||
return -2;
|
||||
}
|
||||
}
|
||||
|
||||
// reserve output buffer
|
||||
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
||||
@ -944,13 +959,10 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
return -2;
|
||||
};
|
||||
|
||||
// handle any pending defrags/shifts
|
||||
kv_self_update();
|
||||
|
||||
int64_t n_outputs_prev = 0;
|
||||
|
||||
while (sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
|
||||
do {
|
||||
const auto & ubatch = kv_state->get_ubatch();
|
||||
|
||||
// count the outputs in this u_batch
|
||||
{
|
||||
@ -969,33 +981,37 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
n_outputs = n_outputs_new;
|
||||
}
|
||||
|
||||
// find KV slot
|
||||
if (!kv_self->find_slot(ubatch)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
||||
|
||||
auto * gf = graph_init();
|
||||
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DECODER);
|
||||
ggml_status status;
|
||||
const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, kv_state.get(), status);
|
||||
|
||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||
if (!res) {
|
||||
// the last ubatch failed or was aborted -> remove all positions of that ubatch from the KV cache
|
||||
llama_pos pos_min[LLAMA_MAX_PARALLEL_SEQUENCES] = { std::numeric_limits<llama_pos>::max() };
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
||||
for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
|
||||
const auto & seq_id = ubatch.seq_id[i][0];
|
||||
|
||||
res->set_inputs(&ubatch);
|
||||
pos_min[seq_id] = std::min(pos_min[seq_id], ubatch.pos[i]);
|
||||
}
|
||||
|
||||
const auto compute_status = graph_compute(gf, ubatch.n_tokens > 1);
|
||||
if (compute_status != GGML_STATUS_SUCCESS) {
|
||||
switch (compute_status) {
|
||||
case GGML_STATUS_ABORTED:
|
||||
return 2;
|
||||
case GGML_STATUS_ALLOC_FAILED:
|
||||
return -2;
|
||||
case GGML_STATUS_FAILED:
|
||||
default:
|
||||
return -3;
|
||||
for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) {
|
||||
if (pos_min[s] == std::numeric_limits<llama_pos>::max()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
LLAMA_LOG_WARN("%s: removing KV cache entries for seq_id = %d, pos = [%d, +inf)\n", __func__, s, pos_min[s]);
|
||||
|
||||
llama_kv_self_seq_rm(this, s, pos_min[s], -1);
|
||||
}
|
||||
|
||||
switch (status) {
|
||||
case GGML_STATUS_ABORTED: return 2;
|
||||
case GGML_STATUS_ALLOC_FAILED: return -2;
|
||||
case GGML_STATUS_FAILED: return -3;
|
||||
case GGML_STATUS_SUCCESS: GGML_ABORT("should not happen");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1082,10 +1098,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
}
|
||||
|
||||
n_outputs_prev += n_outputs;
|
||||
}
|
||||
|
||||
// finalize the batch processing
|
||||
kv_guard.commit();
|
||||
} while (kv_state->next());
|
||||
|
||||
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
||||
n_outputs = n_outputs_all;
|
||||
@ -1094,7 +1107,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
{
|
||||
bool sorted_output = true;
|
||||
|
||||
auto & out_ids = sbatch.out_ids;
|
||||
auto & out_ids = kv_state->out_ids();
|
||||
|
||||
GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);
|
||||
|
||||
@ -1254,11 +1267,52 @@ ggml_cgraph * llama_context::graph_init() {
|
||||
return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false);
|
||||
}
|
||||
|
||||
ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_state_i * mstate) {
|
||||
LLAMA_LOG_DEBUG("%s: reserving a graph for ubatch with n_tokens = %4u, n_seqs = %2u, n_outputs = %4u\n", __func__, n_tokens, n_seqs, n_outputs);
|
||||
|
||||
if (n_tokens % n_seqs != 0) {
|
||||
n_tokens = (n_tokens / n_seqs) * n_seqs;
|
||||
n_outputs = std::min(n_outputs, n_tokens);
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: making n_tokens a multiple of n_seqs - n_tokens = %u, n_seqs = %u, n_outputs = %u\n", __func__, n_tokens, n_seqs, n_outputs);
|
||||
}
|
||||
|
||||
// store the n_outputs as it is, and restore it afterwards
|
||||
// TODO: not sure if needed, might simplify in the future by removing this
|
||||
const auto save_n_outputs = this->n_outputs;
|
||||
|
||||
this->n_outputs = n_outputs;
|
||||
|
||||
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||
|
||||
auto * gf = graph_init();
|
||||
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mstate);
|
||||
|
||||
this->n_outputs = save_n_outputs;
|
||||
|
||||
if (!res) {
|
||||
LLAMA_LOG_ERROR("%s: failed to build worst-case graph\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
|
||||
// initialize scheduler with the specified graph
|
||||
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
llm_graph_result_ptr llama_context::graph_build(
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype) {
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype,
|
||||
const llama_memory_state_i * mstate) {
|
||||
return model.build_graph(
|
||||
{
|
||||
/*.ctx =*/ ctx,
|
||||
@ -1270,7 +1324,7 @@ llm_graph_result_ptr llama_context::graph_build(
|
||||
/*.backend_cpu =*/ backend_cpu,
|
||||
/*.cvec =*/ &cvec,
|
||||
/*.loras =*/ &loras,
|
||||
/*.memory =*/ memory.get(),
|
||||
/*.mstate =*/ mstate,
|
||||
/*.cross =*/ &cross,
|
||||
/*.n_outputs =*/ n_outputs,
|
||||
/*.cb =*/ graph_get_cb(),
|
||||
@ -1951,7 +2005,6 @@ void llama_context::opt_epoch_iter(
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->clear();
|
||||
llama_kv_cache_guard kv_guard(kv_self);
|
||||
|
||||
for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) {
|
||||
batch.n_tokens = n_batch;
|
||||
@ -1974,7 +2027,11 @@ void llama_context::opt_epoch_iter(
|
||||
|
||||
int64_t n_outputs_all = n_tokens_all;
|
||||
|
||||
llama_sbatch sbatch = kv_self->sbatch_init(batch, /*logits_all =*/ true);
|
||||
auto kv_state = kv_self->init_batch(batch, cparams.n_ubatch, embd_pooled, /* logits_all */ true);
|
||||
if (!kv_state || kv_state->get_status() != LLAMA_MEMORY_STATUS_SUCCESS) {
|
||||
LLAMA_LOG_ERROR("%s: could not initialize batch\n", __func__);
|
||||
break;
|
||||
}
|
||||
|
||||
// reserve output buffer
|
||||
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
||||
@ -1982,20 +2039,19 @@ void llama_context::opt_epoch_iter(
|
||||
GGML_ABORT("TODO: handle this error");
|
||||
};
|
||||
|
||||
for (uint32_t pos_batch = 0; pos_batch < n_batch; pos_batch += n_ubatch) {
|
||||
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
|
||||
uint32_t pos_batch = 0;
|
||||
do {
|
||||
const auto & ubatch = kv_state->get_ubatch();
|
||||
|
||||
n_outputs = ubatch.n_tokens;
|
||||
|
||||
// TODO: not sure if this is needed
|
||||
if (!kv_self->find_slot(ubatch)) {
|
||||
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
|
||||
GGML_ABORT("TODO: handle this error");
|
||||
if (!kv_state->apply()) {
|
||||
LLAMA_LOG_ERROR("%s: failed to update the memory state\n", __func__);
|
||||
break;
|
||||
}
|
||||
|
||||
auto * gf = graph_init();
|
||||
