2025-04-02 17:46:16 +05:30
|
|
|
#include "ops.h"
|
|
|
|
|
|
|
|
#include "ggml-cpu.h"
|
|
|
|
#include "ggml-impl.h"
|
|
|
|
#include "binary-ops.h"
|
|
|
|
#include "unary-ops.h"
|
|
|
|
#include "vec.h"
|
|
|
|
|
|
|
|
#include <float.h>
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
// disable "possible loss of data" to avoid hundreds of casts
|
|
|
|
// we should just be careful :)
|
|
|
|
#pragma warning(disable: 4244 4267)
|
|
|
|
|
|
|
|
// disable POSIX deprecation warnings
|
|
|
|
// these functions are never going away, anyway
|
|
|
|
#pragma warning(disable: 4996)
|
|
|
|
|
|
|
|
// unreachable code because of multiple instances of code after GGML_ABORT
|
|
|
|
#pragma warning(disable: 4702)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// ggml_compute_forward_dup
|
|
|
|
|
|
|
|
static void ggml_compute_forward_dup_same_cont(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
GGML_ASSERT(src0->type == dst->type);
|
|
|
|
|
|
|
|
const size_t nb0 = ggml_type_size(src0->type);
|
|
|
|
|
|
|
|
const int ith = params->ith; // thread index
|
|
|
|
const int nth = params->nth; // number of threads
|
|
|
|
|
|
|
|
// parallelize by blocks
|
|
|
|
const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
|
|
|
|
const int dr = (nk + nth - 1) / nth;
|
|
|
|
const int k0 = dr * ith;
|
|
|
|
const int k1 = MIN(k0 + dr, nk);
|
|
|
|
|
|
|
|
if (k0 < k1) {
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data + k0*nb0),
|
|
|
|
((char *) src0->data + k0*nb0),
|
|
|
|
(k1 - k0) * nb0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_dup_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith; // thread index
|
|
|
|
const int nth = params->nth; // number of threads
|
|
|
|
|
|
|
|
// parallelize by rows
|
|
|
|
const int nr = ne01;
|
|
|
|
// number of rows per thread
|
|
|
|
const int dr = (nr + nth - 1) / nth;
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr * ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
if (src0->type == dst->type &&
|
|
|
|
ne00 == ne0 &&
|
|
|
|
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
|
|
|
// copy by rows
|
|
|
|
const size_t rs = ne00*nb00;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
|
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
|
|
|
rs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
|
|
if (nb00 == sizeof(ggml_fp16_t)) {
|
|
|
|
if (dst->type == GGML_TYPE_F16) {
|
|
|
|
size_t id = 0;
|
|
|
|
const size_t rs = ne00 * nb00;
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
|
|
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F32) {
|
|
|
|
size_t id = 0;
|
|
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
|
|
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
|
|
|
|
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
|
|
|
|
size_t id = 0;
|
|
|
|
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
|
|
|
}
|
|
|
|
|
|
|
|
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
size_t id = 0;
|
|
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
|
|
size_t id = 0;
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = *src0_ptr;
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// dst counters
|
|
|
|
int64_t i10 = 0;
|
|
|
|
int64_t i11 = 0;
|
|
|
|
int64_t i12 = 0;
|
|
|
|
int64_t i13 = 0;
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F16) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
if (++i10 == ne00) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne01) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne02) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne03) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F32) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
|
|
|
|
|
|
|
|
if (++i10 == ne0) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_dup_bf16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith; // thread index
|
|
|
|
const int nth = params->nth; // number of threads
|
|
|
|
|
|
|
|
// parallelize by rows
|
|
|
|
const int nr = ne01;
|
|
|
|
// number of rows per thread
|
|
|
|
const int dr = (nr + nth - 1) / nth;
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr * ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
if (src0->type == dst->type &&
|
|
|
|
ne00 == ne0 &&
|
|
|
|
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
|
|
|
// copy by rows
|
|
|
|
const size_t rs = ne00*nb00;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
|
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
|
|
|
rs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
|
|
if (nb00 == sizeof(ggml_bf16_t)) {
|
|
|
|
if (dst->type == GGML_TYPE_BF16) {
|
|
|
|
size_t id = 0;
|
|
|
|
const size_t rs = ne00 * nb00;
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
|
|
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
|
|
size_t id = 0;
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F32) {
|
|
|
|
size_t id = 0;
|
|
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
|
|
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
|
|
|
|
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
|
|
|
|
size_t id = 0;
|
|
|
|
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
|
|
|
|
}
|
|
|
|
|
|
|
|
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
size_t id = 0;
|
|
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_BF16) {
|
|
|
|
size_t id = 0;
|
|
|
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = *src0_ptr;
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
|
|
size_t id = 0;
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// dst counters
|
|
|
|
int64_t i10 = 0;
