2025-04-01 00:05:13 +08:00
|
|
|
#include "ssm-scan.cuh"
|
|
|
|
|
|
|
|
template <size_t splitD, size_t N>
|
|
|
|
__global__ void __launch_bounds__(splitD, 2)
|
|
|
|
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
|
|
|
|
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
|
|
|
|
const int src0_nb1, const int src0_nb2, const int src1_nb0, const int src1_nb1, const int src1_nb2,
|
|
|
|
const int src1_nb3, const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
|
|
|
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
|
2025-04-03 15:32:55 +08:00
|
|
|
float * __restrict__ dst, const int64_t L) {
|
|
|
|
GGML_UNUSED(src1_nb0);
|
|
|
|
GGML_UNUSED(src2_nb0);
|
2025-06-15 17:30:13 +02:00
|
|
|
|
|
|
|
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
2025-04-01 00:05:13 +08:00
|
|
|
const int bidx = blockIdx.x; // split along B
|
|
|
|
const int bidy = blockIdx.y; // split along D
|
|
|
|
const int tid = threadIdx.x;
|
|
|
|
const int wid = tid / 32;
|
|
|
|
const int wtid = tid % 32;
|
|
|
|
|
|
|
|
extern __shared__ float smem[];
|
|
|
|
const int stride_sA = N + 1;
|
|
|
|
const int stride_ss0 = N + 1;
|
|
|
|
float * smem_A = smem;
|
|
|
|
float * smem_s0 = smem_A + splitD * stride_sA;
|
|
|
|
|
2025-04-03 15:32:55 +08:00
|
|
|
const float * s0_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
|
|
|
|
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
|
|
|
|
const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
|
|
|
|
const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1);
|
|
|
|
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb2));
|
|
|
|
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb2));
|
2025-04-01 00:05:13 +08:00
|
|
|
float * y_block = (float *) ((char *) dst + (bidx * src1_nb2) + bidy * splitD * sizeof(float));
|
|
|
|
float * s_block = (float *) ((char *) dst + src1_nb3 + bidx * src0_nb2 + bidy * splitD * src0_nb1);
|
|
|
|
|
|
|
|
const int stride_s0 = src0_nb1 / sizeof(float);
|
|
|
|
const int stride_x = src1_nb1 / sizeof(float);
|
|
|
|
const int stride_dt = src2_nb1 / sizeof(float);
|
|
|
|
const int stride_A = src3_nb1 / sizeof(float);
|
|
|
|
const int stride_B = src4_nb1 / sizeof(float);
|
|
|
|
const int stride_C = src5_nb1 / sizeof(float);
|
|
|
|
const int stride_s = stride_s0;
|
|
|
|
const int stride_y = stride_x;
|
|
|
|
|
|
|
|
// can N not be 16? for example 32?
|
|
|
|
if (N == 16) {
|
|
|
|
#pragma unroll
|
2025-04-03 15:32:55 +08:00
|
|
|
for (size_t i = 0; i < splitD / 4; i += 2) {
|
2025-06-15 17:30:13 +02:00
|
|
|
float value = A_block[(wid * warp_size + i) * stride_A + wtid];
|
2025-04-01 00:05:13 +08:00
|
|
|
// todo: bank conflict
|
|
|
|
// I am always confused with how to use the swizzling method to solve
|
|
|
|
// bank conflit. Hoping somebody can tell me.
|
2025-06-15 17:30:13 +02:00
|
|
|
smem_A[(wid * warp_size + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
|
2025-04-01 00:05:13 +08:00
|
|
|
}
|
|
|
|
#pragma unroll
|
2025-04-03 15:32:55 +08:00
|
|
|
for (size_t i = 0; i < splitD / 4; i += 2) {
|
2025-06-15 17:30:13 +02:00
|
|
|
float value = s0_block[(wid * warp_size + i) * stride_s0 + wtid];
|
|
|
|
smem_s0[(wid * warp_size + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
|
2025-04-01 00:05:13 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
2025-04-03 15:32:55 +08:00
|
|
|
for (int64_t i = 0; i < L; i++) {
|
2025-04-01 00:05:13 +08:00
|
|
|
float dt_soft_plus = dt_block[i * stride_dt + tid];
|
|
|
|
if (dt_soft_plus <= 20.0f) {
|
|
|
|
dt_soft_plus = log1pf(exp(dt_soft_plus));
|
|
|
|
}
|
|
|
|
float x_dt = x_block[i * stride_x + tid] * dt_soft_plus;
|
|
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
2025-04-03 15:32:55 +08:00
|
|
|
for (size_t j = 0; j < N; j++) {
|
2025-04-01 00:05:13 +08:00
|
|
|
float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) +
|
|
|
|
(B_block[i * stride_B + j] * x_dt);
|
|
|
|
sumf += state * C_block[i * stride_C + j];
|
|
|
|
if (i == L - 1) {
|
|
|
|
s_block[tid * stride_s + j] = state;
|
|
|
|
} else {
|
|
|
|
smem_s0[tid * stride_ss0 + j] = state;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
y_block[i * stride_y + tid] = sumf;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ssm_scan_f32_cuda(const float * src0, const float * src1, const float * src2, const float * src3,
|
|
|
|
const float * src4, const float * src5, const int src0_nb1, const int src0_nb2,
|
|
|
|
const int src1_nb0, const int src1_nb1, const int src1_nb2, const int src1_nb3,
|
|
|
|
const int src2_nb0, const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
|
|
|
const int src4_nb1, const int src4_nb2, const int src5_nb1, const int src5_nb2,
|
2025-04-03 15:32:55 +08:00
|
|
|
float * dst, const int64_t N, const int64_t D, const int64_t L, const int64_t B,
|
|
|
|
cudaStream_t stream) {
|
2025-04-01 00:05:13 +08:00
|
|
|
const int threads = 128;
|
|
|
|
// todo: consider D cannot be divided,does this situation exist?