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);
|
||||
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, kv_state.get());
|
||||
|
||||
struct ggml_context * ctx_compute_opt;
|
||||
{
|
||||
@ -2010,6 +2066,7 @@ void llama_context::opt_epoch_iter(
|
||||
}
|
||||
ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits());
|
||||
ggml_opt_alloc(opt_ctx, train);
|
||||
|
||||
res->set_inputs(&ubatch);
|
||||
{
|
||||
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
|
||||
@ -2027,10 +2084,10 @@ void llama_context::opt_epoch_iter(
|
||||
callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start);
|
||||
}
|
||||
ggml_free(ctx_compute_opt);
|
||||
}
|
||||
}
|
||||
|
||||
kv_guard.commit();
|
||||
pos_batch += ubatch.n_tokens;
|
||||
} while (kv_state->next());
|
||||
}
|
||||
}
|
||||
|
||||
void llama_context::opt_epoch(
|
||||
|
@ -18,6 +18,9 @@ struct llama_kv_cache;
|
||||
class llama_io_read_i;
|
||||
class llama_io_write_i;
|
||||
|
||||
class llama_memory_i;
|
||||
class llama_memory_state_i;
|
||||
|
||||
struct llama_context {
|
||||
// init scheduler and compute buffers, reserve worst-case graphs
|
||||
llama_context(
|
||||
@ -47,6 +50,7 @@ struct llama_context {
|
||||
llama_kv_cache * get_kv_self();
|
||||
const llama_kv_cache * get_kv_self() const;
|
||||
|
||||
// TODO: remove
|
||||
void kv_self_update();
|
||||
|
||||
enum llama_pooling_type pooling_type() const;
|
||||
@ -88,6 +92,16 @@ struct llama_context {
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
// process a single ubatch with a specific graph type
|
||||
// if memory_state is provided, it will be applied first to the context's memory
|
||||
// ret contains the status of the graph computation
|
||||
// returns nullptr only if ret != GGML_STATUS_SUCCESS
|
||||
llm_graph_result_ptr process_ubatch(
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype,
|
||||
llama_memory_state_i * mstate,
|
||||
ggml_status & ret);
|
||||
|
||||
int encode(llama_batch & inp_batch);
|
||||
int decode(llama_batch & inp_batch);
|
||||
|
||||
@ -180,16 +194,18 @@ public:
|
||||
ggml_cgraph * graph_init();
|
||||
|
||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||
ggml_status graph_compute(
|
||||
ggml_cgraph * gf,
|
||||
bool batched);
|
||||
ggml_status graph_compute(ggml_cgraph * gf, bool batched);
|
||||
|
||||
// reserve a graph with a dummy ubatch of the specified size
|
||||
ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_state_i * mstate);
|
||||
|
||||
private:
|
||||
llm_graph_result_ptr graph_build(
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype);
|
||||
ggml_context * ctx,
|
||||
ggml_cgraph * gf,
|
||||
const llama_ubatch & ubatch,
|
||||
llm_graph_type gtype,
|
||||
const llama_memory_state_i * mstate);
|
||||
|
||||
llm_graph_cb graph_get_cb() const;
|
||||
|
||||
|
@ -83,7 +83,7 @@ void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
|
||||
if (pos_bucket) {
|
||||
kv_self->set_input_pos_bucket(pos_bucket, ubatch);
|
||||
kv_state->set_input_pos_bucket(pos_bucket, ubatch);
|
||||
}
|
||||
}
|
||||
|
||||
@ -234,7 +234,7 @@ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
|
||||
void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
||||
GGML_UNUSED(ubatch);
|
||||
|
||||
const int64_t n_kv = kv_self->n;
|
||||
const int64_t n_kv = kv_state->get_n_kv();
|
||||
|
||||
if (s_copy) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
|
||||
@ -242,7 +242,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
data[i] = kv_self->s_copy(i);
|
||||
data[i] = kv_state->s_copy(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -250,7 +250,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
||||
void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
||||
GGML_UNUSED(ubatch);
|
||||
|
||||
const int64_t n_kv = kv_self->n;
|
||||
const int64_t n_kv = kv_state->get_n_kv();
|
||||
|
||||
if (s_mask) {
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
|
||||
@ -258,7 +258,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
// clear unused states
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
data[i] = kv_self->s_mask(i);
|
||||
data[i] = kv_state->s_mask(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -362,17 +362,17 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
|
||||
|
||||
void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
|
||||
if (self_kq_mask) {
|
||||
kv_self->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
||||
kv_state->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
||||
}
|
||||
}
|
||||
|
||||
void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
|
||||
if (self_kq_mask) {
|
||||
kv_self->get_kv_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
||||
kv_state->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
||||
}
|
||||
|
||||
if (self_kq_mask_swa) {
|
||||
kv_self->get_kv_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
|
||||
kv_state->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
|
||||
}
|
||||
}
|
||||
|
||||
@ -448,7 +448,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
|
||||
backend_cpu (params.backend_cpu),
|
||||
cvec (params.cvec),
|
||||
loras (params.loras),
|
||||
memory (params.memory),
|
||||
mstate (params.mstate),
|
||||
cross (params.cross),
|
||||
cb_func (params.cb),
|
||||
res (std::make_unique<llm_graph_result>()) {
|
||||
@ -954,11 +954,11 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
||||
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_state);
|
||||
|
||||
const auto n_kv = kv_self->n;
|
||||
const auto n_kv = kv_state->get_n_kv();
|
||||
|
||||
auto & cur = inp->s_copy;
|
||||
|
||||
@ -971,11 +971,11 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
||||
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_state);
|
||||
|
||||
const auto n_kv = kv_self->n;
|
||||
const auto n_kv = kv_state->get_n_kv();
|
||||
|
||||
auto & cur = inp->s_mask;
|
||||
|
||||
@ -1025,11 +1025,11 @@ ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
|
||||
}
|
||||
|
||||
ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_unified_state *>(mstate);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);
|
||||
auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_state);
|
||||
|
||||
const auto n_kv = kv_self->get_n();
|
||||
const auto n_kv = kv_state->get_n_kv();
|
||||
|
||||
auto & cur = inp->pos_bucket;
|
||||
|
||||
@ -1231,14 +1231,14 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
}
|
||||
|
||||
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_unified_state *>(mstate);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);
|
||||
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_state);
|
||||
|
||||
{
|
||||
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");
|
||||
|
||||
const auto n_kv = kv_self->get_n();
|
||||
const auto n_kv = kv_state->get_n_kv();
|
||||
|
||||
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||||