|
|
|
|
int64_t i11 = 0;
|
|
|
|
int64_t i12 = 0;
|
|
|
|
int64_t i13 = 0;
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_BF16) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
|
|
|
|
|
|
|
|
if (++i10 == ne00) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne01) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne02) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne03) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
|
|
|
|
|
|
|
|
if (++i10 == ne0) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F32) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
*(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
|
|
|
|
|
|
|
|
if (++i10 == ne0) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_dup_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith; // thread index
|
|
|
|
const int nth = params->nth; // number of threads
|
|
|
|
|
|
|
|
// parallelize by rows
|
|
|
|
const int nr = ne01;
|
|
|
|
// number of rows per thread
|
|
|
|
const int dr = (nr + nth - 1) / nth;
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr * ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
if (src0->type == dst->type &&
|
|
|
|
ne00 == ne0 &&
|
|
|
|
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
|
|
|
|
// copy by rows
|
|
|
|
const size_t rs = ne00*nb00;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
|
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
|
|
|
rs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
|
|
// TODO: simplify
|
|
|
|
if (nb00 == sizeof(float)) {
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
size_t id = 0;
|
|
|
|
const size_t rs = ne00 * nb00;
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
|
|
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
|
|
|
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
|
|
|
|
|
|
|
|
size_t id = 0;
|
|
|
|
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
size_t id = 0;
|
|
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = *src0_ptr;
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
|
|
size_t id = 0;
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_BF16) {
|
|
|
|
size_t id = 0;
|
|
|
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += ne00 * ir0;
|
|
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
|
|
|
|
id++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += ne00 * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// dst counters
|
|
|
|
|
|
|
|
int64_t i10 = 0;
|
|
|
|
int64_t i11 = 0;
|
|
|
|
int64_t i12 = 0;
|
|
|
|
int64_t i13 = 0;
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
memcpy(dst_ptr, src0_ptr, sizeof(float));
|
|
|
|
|
|
|
|
if (++i10 == ne0) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
|
|
|
|
|
|
|
|
if (++i10 == ne0) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (dst->type == GGML_TYPE_BF16) {
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
i10 += ne00 * ir0;
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
*(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
|
|
|
|
|
|
|
|
if (++i10 == ne0) {
|
|
|
|
i10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i10 += ne00 * (ne01 - ir1);
|
|
|
|
while (i10 >= ne0) {
|
|
|
|
i10 -= ne0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("fatal error"); // TODO: implement
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
|
|
|
|
static void ggml_compute_forward_dup_bytes(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
GGML_ASSERT(src0->type == dst->type);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS;
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
|
|
|
|
ggml_compute_forward_dup_same_cont(params, dst);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t type_size = ggml_type_size(src0->type);
|
|
|
|
|
|
|
|
const int ith = params->ith; // thread index
|
|
|
|
const int nth = params->nth; // number of threads
|
|
|
|
|
|
|
|
// parallelize by rows
|
|
|
|
const int nr = ne01;
|
|
|
|
// number of rows per thread
|
|
|
|
const int dr = (nr + nth - 1) / nth;
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr * ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
if (src0->type == dst->type &&
|
|
|
|
ggml_are_same_shape(src0, dst) &&
|
|
|
|
nb00 == type_size && nb0 == type_size) {
|
|
|
|
// copy by rows
|
|
|
|
const size_t rs = ggml_row_size(src0->type, ne00);
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
|
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
|
|
|
rs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
|
|
size_t id = 0;
|
|
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
const size_t rs = ne00 * type_size;
|
|
|
|
|
|
|
|
if (nb00 == type_size) {
|
|
|
|
// src0 is contigous on first dimension, copy by rows
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
|
|
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
|
|
|
id += rs;
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
id += rs * ir0;
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
|
|
|
|
memcpy(dst_ptr + id, src0_ptr, type_size);
|
|
|
|
|
|
|
|
id += type_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
id += rs * (ne01 - ir1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// dst counters
|
|
|
|
int64_t k10 = 0;
|
|
|
|
int64_t i11 = 0;
|
|
|
|
int64_t i12 = 0;
|
|
|
|
int64_t i13 = 0;
|
|
|
|
|
|
|
|
// number of blocks in a row
|
|
|
|
const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
|
|
|
|
const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
k10 += nk00 * ir0;
|
|
|
|
while (k10 >= nk0) {
|
|
|
|
k10 -= nk0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