|
|
|
|
GGML_ASSERT(D % threads == 0);
|
|
|
|
const dim3 blocks(B, (D + threads - 1) / threads, 1);
|
|
|
|
const int smem_size = (threads * (N + 1) * 2) * sizeof(float);
|
|
|
|
if (N == 16) {
|
|
|
|
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
|
|
|
|
src0, src1, src2, src3, src4, src5, src0_nb1, src0_nb2, src1_nb0, src1_nb1, src1_nb2, src1_nb3, src2_nb0,
|
2025-04-03 15:32:55 +08:00
|
|
|
src2_nb1, src2_nb2, src3_nb1, src4_nb1, src4_nb2, src5_nb1, src5_nb2, dst, L);
|
2025-04-01 00:05:13 +08:00
|
|
|
} else {
|
|
|
|
GGML_ABORT("doesn't support N!=16.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_cuda_op_ssm_scan(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
|
const struct ggml_tensor * src0 = dst->src[0]; // s
|
|
|
|
const struct ggml_tensor * src1 = dst->src[1]; // x
|
|
|
|
const struct ggml_tensor * src2 = dst->src[2]; // dt
|
|
|
|
const struct ggml_tensor * src3 = dst->src[3]; // A
|
|
|
|
const struct ggml_tensor * src4 = dst->src[4]; // B
|
|
|
|
const struct ggml_tensor * src5 = dst->src[5]; // C
|
|
|
|
|
|
|
|
// const int64_t d_state = src0->ne[0];
|
|
|
|
// const int64_t d_inner = src0->ne[1];
|
|
|
|
// const int64_t l = src1->ne[1];
|
|
|
|
// const int64_t b = src0->ne[2];
|
|
|
|
|
|
|
|
const int64_t nc = src0->ne[0]; // d_state
|
|
|
|
const int64_t nr = src0->ne[1]; // d_inner
|
|
|
|
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
|
|
|
|
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src2->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src3->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src4->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src5->nb[0] == sizeof(float));
|
|
|
|
// required for the dot product between s and C
|
|
|
|
GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float));
|
|
|
|
// required for per-sequence offsets for states
|
|
|
|
GGML_ASSERT(src0->nb[2] == src0->ne[0] * src0->ne[1] * sizeof(float));
|
|
|
|
// required to get correct offset for state destination (i.e. src1->nb[3])
|
|
|
|
GGML_ASSERT(src1->nb[3] == src1->ne[0] * src1->ne[1] * src1->ne[2] * sizeof(float));
|
|
|
|
|
|
|
|
const float * src0_d = (const float *) src0->data;
|
|
|
|
const float * src1_d = (const float *) src1->data;
|
|
|
|
const float * src2_d = (const float *) src2->data;
|
|
|
|
const float * src3_d = (const float *) src3->data;
|
|
|
|
const float * src4_d = (const float *) src4->data;
|
|
|
|
const float * src5_d = (const float *) src5->data;
|
|
|
|
float * dst_d = (float *) dst->data;
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
ssm_scan_f32_cuda(src0_d, src1_d, src2_d, src3_d, src4_d, src5_d, src0->nb[1], src0->nb[2], src1->nb[0],
|
|
|
|
src1->nb[1], src1->nb[2], src1->nb[3], src2->nb[0], src2->nb[1], src2->nb[2], src3->nb[1],
|
|
|
|
src4->nb[1], src4->nb[2], src5->nb[1], src5->nb[2], dst_d, nc, nr, n_t, n_s, stream);
|
|
|
|
}
|