mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-06-28 12:25:03 +00:00
ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (#13813)
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D * test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D * Missing barrier added to shader. Number of additional tests reduced to 108. * * Fixes typo in variable name. * Removes extra whitespaces. * Adds int64->int32 casts to prevent possible warnings. * Problem size reduced in tests to pass tests with llvmpipe. * supports_op condition moved from unintended position
This commit is contained in:
committed by
GitHub
parent
3e63a58ef7
commit
0d3984424f
@ -396,6 +396,7 @@ struct vk_device_struct {
|
||||
vk_pipeline pipeline_count_equal_i32;
|
||||
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
|
||||
vk_pipeline pipeline_timestep_embedding_f32;
|
||||
vk_pipeline pipeline_conv_transpose_1d_f32;
|
||||
vk_pipeline pipeline_pool2d_f32;
|
||||
vk_pipeline pipeline_rwkv_wkv6_f32;
|
||||
vk_pipeline pipeline_rwkv_wkv7_f32;
|
||||
@ -706,6 +707,21 @@ struct vk_op_timestep_embedding_push_constants {
|
||||
uint32_t max_period;
|
||||
};
|
||||
|
||||
struct vk_op_conv_transpose_1d_push_constants {
|
||||
uint32_t Cout;
|
||||
uint32_t Cin;
|
||||
uint32_t K;
|
||||
uint32_t L;
|
||||
uint32_t KL;
|
||||
|
||||
uint32_t nb01;
|
||||
uint32_t nb02;
|
||||
uint32_t nb11;
|
||||
uint32_t nb1;
|
||||
|
||||
int32_t s0;
|
||||
};
|
||||
|
||||
struct vk_op_pool2d_push_constants {
|
||||
uint32_t IW; uint32_t IH;
|
||||
uint32_t OW; uint32_t OH;
|
||||
@ -2726,6 +2742,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_conv_transpose_1d_f32, "conv_transpose_1d_f32", conv_transpose_1d_f32_len, conv_transpose_1d_f32_data, "main", 3, sizeof(vk_op_conv_transpose_1d_push_constants), {1, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
|
||||
@ -6392,6 +6410,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||
return ctx->device->pipeline_timestep_embedding_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_conv_transpose_1d_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_POOL_2D:
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_pool2d_f32;
|
||||
@ -6726,6 +6749,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
||||
uint32_t half_ceil = (dim + 1) / 2;
|
||||
elements = { half_ceil, (uint32_t)src0->ne[0], 1 };
|
||||
} break;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
{
|
||||
elements = {uint32_t(src0->ne[1]), 1, 1}; // parallelize in {Cout, 1, 1}
|
||||
} break;
|
||||
case GGML_OP_POOL_2D:
|
||||
{
|
||||
const uint32_t N = dst->ne[3];
|
||||
@ -7529,6 +7556,37 @@ static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context
|
||||
}, dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_conv_transpose_1d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
// src0: (K, Cout, Cin, 1) -- kernel
|
||||
// src1: (L, Cin, 1, 1) -- input
|
||||
// dst: (*, Cout, 1, 1)
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
const int32_t s0 = dst->op_params[0];
|
||||
|
||||
vk_op_conv_transpose_1d_push_constants p{};
|
||||
p.Cout = static_cast<uint32_t>(ne01);
|
||||
p.Cin = static_cast<uint32_t>(ne02);
|
||||
p.K = static_cast<uint32_t>(ne00);
|
||||
p.L = static_cast<uint32_t>(ne10);
|
||||
p.KL = static_cast<uint32_t>(ne0);
|
||||
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
|
||||
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
|
||||
p.nb11 = static_cast<uint32_t>(nb11 / nb10);
|
||||
p.nb1 = static_cast<uint32_t>(nb1 / nb0);
|
||||
p.s0 = static_cast<uint32_t>(s0);
|
||||
|
||||
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_TRANSPOSE_1D, std::move(p), dryrun);
|
||||
}
|
||||
|
||||
static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
uint32_t op = static_cast<uint32_t>(dst->op_params[0]);
|
||||
const int32_t k1 = dst->op_params[1];
|
||||
@ -8600,6 +8658,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
@ -8664,6 +8723,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@ -8835,6 +8895,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
ggml_vk_conv_transpose_1d(ctx, compute_ctx, src0, src1, node, dryrun);
|
||||
|
||||
break;
|
||||
case GGML_OP_POOL_2D:
|
||||
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
|
||||
@ -8963,6 +9027,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
@ -10024,6 +10089,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
return true;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@ -10515,6 +10582,11 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
||||
const int32_t dim = tensor->op_params[0];
|
||||
const int32_t max_period = tensor->op_params[1];
|
||||
tensor_clone = ggml_timestep_embedding(ggml_ctx, src_clone[0], dim, max_period);
|
||||
} else if (tensor->op == GGML_OP_CONV_TRANSPOSE_1D){
|
||||
const int32_t s0 = tensor->op_params[0];
|
||||
const int32_t p0 = tensor->op_params[1];
|
||||
const int32_t d0 = tensor->op_params[2];
|
||||
tensor_clone = ggml_conv_transpose_1d(ggml_ctx, src_clone[0], src_clone[1], s0, p0, d0);
|
||||
} else if (tensor->op == GGML_OP_POOL_2D) {
|
||||
enum ggml_op_pool op = static_cast<ggml_op_pool>(tensor->op_params[0]);
|
||||
const int32_t k0 = tensor->op_params[1];
|
||||
|
Reference in New Issue
Block a user