|
|
for (int64_t k00 = 0; k00 < nk00; k00++) {
|
|
|
|
const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
|
|
|
|
memcpy(dst_ptr, src0_ptr, type_size);
|
|
|
|
|
|
|
|
if (++k10 == nk0) {
|
|
|
|
k10 = 0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
k10 += nk00 * (ne01 - ir1);
|
|
|
|
while (k10 >= nk0) {
|
|
|
|
k10 -= nk0;
|
|
|
|
if (++i11 == ne1) {
|
|
|
|
i11 = 0;
|
|
|
|
if (++i12 == ne2) {
|
|
|
|
i12 = 0;
|
|
|
|
if (++i13 == ne3) {
|
|
|
|
i13 = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_dup_q(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const ggml_type type = src0->type;
|
|
|
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
|
|
|
|
|
|
|
size_t qk = ggml_blck_size(type);
|
|
|
|
const int64_t nr = ggml_nelements(src1) / qk;
|
|
|
|
|
|
|
|
// destination must be contiguous in the first dimension
|
|
|
|
GGML_ASSERT(nb10 == ggml_type_size(dst->type));
|
|
|
|
// must either have first dimension large enough to hold a row, or fully contiguous
|
|
|
|
GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
|
|
|
|
|
|
|
uint32_t i = ir * qk;
|
|
|
|
|
|
|
|
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
|
|
|
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
|
|
|
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
|
|
|
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
|
|
|
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
|
|
|
|
|
|
|
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
|
|
|
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
|
|
|
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
|
|
|
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
|
|
|
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
|
|
|
|
|
|
|
dequantize_row_q(
|
|
|
|
(const void *) ((char *) src0->data + x_offset),
|
|
|
|
(float *) ((char *) dst->data + dst_offset), qk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_dup(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (src0->type == dst->type) {
|
|
|
|
ggml_compute_forward_dup_bytes(params, dst);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_dup_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_dup_bf16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_dup_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
|
|
|
|
ggml_compute_forward_dup_q(params, dst);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_add
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add_q_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const ggml_type type = src0->type;
|
|
|
|
const ggml_type dtype = dst->type;
|
|
|
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
|
|
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
|
|
|
|
|
|
|
|
// we don't support permuted src0 or src1
|
|
|
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
// dst cannot be transposed or permuted
|
|
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_quantized(src0->type));
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 indices
|
|
|
|
const int i03 = ir/(ne02*ne01);
|
|
|
|
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
|
|
|
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
|
|
|
|
// src1 and dst are same shape as src0 => same indices
|
|
|
|
const int i13 = i03;
|
|
|
|
const int i12 = i02;
|
|
|
|
const int i11 = i01;
|
|
|
|
|
|
|
|
const int i3 = i03;
|
|
|
|
const int i2 = i02;
|
|
|
|
const int i1 = i01;
|
|
|
|
|
|
|
|
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
|
|
|
|
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
|
|
|
|
assert(ne00 % 32 == 0);
|
|
|
|
|
|
|
|
// unquantize row from src0 to temp buffer
|
|
|
|
dequantize_row_q(src0_row, wdata, ne00);
|
|
|
|
// add src1
|
|
|
|
ggml_vec_acc_f32(ne00, wdata, src1_row);
|
|
|
|
// quantize row to dst
|
|
|
|
if (quantize_row_q != NULL) {
|
|
|
|
quantize_row_q(wdata, dst_row, ne00);
|
|
|
|
} else {
|
|
|
|
memcpy(dst_row, wdata, ne0*nb0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_add(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_add_non_quantized(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_add_q_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_add1
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add1_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are same shape => same indices
|
|
|
|
const int i3 = ir/(ne2*ne1);
|
|
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
|
|
GGML_UNUSED(ggml_vec_add1_f32);
|
|
|
|
|
|
|
|
vDSP_vadd(
|
|
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
|
|
|
(float *) ((char *) src1->data), 0,
|
|
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
|
|
|
ne0);
|
|
|
|
#else
|
|
|
|
ggml_vec_add1_f32(ne0,
|
|
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
|
|
*(float *) src1->data);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add1_f16_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
|
|
|
|
// scalar to add
|
|
|
|
const float v = *(float *) src1->data;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are same shape => same indices
|
|
|
|
const int i3 = ir/(ne2*ne1);
|
|
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add1_f16_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
|
|
|
|
// scalar to add
|
|
|
|
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are same shape => same indices
|
|
|
|
const int i3 = ir/(ne2*ne1);
|
|
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add1_q_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
|
|
|
|
// scalar to add
|
|
|
|