//cb(inp->self_kq_mask, "KQ_mask", -1);
|
||||
@ -1268,19 +1268,19 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
ggml_build_forward_expand(gf, k_cur);
|
||||
ggml_build_forward_expand(gf, v_cur);
|
||||
|
||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_unified_state *>(mstate);
|
||||
|
||||
// store to KV cache
|
||||
{
|
||||
ggml_build_forward_expand(gf, kv_self->cpy_k(ctx0, k_cur, il));
|
||||
ggml_build_forward_expand(gf, kv_self->cpy_v(ctx0, v_cur, il));
|
||||
ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il));
|
||||
ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il));
|
||||
}
|
||||
|
||||
const auto & kq_mask = inp->get_kq_mask();
|
||||
|
||||
ggml_tensor * q = q_cur;
|
||||
ggml_tensor * k = kv_self->get_k(ctx0, il);
|
||||
ggml_tensor * v = kv_self->get_v(ctx0, il);
|
||||
ggml_tensor * k = kv_state->get_k(ctx0, il);
|
||||
ggml_tensor * v = kv_state->get_v(ctx0, il);
|
||||
|
||||
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
||||
cb(cur, "kqv_out", il);
|
||||
@ -1301,12 +1301,12 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
}
|
||||
|
||||
llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
|
||||
const llama_kv_cache_unified_iswa * kv_self = static_cast<const llama_kv_cache_unified_iswa *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_unified_iswa_state *>(mstate);
|
||||
|
||||
auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_self);
|
||||
auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_state);
|
||||
|
||||
{
|
||||
const auto n_kv = kv_self->get_kv_base()->get_n();
|
||||
const auto n_kv = kv_state->get_base()->get_n_kv();
|
||||
|
||||
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||||
//cb(inp->self_kq_mask, "KQ_mask", -1);
|
||||
@ -1318,7 +1318,7 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif
|
||||
{
|
||||
GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA");
|
||||
|
||||
const auto n_kv = kv_self->get_kv_swa()->get_n();
|
||||
const auto n_kv = kv_state->get_swa()->get_n_kv();
|
||||
|
||||
inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||||
//cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
|
||||
@ -1348,23 +1348,23 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||
ggml_build_forward_expand(gf, k_cur);
|
||||
ggml_build_forward_expand(gf, v_cur);
|
||||
|
||||
const auto * kv_state_iswa = static_cast<const llama_kv_cache_unified_iswa_state *>(mstate);
|
||||
|
||||
const bool is_swa = hparams.is_swa(il);
|
||||
|
||||
const llama_kv_cache_unified_iswa * kv_self = static_cast<const llama_kv_cache_unified_iswa *>(memory);
|
||||
|
||||
const auto * kv = is_swa ? kv_self->get_kv_swa() : kv_self->get_kv_base();
|
||||
const auto * kv_state = is_swa ? kv_state_iswa->get_swa() : kv_state_iswa->get_base();
|
||||
|
||||
// store to KV cache
|
||||
{
|
||||
ggml_build_forward_expand(gf, kv->cpy_k(ctx0, k_cur, il));
|
||||
ggml_build_forward_expand(gf, kv->cpy_v(ctx0, v_cur, il));
|
||||
ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il));
|
||||
ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il));
|
||||
}
|
||||
|
||||
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
|
||||
|
||||
ggml_tensor * q = q_cur;
|
||||
ggml_tensor * k = kv->get_k(ctx0, il);
|
||||
ggml_tensor * v = kv->get_v(ctx0, il);
|
||||
ggml_tensor * k = kv_state->get_k(ctx0, il);
|
||||
ggml_tensor * v = kv_state->get_v(ctx0, il);
|
||||
|
||||
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
||||
cb(cur, "kqv_out", il);
|
||||
@ -1446,12 +1446,12 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
|
||||
ggml_tensor * state_mask,
|
||||
int32_t n_state,
|
||||
int32_t n_seqs) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
const auto n_kv = kv_self->n;
|
||||
const auto kv_head = kv_self->head;
|
||||
const auto n_kv = kv_state->get_n_kv();
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size);
|
||||
ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_state->get_size());
|
||||
|
||||
// copy states
|
||||
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
|
||||
@ -1478,13 +1478,13 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
const auto token_shift_count = hparams.token_shift_count;
|
||||
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
|
||||
ggml_tensor * token_shift_all = kv_self->k_l[il];
|
||||
ggml_tensor * token_shift_all = kv_state->get_k_l(il);
|
||||
|
||||
ggml_tensor * token_shift = build_copy_mask_state(
|
||||
gf, token_shift_all, state_copy, state_mask,
|
||||
@ -1499,19 +1499,19 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
||||
ggml_tensor * token_shift,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
const auto token_shift_count = hparams.token_shift_count;
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
return ggml_cpy(
|
||||
ctx0,
|
||||
ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
|
||||
ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il]))
|
||||
ggml_view_1d(ctx0, kv_state->get_k_l(il), hparams.n_embd_k_s()*n_seqs, hparams.n_embd_k_s()*kv_head*ggml_element_size(kv_state->get_k_l(il)))
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -17,10 +17,11 @@ struct ggml_tensor;
|
||||
struct llama_ubatch;
|
||||
struct llama_cparams;
|
||||
|
||||
class llama_memory_i;
|
||||
class llama_kv_cache_unified;
|
||||
class llama_kv_cache_unified_iswa;
|
||||
class llama_kv_cache_recurrent;
|
||||
class llama_memory_state_i;
|
||||
|
||||
class llama_kv_cache_unified_state;
|
||||
class llama_kv_cache_unified_iswa_state;
|
||||
class llama_kv_cache_recurrent_state;
|
||||
|
||||
// certain models (typically multi-modal) can produce different types of graphs
|
||||
enum llm_graph_type {
|
||||
@ -133,7 +134,7 @@ class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_pos_bucket_kv(
|
||||
const llama_hparams & hparams,
|
||||
const llama_kv_cache_unified * kv_self) : hparams(hparams), kv_self(kv_self) {}
|
||||
const llama_kv_cache_unified_state * kv_state) : hparams(hparams), kv_state(kv_state) {}
|
||||
virtual ~llm_graph_input_pos_bucket_kv() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
@ -141,7 +142,7 @@ public:
|
||||
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
|
||||
|
||||
const llama_hparams & hparams;
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
const llama_kv_cache_unified_state * kv_state;
|
||||
};
|
||||
|
||||
class llm_graph_input_out_ids : public llm_graph_input_i {
|
||||
@ -188,26 +189,26 @@ public:
|
||||
|
||||
class llm_graph_input_s_copy : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||
llm_graph_input_s_copy(const llama_kv_cache_recurrent_state * kv_state) : kv_state(kv_state) {}
|
||||
virtual ~llm_graph_input_s_copy() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_copy; // I32 [kv_size]
|
||||
|
||||
const llama_kv_cache_recurrent * kv_self;
|
||||
const llama_kv_cache_recurrent_state * kv_state;
