kv-cache : simplify set_rows logic

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-06-24 23:14:24 +03:00
parent 165d822044
commit 0bb1da5854

View File

@ -937,17 +937,17 @@ ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns, hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2] ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
size_virt, size_virt, // v->nb[3]
size_virt*sinfo.s0); size_virt*sinfo.s0);
} }
// note: v->nb[1] > v->nb[2] // note: v->nb[1] > v->nb[2]
return ggml_view_4d(ctx, v, return ggml_view_4d(ctx, v,
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns, n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1] ggml_row_size(v->type, v->ne[1]*n_seq_virt*hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, v->ne[1]), // v->nb[2] ggml_row_size(v->type, v->ne[1]*n_seq_virt), // v->nb[2]
size_virt, ggml_row_size(v->type, v->ne[1]), // v->nb[3]
size_virt*sinfo.s0); ggml_row_size(v->type, v->ne[1]*sinfo.s0));
} }
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il, const slot_info & sinfo) const { ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * kv_idxs, int32_t il, const slot_info & sinfo) const {
@ -961,20 +961,9 @@ ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_
k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens); k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens);
if (kv_idxs && supports_set_rows) { if (kv_idxs && supports_set_rows) {
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1; k = ggml_reshape_2d(ctx, k, k->ne[0], k->ne[1]*k->ne[2]);
const uint64_t size_virt = ggml_row_size(k->type, hparams.n_embd_k_gqa(il)*get_size()); return ggml_set_rows(ctx, k, k_cur, kv_idxs);
ggml_tensor * k_view = ggml_view_3d(ctx, k, k->ne[0], k->ne[1], ns,
ggml_row_size(k->type, k->ne[0]),
size_virt,
size_virt*sinfo.s0);
k_cur = ggml_reshape_3d(ctx, k_cur, k_cur->ne[0], k_cur->ne[1]/ns, ns);
kv_idxs = ggml_reshape_2d(ctx, kv_idxs, n_tokens/ns, ns);
return ggml_set_rows(ctx, k_view, k_cur, kv_idxs);
} }
// TODO: fallback to old ggml_cpy() method for backwards compatibility // TODO: fallback to old ggml_cpy() method for backwards compatibility
@ -1000,45 +989,27 @@ ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_
v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens); v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens);
if (kv_idxs && supports_set_rows) { if (kv_idxs && supports_set_rows) {
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
const uint64_t size_virt = ggml_row_size(v->type, hparams.n_embd_v_gqa(il)*get_size());
if (!v_trans) { if (!v_trans) {
ggml_tensor * v_view = ggml_view_3d(ctx, v, v->ne[0], v->ne[1], ns, v = ggml_reshape_2d(ctx, v, v->ne[0], v->ne[1]*v->ne[2]);
ggml_row_size(v->type, v->ne[0]),
size_virt,
size_virt*sinfo.s0);
v_cur = ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], v_cur->ne[1]/ns, ns); return ggml_set_rows(ctx, v, v_cur, kv_idxs);
kv_idxs = ggml_reshape_2d(ctx, kv_idxs, n_tokens/ns, ns);
return ggml_set_rows(ctx, v_view, v_cur, kv_idxs);
} }
// the row becomes a single element // the row becomes a single element
ggml_tensor * v_view = ggml_view_4d(ctx, v, 1, v->ne[1], v->ne[0], ns, ggml_tensor * v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1]*v->ne[2], v->ne[0]);
ggml_row_size(v->type, 1),
ggml_row_size(v->type, v->ne[1]),
size_virt,
size_virt*sinfo.s0);
// note: the V cache is transposed when not using flash attention // note: the V cache is transposed when not using flash attention
v_cur = ggml_permute(ctx, ggml_reshape_4d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]/ns, ns), 2, 0, 1, 3); v_cur = ggml_permute(ctx, ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]), 2, 0, 1, 3);
// note: we can be more explicit here at the cost of extra cont // note: we can be more explicit here at the cost of extra cont
// however, above we take advantage that a row of single element is always contiguous regardless of the row stride // however, above we take advantage that a row of single element is always contiguous regardless of the row stride
//v_cur = ggml_reshape_3d(ctx, v_cur, n_embd_v_gqa, v_cur->ne[1]/ns, ns);
//v_cur = ggml_transpose(ctx, v_cur); //v_cur = ggml_transpose(ctx, v_cur);
//v_cur = ggml_cont_4d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1], v_cur->ne[2]); //v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]);
// we broadcast the KV indices n_embd_v_gqa times // we broadcast the KV indices n_embd_v_gqa times
// v [1, n_kv, n_embd_v_gqa, ns] // v [1, n_kv*n_seq_virt, n_embd_v_gqa]
// v_cur [1, n_tokens/ns, n_embd_v_gqa, ns] // v_cur [1, n_tokens, n_embd_v_gqa]
// kv_idxs [n_tokens/ns, 1, ns] // kv_idxs [n_tokens, 1, 1]
kv_idxs = ggml_reshape_3d(ctx, kv_idxs, n_tokens/ns, 1, ns);
return ggml_set_rows(ctx, v_view, v_cur, kv_idxs); return ggml_set_rows(ctx, v_view, v_cur, kv_idxs);
} }
@ -1077,8 +1048,10 @@ void llama_kv_cache_unified::set_input_kv_idxs(ggml_tensor * dst, const llama_ub
int64_t * data = (int64_t *) dst->data; int64_t * data = (int64_t *) dst->data;
for (uint32_t s = 0; s < sinfo.n_seq_virt(); ++s) { for (uint32_t s = 0; s < sinfo.n_seq_virt(); ++s) {
const int64_t offs = sinfo.seq_id_virt[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) { for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = sinfo.idxs[s][i]; data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
} }
} }
} }