const float v = *(float *) src1->data;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const ggml_type type = src0->type;
|
|
|
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
|
|
|
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
|
|
|
|
|
|
|
|
// we don't support permuted src0
|
|
|
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
|
|
|
|
|
|
|
// dst cannot be transposed or permuted
|
|
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_quantized(src0->type));
|
|
|
|
GGML_ASSERT(dst->type == src0->type);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are same shape => same indices
|
|
|
|
const int i3 = ir/(ne2*ne1);
|
|
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
|
|
|
|
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
|
|
|
|
|
|
|
|
assert(ne0 % 32 == 0);
|
|
|
|
|
|
|
|
// unquantize row from src0 to temp buffer
|
|
|
|
dequantize_row_q(src0_row, wdata, ne0);
|
|
|
|
// add src1
|
|
|
|
ggml_vec_acc1_f32(ne0, wdata, v);
|
|
|
|
// quantize row to dst
|
|
|
|
quantize_row_q(wdata, dst_row, ne0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add1_bf16_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
|
|
|
|
// scalar to add
|
|
|
|
const float v = *(float *) src1->data;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are same shape => same indices
|
|
|
|
const int i3 = ir/(ne2*ne1);
|
|
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
|
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
|
|
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add1_bf16_bf16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
|
|
|
|
// scalar to add
|
|
|
|
const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_BF16);
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are same shape => same indices
|
|
|
|
const int i3 = ir/(ne2*ne1);
|
|
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
|
|
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
|
|
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_add1(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_add1_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
if (src1->type == GGML_TYPE_F16) {
|
|
|
|
ggml_compute_forward_add1_f16_f16(params, dst);
|
|
|
|
}
|
|
|
|
else if (src1->type == GGML_TYPE_F32) {
|
|
|
|
ggml_compute_forward_add1_f16_f32(params, dst);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
{
|
|
|
|
if (src1->type == GGML_TYPE_BF16) {
|
|
|
|
ggml_compute_forward_add1_bf16_bf16(params, dst);
|
|
|
|
}
|
|
|
|
else if (src1->type == GGML_TYPE_F32) {
|
|
|
|
ggml_compute_forward_add1_bf16_f32(params, dst);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q8_1:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_add1_q_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_acc
|
|
|
|
|
|
|
|
static void ggml_compute_forward_acc_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
|
|
|
|
// view src0 and dst with these strides and data offset inbytes during acc
|
|
|
|
// nb0 is implicitly element_size because src0 and dst are contiguous
|
|
|
|
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
|
|
|
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
|
|
|
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
|
|
|
size_t offset = ((int32_t *) dst->op_params)[3];
|
|
|
|
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
|
|
|
|
|
|
|
if (!inplace) {
|
|
|
|
if (params->ith == 0) {
|
|
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
|
|
// => do it in INIT phase
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data),
|
|
|
|
((char *) src0->data),
|
|
|
|
ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
|
|
const int nc = src1->ne[0];
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
|
|
|
|
|
|
|
// src0 and dst as viewed during acc
|
|
|
|
const size_t nb0 = ggml_element_size(src0);
|
|
|
|
|
|
|
|
const size_t nb00 = nb0;
|
|
|
|
const size_t nb01 = nb1;
|
|
|
|
const size_t nb02 = nb2;
|
|
|
|
const size_t nb03 = nb3;
|
|
|
|
|
|
|
|
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
|
|
|
|
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
|
|
|
|
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are viewed with shape of src1 and offset
|
|
|
|
// => same indices
|
|
|
|
const int i3 = ir/(ne12*ne11);
|
|
|
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
|
|
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
|
|
|
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
|
|
vDSP_vadd(
|
|
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
|
|
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
|
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
|
|
|
|
#else
|
|
|
|
ggml_vec_add_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
|
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
|
|
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_acc(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_acc_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q8_1:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_sum
|
|
|
|
|
|
|
|
static void ggml_compute_forward_sum_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(ggml_is_scalar(dst));
|
|
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
|
|
|
|
|
|
|
|
ggml_float sum = 0;
|
|
|
|
ggml_float row_sum = 0;
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
ggml_vec_sum_f32_ggf(ne00,
|
|
|
|
&row_sum,
|
|
|
|
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
sum += row_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
((float *) dst->data)[0] = sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_sum_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(ggml_is_scalar(dst));