|
||||
};
|
||||
|
||||
class llm_graph_input_s_mask : public llm_graph_input_i {
|
||||
public:
|
||||
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||
llm_graph_input_s_mask(const llama_kv_cache_recurrent_state * kv_state) : kv_state(kv_state) {}
|
||||
virtual ~llm_graph_input_s_mask() = default;
|
||||
|
||||
void set_input(const llama_ubatch * ubatch) override;
|
||||
|
||||
ggml_tensor * s_mask; // F32 [1, n_kv]
|
||||
|
||||
const llama_kv_cache_recurrent * kv_self;
|
||||
const llama_kv_cache_recurrent_state * kv_state;
|
||||
};
|
||||
|
||||
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
||||
@ -247,10 +248,10 @@ public:
|
||||
llm_graph_input_attn_kv_unified(
|
||||
const llama_hparams & hparams,
|
||||
const llama_cparams & cparams,
|
||||
const llama_kv_cache_unified * kv_self) :
|
||||
const llama_kv_cache_unified_state * kv_state) :
|
||||
hparams(hparams),
|
||||
cparams(cparams),
|
||||
kv_self(kv_self) {
|
||||
kv_state(kv_state) {
|
||||
}
|
||||
~llm_graph_input_attn_kv_unified() = default;
|
||||
|
||||
@ -264,7 +265,7 @@ public:
|
||||
const llama_hparams & hparams;
|
||||
const llama_cparams & cparams;
|
||||
|
||||
const llama_kv_cache_unified * kv_self;
|
||||
const llama_kv_cache_unified_state * kv_state;
|
||||
};
|
||||
|
||||
class llm_graph_input_attn_kv_unified_iswa : public llm_graph_input_i {
|
||||
@ -272,10 +273,10 @@ public:
|
||||
llm_graph_input_attn_kv_unified_iswa(
|
||||
const llama_hparams & hparams,
|
||||
const llama_cparams & cparams,
|
||||
const llama_kv_cache_unified_iswa * kv_self) :
|
||||
const llama_kv_cache_unified_iswa_state * kv_state) :
|
||||
hparams(hparams),
|
||||
cparams(cparams),
|
||||
kv_self(kv_self) {
|
||||
kv_state(kv_state) {
|
||||
}
|
||||
~llm_graph_input_attn_kv_unified_iswa() = default;
|
||||
|
||||
@ -292,7 +293,7 @@ public:
|
||||
const llama_hparams & hparams;
|
||||
const llama_cparams & cparams;
|
||||
|
||||
const llama_kv_cache_unified_iswa * kv_self;
|
||||
const llama_kv_cache_unified_iswa_state * kv_state;
|
||||
};
|
||||
|
||||
class llm_graph_input_attn_cross : public llm_graph_input_i {
|
||||
@ -383,10 +384,10 @@ struct llm_graph_params {
|
||||
ggml_backend_sched_t sched;
|
||||
ggml_backend_t backend_cpu;
|
||||
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
const llama_memory_i * memory;
|
||||
const llama_cross * cross;
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
const llama_memory_state_i * mstate;
|
||||
const llama_cross * cross;
|
||||
|
||||
int32_t n_outputs;
|
||||
|
||||
@ -435,10 +436,10 @@ struct llm_graph_context {
|
||||
|
||||
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
||||
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
const llama_memory_i * memory;
|
||||
const llama_cross * cross;
|
||||
const llama_adapter_cvec * cvec;
|
||||
const llama_adapter_loras * loras;
|
||||
const llama_memory_state_i * mstate;
|
||||
const llama_cross * cross;
|
||||
|
||||
const llm_graph_cb & cb_func;
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -2,6 +2,7 @@
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-io.h"
|
||||
#include "llama-batch.h"
|
||||
#include "llama-graph.h"
|
||||
#include "llama-memory.h"
|
||||
#include "llama-kv-cells.h"
|
||||
@ -14,48 +15,35 @@
|
||||
|
||||
struct llama_cparams;
|
||||
struct llama_hparams;
|
||||
struct llama_ubatch;
|
||||
struct llama_sbatch;
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
|
||||
struct llama_kv_cache : public llama_memory_i {
|
||||
virtual ~llama_kv_cache() = default;
|
||||
|
||||
// call if batch processing fails - restores the cache state
|
||||
virtual void restore() = 0;
|
||||
// split the input batch into a set of ubatches and verify that they can fit into the cache
|
||||
// return a state object containing the ubatches and KV cache state required to process them
|
||||
// check the llama_memory_state_i::get_status() for the result
|
||||
virtual llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled,
|
||||
bool logits_all) = 0;
|
||||
|
||||
// call after successful batch processing - clears any pending state
|
||||
virtual void commit() = 0;
|
||||
// simulate full cache, used for allocating worst-case compute buffers
|
||||
virtual llama_memory_state_ptr init_full() = 0;
|
||||
|
||||
// process any pending defrag/shift/etc. operations
|
||||
// optionally call once before processing a new batch
|
||||
// return true if any operations were performed
|
||||
virtual bool update(llama_context & lctx) = 0;
|
||||
|
||||
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
|
||||
// TODO: change to
|
||||
// llama_memory_state_ptr init_defrag(float thold) = 0;
|
||||
//
|
||||
virtual void defrag_sched(float thold) = 0;
|
||||
|
||||
// simulate full cache, used for allocating worst-case compute buffers
|
||||
// TODO: remove
|
||||
virtual void set_full() = 0;
|
||||
|
||||
//
|
||||
// batch processing
|
||||
//
|
||||
|
||||
// =============================================================================================================
|
||||
// TODO: refactor and simplify this [TAG: KV_API]
|
||||
|
||||
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
|
||||
|
||||
// different KV caches require different batch splitting strategies
|
||||
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
|
||||
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
virtual bool find_slot(const llama_ubatch & batch) = 0;
|
||||
|
||||
// =============================================================================================================
|
||||
|
||||
// getters
|
||||
virtual bool get_can_shift() const = 0;
|
||||
|
||||
@ -69,25 +57,6 @@ struct llama_kv_cache : public llama_memory_i {
|
||||
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
|
||||
};
|
||||
|
||||
//
|
||||
// llama_kv_cache_guard
|
||||
//
|
||||
|
||||
struct llama_kv_cache_guard {
|
||||
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
|
||||
|
||||
~llama_kv_cache_guard() {
|
||||
kv->restore();
|
||||
}
|
||||
|
||||
void commit() {
|
||||
kv->commit();
|
||||
}
|
||||
|
||||
private:
|
||||
llama_kv_cache * kv;
|
||||
};
|
||||
|
||||
//
|
||||
// llama_kv_cache_unified
|
||||
//
|
||||
@ -133,23 +102,18 @@ public:
|
||||
// llama_kv_cache
|
||||
//
|
||||
|
||||
void restore() override;
|
||||
void commit() override;
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled,
|
||||
bool logits_all) override;
|
||||
|
||||
bool update(llama_context & ctx) override;
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
bool update(llama_context & lctx) override;
|
||||
|
||||
void defrag_sched(float thold) override;
|
||||
|
||||
void set_full() override;
|
||||
|
||||
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||
|
||||
// updates the cache head
|
||||
// Note: On success, it's important that cache.head points
|
||||
// to the first cell of the slot.
