mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-08-10 18:54:09 -04:00
convert : write tensors in parallel
This commit is contained in:
@@ -5,10 +5,12 @@ import os
|
||||
import shutil
|
||||
import struct
|
||||
import tempfile
|
||||
import threading
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum, auto
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from queue import Empty, Queue
|
||||
from io import BufferedWriter
|
||||
from typing import IO, Any, Sequence, Mapping
|
||||
from string import ascii_letters, digits
|
||||
@@ -60,8 +62,31 @@ class WriterState(Enum):
|
||||
WEIGHTS = auto()
|
||||
|
||||
|
||||
@dataclass
|
||||
class TensorWriteInfo:
|
||||
filename: Path
|
||||
offset: int
|
||||
post_pad: int
|
||||
tensor: np.ndarray
|
||||
bar: Any | None
|
||||
|
||||
def write_chunk(self, open_files: dict[Path, BufferedWriter]):
|
||||
if self.filename not in open_files:
|
||||
open_files[self.filename] = open(self.filename, "r+b")
|
||||
f = open_files[self.filename]
|
||||
|
||||
f.seek(self.offset)
|
||||
f.write(self.tensor.data)
|
||||
if self.post_pad > 0:
|
||||
f.write(bytes([0] * self.post_pad))
|
||||
if self.bar is not None:
|
||||
self.bar.update(self.tensor.nbytes)
|
||||
|
||||
|
||||
class GGUFWriter:
|
||||
fout: list[BufferedWriter] | None
|
||||
filenames: list[Path] | None
|
||||
thread_count: int
|
||||
path: Path | None
|
||||
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
|
||||
tensors: list[dict[str, TensorInfo]]
|
||||
@@ -83,7 +108,8 @@ class GGUFWriter:
|
||||
|
||||
def __init__(
|
||||
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False,
|
||||
thread_count: int = 2,
|
||||
):
|
||||
self.fout = None
|
||||
self.path = Path(path) if path else None
|
||||
@@ -98,6 +124,7 @@ class GGUFWriter:
|
||||
self.split_max_size = split_max_size
|
||||
self.dry_run = dry_run
|
||||
self.small_first_shard = small_first_shard
|
||||
self.thread_count = thread_count
|
||||
logger.info("gguf: This GGUF file is for {0} Endian only".format(
|
||||
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
||||
))
|
||||
@@ -173,6 +200,7 @@ class GGUFWriter:
|
||||
|
||||
if self.path is not None:
|
||||
filenames = self.print_plan()
|
||||
self.filenames = filenames
|
||||
self.fout = [open(filename, "wb") for filename in filenames]
|
||||
self.state = WriterState.EMPTY
|
||||
|
||||
@@ -424,40 +452,78 @@ class GGUFWriter:
|
||||
self.write_ti_data_to_file()
|
||||
|
||||
assert self.fout is not None
|
||||
assert self.filenames is not None
|
||||
|
||||
for fout in self.fout:
|
||||
self.write_padding(fout, fout.tell())
|
||||
|
||||
if self.temp_file is None:
|
||||
shard_bar = None
|
||||
bar = None
|
||||
# Distribute writing the tensors between multiple threads
|
||||
tensor_queue: Queue[TensorWriteInfo] = Queue()
|
||||
|
||||
offsets: list[int] = [fout.tell() for fout in self.fout]
|
||||
|
||||
if progress:
|
||||
# TODO: add back the shard bar to show which shard is being written when single-threaded
|
||||
from tqdm import tqdm
|
||||
|
||||
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
|
||||
|
||||
if len(self.fout) > 1:
|
||||
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
|
||||
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
|
||||
|
||||
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
|
||||
if shard_bar is not None:
|
||||
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
|
||||
total = sum(ti.nbytes for ti in tensors.values())
|
||||
shard_bar.reset(total=(total if total > 0 else None))
|
||||
for i, (filename, tensors) in enumerate(zip(self.filenames, self.tensors)):
|
||||
offset = offsets[i]
|
||||
|
||||
# relying on the fact that Python dicts preserve insertion order (since 3.7)
|
||||
for ti in tensors.values():
|
||||
assert ti.tensor is not None # can only iterate once over the tensors
|
||||
assert ti.tensor.nbytes == ti.nbytes
|
||||
ti.tensor.tofile(fout)
|
||||
if shard_bar is not None:
|
||||
shard_bar.update(ti.nbytes)
|
||||
if bar is not None:
|
||||
bar.update(ti.nbytes)
|
||||
self.write_padding(fout, ti.nbytes)
|
||||
ti.tensor = None
|
||||
start_offset = offset
|
||||
nbytes = ti.tensor.nbytes
|
||||
offset = self.ggml_pad(start_offset + nbytes, self.data_alignment)
|
||||
padding = offset - (start_offset + nbytes)
|
||||
tensor_queue.put(
|
||||
TensorWriteInfo(
|
||||
filename=filename,
|
||||
offset=start_offset,
|
||||
post_pad=padding,
|
||||
tensor=ti.tensor,
|
||||
bar=bar,
|
||||
)
|
||||
)
|
||||
ti.tensor = None # avoid keeping a reference to written tensors
|
||||
|
||||
# Write tensors in parallel
|
||||
# TODO: total tensor size limit for the running threads
|
||||
def write_tensors_from_thread(queue: Queue[TensorWriteInfo]):
|
||||
open_files: dict[Path, BufferedWriter] = {}
|
||||
try:
|
||||
while t := queue.get_nowait():
|
||||
t.write_chunk(open_files)
|
||||
del t
|
||||
queue.task_done()
|
||||
except Empty:
|
||||
pass
|
||||
|
||||
for f in open_files.values():
|
||||
f.close()
|
||||
|
||||
threads = [
|
||||
threading.Thread(target=write_tensors_from_thread, args=(tensor_queue,))
|
||||
for _ in range(self.thread_count)
|
||||
]
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
# NOTE: thread joining has weird interactions with KeyboardInterrupt,
|
||||
# so waiting for the queue to be "done" first.
|
||||
tensor_queue.join()
|
||||
|
||||
for t in threads:
|
||||
t.join()
|
||||
|
||||
else:
|
||||
self.temp_file.seek(0)
|
||||
|
||||
|
@@ -220,4 +220,9 @@ class LazyNumpyTensor(LazyBase):
|
||||
eager = LazyNumpyTensor.to_eager(self)
|
||||
return eager.tofile(*args, **kwargs)
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
eager = LazyNumpyTensor.to_eager(self)
|
||||
return eager.data
|
||||
|
||||
# TODO: __array_function__
|
||||
|
Reference in New Issue
Block a user