|
|
|
|
|
|
|
|
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
|
|
|
|
|
|
|
|
float sum = 0;
|
|
|
|
float row_sum = 0;
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
ggml_vec_sum_f16_ggf(ne00,
|
|
|
|
&row_sum,
|
|
|
|
(ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
|
|
|
|
sum += row_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_sum_bf16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(ggml_is_scalar(dst));
|
|
|
|
|
|
|
|
assert(src0->nb[0] == sizeof(ggml_bf16_t));
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
|
|
|
|
|
|
|
|
float sum = 0;
|
|
|
|
float row_sum = 0;
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
ggml_vec_sum_bf16_ggf(ne00,
|
|
|
|
&row_sum,
|
|
|
|
(ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
|
|
|
|
sum += row_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_sum(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_sum_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_sum_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_sum_bf16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_sum_rows
|
|
|
|
|
|
|
|
static void ggml_compute_forward_sum_rows_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(dst->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(ne0 == 1);
|
|
|
|
GGML_ASSERT(ne1 == ne01);
|
|
|
|
GGML_ASSERT(ne2 == ne02);
|
|
|
|
GGML_ASSERT(ne3 == ne03);
|
|
|
|
|
|
|
|
for (int64_t i3 = 0; i3 < ne03; i3++) {
|
|
|
|
for (int64_t i2 = 0; i2 < ne02; i2++) {
|
|
|
|
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
|
|
|
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
|
|
|
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
|
|
|
float row_sum = 0;
|
|
|
|
ggml_vec_sum_f32(ne00, &row_sum, src_row);
|
|
|
|
dst_row[0] = row_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_sum_rows(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_sum_rows_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_mean
|
|
|
|
|
|
|
|
static void ggml_compute_forward_mean_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
assert(ne0 == 1);
|
|
|
|
assert(ne1 == ne01);
|
|
|
|
assert(ne2 == ne02);
|
|
|
|
assert(ne3 == ne03);
|
|
|
|
|
|
|
|
GGML_UNUSED(ne0);
|
|
|
|
GGML_UNUSED(ne1);
|
|
|
|
GGML_UNUSED(ne2);
|
|
|
|
GGML_UNUSED(ne3);
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
ggml_vec_sum_f32(ne00,
|
|
|
|
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
|
|
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
|
|
|
|
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_mean(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_mean_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_argmax
|
|
|
|
|
|
|
|
static void ggml_compute_forward_argmax_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne01 = src0->ne[1];
|
|
|
|
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
|
|
|
|
|
|
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
|
|
|
float * src = (float *) ((char *) src0->data + i1*nb01);
|
|
|
|
int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
|
|
|
|
int v = 0;
|
|
|
|
ggml_vec_argmax_f32(ne00, &v, src);
|
|
|
|
dst_[0] = v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_argmax(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_argmax_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_count_equal
|
|
|
|
|
|
|
|
static void ggml_compute_forward_count_equal_i32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_I32);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(dst));
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_I64);
|
|
|
|
|
|
|
|
const int64_t nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
int64_t * sums = (int64_t *) params->wdata;
|
|
|
|
int64_t sum_thread = 0;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int64_t ir0 = dr*ith;
|
|
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
|
|
|
const int64_t i03 = ir / (ne02*ne01);
|
|
|
|
const int64_t i02 = (ir - i03*ne03) / ne01;
|
|
|
|
const int64_t i01 = ir - i03*ne03 - i02*ne02;
|
|
|
|
|
|
|
|
const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
|
|
|
|
const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
|
|
|
|
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; ++i00) {
|
|
|
|
const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
|
|
|
|
const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
|
|
|
|
|
|
|
|
sum_thread += val0 == val1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ith != 0) {
|
|
|
|
sums[ith] = sum_thread;
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
if (ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int ith_other = 1; ith_other < nth; ++ith_other) {
|
|
|
|
sum_thread += sums[ith_other];
|
|
|
|
}
|
|
|
|
*((int64_t *) dst->data) = sum_thread;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_count_equal(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_I32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_count_equal_i32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_repeat
|
|
|
|
|
|
|
|
static void ggml_compute_forward_repeat_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_can_repeat(src0, dst));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
|
|
|
const int nr0 = (int)(ne0/ne00);
|
|
|
|
const int nr1 = (int)(ne1/ne01);
|
|
|
|
const int nr2 = (int)(ne2/ne02);
|
|
|
|
const int nr3 = (int)(ne3/ne03);
|
|
|
|
|
|
|
|
// TODO: support for transposed / permuted tensors
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
// TODO: maybe this is not optimal?