|
||||
bool find_slot(const llama_ubatch & batch) override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
// state write/load
|
||||
@ -161,18 +125,40 @@ public:
|
||||
// llama_kv_cache_unified specific API
|
||||
//
|
||||
|
||||
uint32_t get_n() const;
|
||||
uint32_t get_size() const;
|
||||
|
||||
//
|
||||
// graph_build API
|
||||
//
|
||||
|
||||
uint32_t get_n_kv() const;
|
||||
|
||||
// get views of the current state of the cache
|
||||
ggml_tensor * get_k(ggml_context * ctx, int32_t il) const;
|
||||
ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;
|
||||
ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
|
||||
ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
|
||||
|
||||
// store k_cur and v_cur in the cache based on the current head location
|
||||
ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const;
|
||||
ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const;
|
||||
// store k_cur and v_cur in the cache based on the provided head location
|
||||
ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const;
|
||||
ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const;
|
||||
|
||||
void prune_swa(llama_seq_id seq_id, llama_pos pmin, llama_pos pmax);
|
||||
//
|
||||
// preparation API
|
||||
//
|
||||
|
||||
// find places for the provided ubatches in the cache, returns the head locations
|
||||
// return empty vector on failure
|
||||
std::vector<uint32_t> prepare(const std::vector<llama_ubatch> & ubatches);
|
||||
|
||||
// return the cell position where we can insert the ubatch
|
||||
// return -1 on failure to find a contiguous slot of kv cells
|
||||
int32_t find_slot(const llama_ubatch & ubatch) const;
|
||||
|
||||
// emplace the ubatch context into slot: [head_cur, head_cur + ubatch.n_tokens)
|
||||
void apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch);
|
||||
|
||||
//
|
||||
// set_input API
|
||||
//
|
||||
|
||||
void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
|
||||
void set_input_k_shift (ggml_tensor * dst) const;
|
||||
@ -194,11 +180,9 @@ private:
|
||||
bool do_defrag = false;
|
||||
bool v_trans = true; // the value tensor is transposed
|
||||
|
||||
uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
|
||||
|
||||
// computed before each graph build
|
||||
// TODO: cells should start to maintain this value dynamically based on the edits
|
||||
uint32_t n = 0;
|
||||
// the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
|
||||
// note: this is not part of the KV state and it's only used to speed-up the find_slot() method
|
||||
uint32_t head = 0;
|
||||
|
||||
const uint32_t n_seq_max = 1;
|
||||
|
||||
@ -220,24 +204,6 @@ private:
|
||||
// model layer id -> KV cache layer id
|
||||
std::unordered_map<int32_t, int32_t> map_layer_ids;
|
||||
|
||||
// recovery information used to restore the KV cells to their original state in case of a failure
|
||||
// TODO: do not store as a state in the llama_kv_cache object, instead return upon batch preparation
|
||||
// to achieve that, first need to refactor the llama_kv_cache interface [TAG: KV_API]
|
||||
struct {
|
||||
void clear() {
|
||||
states.clear();
|
||||
}
|
||||
|
||||
struct state {
|
||||
uint32_t i;
|
||||
|
||||
llama_kv_cells_unified cells;
|
||||
};
|
||||
|
||||
// stack with the partial states before each ubatch
|
||||
std::vector<state> states;
|
||||
} recovery;
|
||||
|
||||
// defrag
|
||||
struct {
|
||||
std::vector<uint32_t> ids;
|
||||
@ -279,13 +245,88 @@ private:
|
||||
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||
};
|
||||
|
||||
class llama_kv_cache_unified_state : public llama_memory_state_i {
|
||||
public:
|
||||
// used for errors
|
||||
llama_kv_cache_unified_state(llama_memory_status status);
|
||||
|
||||
// used to create a full-cache state
|
||||
llama_kv_cache_unified_state(
|
||||
llama_memory_status status,
|
||||
llama_kv_cache_unified * kv);
|
||||
|
||||
// used to create a state from a batch
|
||||
llama_kv_cache_unified_state(
|
||||
llama_memory_status status,
|
||||
llama_kv_cache_unified * kv,
|
||||
llama_sbatch sbatch,
|
||||
std::vector<uint32_t> heads,
|
||||
std::vector<llama_ubatch> ubatches);
|
||||
|
||||
virtual ~llama_kv_cache_unified_state();
|
||||
|
||||
//
|
||||
// llama_memory_state_i
|
||||
//
|
||||
|
||||
bool next() override;
|
||||
bool apply() override;
|
||||
|
||||
std::vector<int64_t> & out_ids() override;
|
||||
|
||||
llama_memory_status get_status() const override;
|
||||
const llama_ubatch & get_ubatch() const override;
|
||||
|
||||
//
|
||||
// llama_kv_cache_unified_state specific API
|
||||
//
|
||||
|
||||
uint32_t get_n_kv() const;
|
||||
|
||||
// get views of the current state of the cache
|
||||
ggml_tensor * get_k(ggml_context * ctx, int32_t il) const;
|
||||
ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;
|
||||
|
||||
// store k_cur and v_cur in the cache based on the provided head location
|
||||
ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const;
|
||||
ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const;
|
||||
|
||||
void set_input_k_shift(ggml_tensor * dst) const;
|
||||
|
||||
void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
|
||||
void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
|
||||
|
||||
private:
|
||||
const llama_memory_status status;
|
||||
|
||||
llama_kv_cache_unified * kv;
|
||||
|
||||
llama_sbatch sbatch;
|
||||
|
||||
// the index of the next ubatch to process
|
||||
size_t i_next = 0;
|
||||
|
||||
std::vector<uint32_t> heads;
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
|
||||
//
|
||||
// data needed for building the compute graph for the current ubatch:
|
||||
//
|
||||
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// as the cache gets filled, the benefit from this heuristic disappears
|
||||
int32_t n_kv;
|
||||
|
||||
// the beginning of the current slot in which the ubatch will be inserted
|
||||
int32_t head;
|
||||
};
|
||||
|
||||
//
|
||||
// llama_kv_cache_unified_iswa
|
||||
//
|
||||
|
||||
// utilizes two instances of llama_kv_cache_unified
|
||||
// the first instance is for the non-SWA layers of the model and the second instance is for the SWA layers
|
||||
// upon successful commit, the SWA cache removes old tokens outside the n_swa window
|
||||
|
||||
class llama_kv_cache_unified_iswa : public llama_kv_cache {
|
||||
public:
|
||||
@ -322,20 +363,18 @@ public:
|
||||
// llama_kv_cache
|
||||
//
|
||||
|
||||
void restore() override;
|
||||
void commit() override;
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled,
|
||||
bool logits_all) override;
|
||||
|
||||
bool update(llama_context & ctx) override;
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
bool update(llama_context & lctx) override;
|
||||
|
||||
void defrag_sched(float thold) override;
|
||||
|
||||
void set_full() override;
|
||||
|
||||
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||
|
||||
bool find_slot(const llama_ubatch & batch) override;
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
// state write/load
|
||||
@ -347,58 +386,80 @@ public:
|
||||
// llama_kv_cache_unified_iswa specific API
|
||||
//
|
||||
|
||||
llama_kv_cache_unified * get_kv_base() const;
|
||||
llama_kv_cache_unified * get_kv_swa () const;
|
||||
llama_kv_cache_unified * get_base() const;
|
||||
llama_kv_cache_unified * get_swa () const;
|
||||
|
||||
private:
|
||||
const llama_hparams & hparams;
|
||||
|
||||
bool do_prune = true;
|
||||
|
||||
struct {
|
||||
struct entry {
|
||||
llama_pos pmin;
|
||||
llama_pos pmax;
|
||||
};
|
||||
|
||||
void clear() {
|
||||
pos.clear();
|
||||
}
|
||||
|
||||
// used to perform SWA pruning of old tokens
|
||||
std::unordered_map<llama_seq_id, entry> pos;
|
||||
} pending;
|
||||
|
||||
std::unique_ptr<llama_kv_cache_unified> kv_base;
|
||||
std::unique_ptr<llama_kv_cache_unified> kv_swa;
|
||||
};
|
||||
|
||||
class llama_kv_cache_unified_iswa_state : public llama_memory_state_i {
|
||||
public:
|
||||
// used for errors
|
||||
llama_kv_cache_unified_iswa_state(llama_memory_status status);
|
||||
|
||||
// used to create a full-cache state
|
||||
llama_kv_cache_unified_iswa_state(
|
||||
llama_memory_status status,
|
||||
llama_kv_cache_unified_iswa * kv);
|
||||
|
||||
// used to create a state from a batch
|
||||
llama_kv_cache_unified_iswa_state(
|
||||
llama_memory_status status,
|
||||
llama_kv_cache_unified_iswa * kv,
|
||||
llama_sbatch sbatch,
|
||||
std::vector<uint32_t> heads_base,
|
||||
std::vector<uint32_t> heads_swa,
|
||||
std::vector<llama_ubatch> ubatches);
|
||||
|
||||
virtual ~llama_kv_cache_unified_iswa_state();
|
||||
|
||||
//
|
||||
// llama_memory_state_i
|
||||
//
|
||||
|
||||
bool next() override;
|
||||
bool apply() override;
|
||||
|
||||
std::vector<int64_t> & out_ids() override;
|
||||
|
||||
llama_memory_status get_status() const override;
|
||||
const llama_ubatch & get_ubatch() const override;
|
||||
|
||||
//
|
||||
// llama_kv_cache_unified_iswa_state specific API
|
||||
//
|
||||
|
||||
const llama_kv_cache_unified_state * get_base() const;
|
||||
const llama_kv_cache_unified_state * get_swa() const;
|
||||
|
||||
private:
|
||||
const llama_memory_status status;
|
||||
|
||||
//llama_kv_cache_unified_iswa * kv;
|
||||
|
||||
llama_sbatch sbatch;
|
||||
|
||||
// the index of the next ubatch to process
|
||||
size_t i_next = 0;
|
||||
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
|
||||
std::unique_ptr<llama_kv_cache_unified_state> state_base;
|
||||
std::unique_ptr<llama_kv_cache_unified_state> state_swa;
|
||||
};
|
||||
|
||||
//
|
||||
// llama_kv_cache_recurrent
|
||||
//
|
||||
|
||||
// TODO: extract the KV cache state used for graph computation into llama_kv_cache_recurrent_state_i
|
||||
// see the implementation of llama_kv_cache_unified_state_i for an example how to do it
|
||||
class llama_kv_cache_recurrent : public llama_kv_cache {
|
||||
public:
|
||||
struct kv_cell {
|
||||
llama_pos pos = -1;
|
||||
int32_t src = -1; // used to copy states
|
||||
int32_t tail = -1;
|
||||
|
||||
std::set<llama_seq_id> seq_id;
|
||||
|
||||
bool has_seq_id(const llama_seq_id & id) const {
|
||||
return seq_id.find(id) != seq_id.end();
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return seq_id.empty();
|
||||
}
|
||||
|
||||
bool is_same_seq(const kv_cell & other) const {
|
||||
return seq_id == other.seq_id;
|
||||
}
|
||||
};
|
||||
|
||||
llama_kv_cache_recurrent(
|
||||
const llama_model & model,
|
||||
ggml_type type_k,
|
||||
@ -428,19 +489,22 @@ public:
|
||||
// llama_kv_cache
|
||||
//
|
||||
|
||||
void restore() override;
|
||||
void commit() override;
|
||||
llama_memory_state_ptr init_batch(
|
||||
const llama_batch & batch,
|
||||
uint32_t n_ubatch,
|
||||
bool embd_pooled,
|
||||
bool logits_all) override;
|
||||
|
||||
bool update(llama_context & ctx) override;
|
||||
llama_memory_state_ptr init_full() override;
|
||||
|
||||
bool update(llama_context & lctx) override;
|
||||
|
||||
void defrag_sched(float thold) override;
|
||||
|
||||
void set_full() override;
|
||||
bool prepare(const std::vector<llama_ubatch> & ubatches);
|
||||
|
||||
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||
|
||||
bool find_slot(const llama_ubatch & batch) override;
|
||||
// find a contiguous slot of kv cells and emplace the ubatch there
|
||||
bool find_slot(const llama_ubatch & ubatch);
|
||||
|
||||
bool get_can_shift() const override;
|
||||
|
||||
@ -460,6 +524,27 @@ public:
|
||||
// computed before each graph build
|
||||
uint32_t n = 0;
|
||||
|
||||
// TODO: optimize for recurrent state needs
|
||||
struct kv_cell {
|
||||
llama_pos pos = -1;
|
||||
int32_t src = -1; // used to copy states
|
||||
int32_t tail = -1;
|
||||
|
||||
std::set<llama_seq_id> seq_id;
|
||||
|
||||
bool has_seq_id(const llama_seq_id & id) const {
|
||||
return seq_id.find(id) != seq_id.end();
|
||||
}
|
||||
|
||||
bool is_empty() const {
|
||||
return seq_id.empty();
|
||||
}
|
||||
|
||||
bool is_same_seq(const kv_cell & other) const {
|
||||
return seq_id == other.seq_id;
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<kv_cell> cells;
|
||||
|
||||
std::vector<ggml_tensor *> k_l; // per layer
|
||||
@ -469,26 +554,11 @@ private:
|
||||
//const llama_model & model;
|
||||
const llama_hparams & hparams;
|
||||
|
||||
// commit/restore cache
|
||||
// TODO: rework for recurrent cache
|
||||
struct slot_range {
|
||||
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
||||
uint32_t c1 = 0;
|
||||
};
|
||||
|
||||
// pending cell updates that are not yet committed
|
||||
struct {
|
||||
std::vector<slot_range> ranges;
|
||||
} pending;
|
||||
|
||||
const uint32_t n_seq_max = 1;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
// find how many cells are currently in use
|
||||
uint32_t cell_max() const;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
size_t size_k_bytes() const;
|
||||
@ -500,3 +570,67 @@ private:
|
||||
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
||||
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||
};
|
||||
|
||||
class llama_kv_cache_recurrent_state : public llama_memory_state_i {
|
||||
public:
|
||||
// used for errors
|
||||
llama_kv_cache_recurrent_state(llama_memory_status status);
|
||||
|
||||
// used to create a full-cache state
|
||||
llama_kv_cache_recurrent_state(
|
||||
llama_memory_status status,
|
||||
llama_kv_cache_recurrent * kv);
|
||||
|
||||
// used to create a state from a batch
|
||||
llama_kv_cache_recurrent_state(
|
||||
llama_memory_status status,
|
||||
llama_kv_cache_recurrent * kv,
|
||||
llama_sbatch sbatch,
|
||||
std::vector<llama_ubatch> ubatches);
|
||||
|
||||
virtual ~llama_kv_cache_recurrent_state();
|
||||
|
||||
//
|
||||
// llama_memory_state_i
|
||||
//
|
||||
|
||||
bool next() override;
|
||||
bool apply() override;
|
||||
|
||||
std::vector<int64_t> & out_ids() override;
|
||||
|
||||
llama_memory_status get_status() const override;
|
||||
const llama_ubatch & get_ubatch() const override;
|
||||
|
||||
//
|
||||
// llama_kv_cache_recurrent_state specific API
|
||||
//
|
||||
|
||||
uint32_t get_n_kv() const;
|
||||
uint32_t get_head() const;
|
||||
uint32_t get_size() const;
|
||||
|
||||
ggml_tensor * get_k_l(int32_t il) const;
|
||||
ggml_tensor * get_v_l(int32_t il) const;
|
||||
|
||||
int32_t s_copy(int i) const;
|
||||
float s_mask(int i) const;
|
||||
|
||||
private:
|
||||
const llama_memory_status status;
|
||||
|
||||
llama_kv_cache_recurrent * kv;
|
||||
|
||||
llama_sbatch sbatch;
|
||||
|
||||
size_t i_next = 0;
|
||||
|
||||
std::vector<llama_ubatch> ubatches;
|
||||
|
||||
//
|
||||
// data needed for building the compute graph for the current ubatch:
|
||||
// TODO: extract all the state like `head` and `n` here
|
||||
//
|
||||
|
||||
const bool is_full = false;
|
||||
};
|
||||
|
@ -68,12 +68,6 @@ public:
|
||||
// the index of the last cell that is used + 1
|
||||
// return 0 if no cells are used
|
||||
uint32_t used_max_p1() const {
|
||||
#if 0
|
||||
if (!seq_pos[0].empty()) printf("kv_cells: min[0] = %5d, max[0] = %5d\n", *seq_pos[0].begin(), *seq_pos[0].rbegin());
|
||||
if (!seq_pos[1].empty()) printf("kv_cells: min[1] = %5d, max[1] = %5d\n", *seq_pos[1].begin(), *seq_pos[1].rbegin());
|
||||
if (!seq_pos[2].empty()) printf("kv_cells: min[2] = %5d, max[2] = %5d\n", *seq_pos[2].begin(), *seq_pos[2].rbegin());
|
||||
#endif
|
||||
|
||||
return used.empty() ? 0 : *used.rbegin() + 1;
|
||||
}
|
||||
|
||||
@ -144,6 +138,19 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
// clear a non-empty cell
|
||||
void rm(uint32_t i) {
|
||||
assert(i < pos.size());
|
||||
assert(pos[i] != -1);
|
||||
|
||||
seq_pos_rm(i);
|
||||
|
||||
pos[i] = -1;
|
||||
seq[i].reset();
|
||||
|
||||
used.erase(i);
|
||||
}
|
||||
|
||||
// note: call only if the cell has seq_id
|
||||
// return true if the cell becomes empty
|
||||
bool seq_rm(uint32_t i, llama_seq_id seq_id) {
|
||||
@ -196,6 +203,15 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
// number of different sequences in the cell
|
||||
int seq_count(uint32_t i) const {
|
||||
assert(i < pos.size());
|
||||
assert(pos[i] != -1);
|
||||
|
||||
return seq[i].count();
|
||||
}
|
||||
|
||||
// check if the cell contains seq_id
|
||||
bool seq_has(uint32_t i, llama_seq_id seq_id) const {
|
||||
assert(i < pos.size());
|
||||
assert(seq_id >= 0);
|
||||
@ -213,6 +229,20 @@ public:
|
||||
seq_pos[seq_id].insert(pos[i]);
|
||||
}
|
||||
|
||||
// return the sequence id of this cell
|
||||
// note: call only for cells with exactly one sequence
|
||||
llama_seq_id seq_get(uint32_t i) const {
|
||||
assert(seq[i].count() == 1);
|
||||
|
||||
for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) {
|
||||
if (seq[i].test(s)) {
|
||||
return s;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
// the minimum position of sequence seq_id currently present in any of the cells
|
||||
// return -1 if the sequence is not present
|
||||
llama_pos seq_pos_min(llama_seq_id seq_id) const {
|
||||
@ -268,6 +298,7 @@ public:
|
||||
void pos_set(uint32_t i, llama_pos p) {
|
||||
assert(i < pos.size());
|
||||
assert(pos[i] == -1);
|
||||
assert(seq[i].none());
|
||||
|
||||
pos[i] = p;
|
||||
|
||||
|
@ -2,6 +2,11 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
struct llama_ubatch;
|
||||
|
||||
struct llama_memory_params {
|
||||
// kv cache
|
||||
ggml_type type_k;
|
||||
@ -30,3 +35,42 @@ public:
|
||||
|
||||
virtual bool get_can_edit() const = 0;
|
||||
};
|
||||
|
||||
enum llama_memory_status {
|
||||
LLAMA_MEMORY_STATUS_SUCCESS = 0,
|
||||
LLAMA_MEMORY_STATUS_FAILED_PREPARE,
|
||||
LLAMA_MEMORY_STATUS_FAILED_COMPUTE,
|
||||
};
|
||||
|
||||
// the interface for managing the memory state during batch processing
|
||||
// this interface is implemented per memory type. see:
|
||||
// - llama_kv_cache_unified_state
|
||||
// - llama_kv_cache_unified_iswa_state
|
||||
// ...
|
||||
//
|
||||
// the only method that can mutate the memory and the memory state is llama_memory_i::apply()
|
||||
//
|
||||
// TODO: rename to llama_memory_context_i ?
|
||||
class llama_memory_state_i {
|
||||
public:
|
||||
virtual ~llama_memory_state_i() = default;
|
||||
|
||||
// consume the current ubatch from the state and proceed to the next one
|
||||
// return false if we are done
|
||||
virtual bool next() = 0;
|
||||
|
||||
// apply the memory state for the current ubatch to the memory object
|
||||
// return false on failure
|
||||
virtual bool apply() = 0;
|
||||
|
||||
// TODO: this might get reworked in the future when refactoring llama_batch
|
||||
virtual std::vector<int64_t> & out_ids() = 0;
|
||||
|
||||
// get the current ubatch
|
||||
virtual const llama_ubatch & get_ubatch() const = 0;
|
||||
|
||||
// get the status of the memory state
|
||||
virtual llama_memory_status get_status() const = 0;
|
||||
};
|
||||
|
||||
using llama_memory_state_ptr = std::unique_ptr<llama_memory_state_i>;
|
||||
|
@ -8892,9 +8892,9 @@ struct llm_build_mamba : public llm_graph_context {
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
@ -8912,8 +8912,8 @@ struct llm_build_mamba : public llm_graph_context {
|
||||
GGML_ASSERT(ubatch.equal_seqs);
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * conv_states_all = kv_self->k_l[il];
|
||||
ggml_tensor * ssm_states_all = kv_self->v_l[il];
|
||||
ggml_tensor * conv_states_all = kv_state->get_k_l(il);
|
||||
ggml_tensor * ssm_states_all = kv_state->get_v_l(il);
|
||||
|
||||
// (ab)using the KV cache to store the states
|
||||
ggml_tensor * conv = build_copy_mask_state(
|
||||
@ -11640,7 +11640,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
||||
ggml_tensor * state_mask,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
const auto n_tokens = ubatch.n_tokens;
|
||||
const auto n_seqs = ubatch.n_seqs;
|
||||
@ -11650,7 +11650,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
||||
const auto n_head = n_embd / head_size;
|
||||
const auto n_head_kv = hparams.n_head_kv(il);
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
const auto & layer = model.layers[il];
|
||||
|
||||
@ -11762,7 +11762,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
||||
}
|
||||
|
||||
ggml_tensor * wkv_state = build_copy_mask_state(
|
||||
gf, kv_self->v_l[il], state_copy, state_mask,
|
||||
gf, kv_state->get_v_l(il), state_copy, state_mask,
|
||||
hparams.n_embd_v_s(), n_seqs);
|
||||
|
||||
ggml_tensor * wkv_output;
|
||||
@ -11781,9 +11781,9 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
||||
wkv_state,
|
||||
ggml_view_1d(
|
||||
ctx0,
|
||||
kv_self->v_l[il],
|
||||
kv_state->get_v_l(il),
|
||||
hparams.n_embd_v_s() * n_seqs,
|
||||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
|
||||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il))
|
||||
)
|
||||
)
|
||||
);
|
||||
@ -12036,7 +12036,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||
ggml_tensor *& first_layer_value,
|
||||
const llama_ubatch & ubatch,
|
||||
int il) const {
|
||||
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
|
||||
|
||||
const auto n_tokens = ubatch.n_tokens;
|
||||
const auto n_seqs = ubatch.n_seqs;
|
||||
@ -12045,7 +12045,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||
const auto head_count = n_embd / head_size;
|
||||
const auto n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
const auto kv_head = kv_self->head;
|
||||
const auto kv_head = kv_state->get_head();
|
||||
|
||||
const auto & layer = model.layers[il];
|
||||
|
||||
@ -12116,7 +12116,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||
a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
|
||||
|
||||
ggml_tensor * wkv_state = build_copy_mask_state(
|
||||
gf, kv_self->v_l[il], state_copy, state_mask,
|
||||
gf, kv_state->get_v_l(il), state_copy, state_mask,
|
||||
hparams.n_embd_v_s(), n_seqs);
|
||||
|
||||
ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
|
||||
@ -12130,9 +12130,9 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||
wkv_state,
|
||||
ggml_view_1d(
|
||||
ctx0,
|
||||
kv_self->v_l[il],
|
||||
kv_state->get_v_l(il),
|
||||
hparams.n_embd_v_s() * n_seqs,
|
||||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
|
||||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il))
|
||||
)
|
||||
)
|
||||
);
|
||||
|
@ -3214,9 +3214,12 @@ struct server_context {
|
||||
}
|
||||
|
||||
if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
|
||||
if (llama_kv_self_seq_pos_min(ctx, slot.id) > 0) {
|
||||
const auto pos_min = llama_kv_self_seq_pos_min(ctx, slot.id);
|
||||
if (pos_min > 0) {
|
||||
SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
|
||||
SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
|
||||
"https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
|
||||
llama_kv_self_seq_rm(ctx, slot.id, 0, -1);
|
||||
slot.n_past = 0;
|
||||
}
|
||||
}
|
||||
@ -3379,8 +3382,10 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
int32_t i_next = 0;
|
||||
|
||||
// process the created batch of tokens
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
@ -3425,13 +3430,18 @@ struct server_context {
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
|
||||
SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
|
||||
|
||||
continue; // continue loop of n_batch
|
||||
}
|
||||
|
||||
// move the head of the batch forward with the number of tokens we just processed
|
||||
i_next = i + n_tokens;
|
||||
|
||||
// on successful decode, restore the original batch size
|
||||
n_batch = llama_n_batch(ctx);
|
||||
|
||||
for (auto & slot : slots) {
|
||||
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
|
||||
continue; // continue loop of slots
|
||||
|
Reference in New Issue
Block a user