|
|
|
|
for (int i3 = 0; i3 < nr3; i3++) {
|
|
|
|
for (int k3 = 0; k3 < ne03; k3++) {
|
|
|
|
for (int i2 = 0; i2 < nr2; i2++) {
|
|
|
|
for (int k2 = 0; k2 < ne02; k2++) {
|
|
|
|
for (int i1 = 0; i1 < nr1; i1++) {
|
|
|
|
for (int k1 = 0; k1 < ne01; k1++) {
|
|
|
|
for (int i0 = 0; i0 < nr0; i0++) {
|
|
|
|
ggml_vec_cpy_f32(ne00,
|
|
|
|
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
|
|
|
|
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_repeat_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_can_repeat(src0, dst));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
|
|
|
const int nr0 = (int)(ne0/ne00);
|
|
|
|
const int nr1 = (int)(ne1/ne01);
|
|
|
|
const int nr2 = (int)(ne2/ne02);
|
|
|
|
const int nr3 = (int)(ne3/ne03);
|
|
|
|
|
|
|
|
// TODO: support for transposed / permuted tensors
|
|
|
|
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
// TODO: maybe this is not optimal?
|
|
|
|
for (int i3 = 0; i3 < nr3; i3++) {
|
|
|
|
for (int k3 = 0; k3 < ne03; k3++) {
|
|
|
|
for (int i2 = 0; i2 < nr2; i2++) {
|
|
|
|
for (int k2 = 0; k2 < ne02; k2++) {
|
|
|
|
for (int i1 = 0; i1 < nr1; i1++) {
|
|
|
|
for (int k1 = 0; k1 < ne01; k1++) {
|
|
|
|
for (int i0 = 0; i0 < nr0; i0++) {
|
|
|
|
ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
|
|
|
|
ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
|
|
|
|
// ggml_vec_cpy_f16(ne00, y, x)
|
|
|
|
for (int i = 0; i < ne00; ++i) {
|
|
|
|
y[i] = x[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_repeat(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
case GGML_TYPE_I16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_repeat_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
case GGML_TYPE_I32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_repeat_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_repeat_back
|
|
|
|
|
|
|
|
static void ggml_compute_forward_repeat_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
|
|
|
const int nr0 = (int)(ne00/ne0);
|
|
|
|
const int nr1 = (int)(ne01/ne1);
|
|
|
|
const int nr2 = (int)(ne02/ne2);
|
|
|
|
const int nr3 = (int)(ne03/ne3);
|
|
|
|
|
|
|
|
// TODO: support for transposed / permuted tensors
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
|
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
|
|
|
|
} else {
|
|
|
|
for (int k3 = 0; k3 < ne3; k3++) {
|
|
|
|
for (int k2 = 0; k2 < ne2; k2++) {
|
|
|
|
for (int k1 = 0; k1 < ne1; k1++) {
|
|
|
|
ggml_vec_set_f32(ne0,
|
|
|
|
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
|
|
|
|
0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: maybe this is not optimal?
|
|
|
|
for (int i3 = 0; i3 < nr3; i3++) {
|
|
|
|
for (int k3 = 0; k3 < ne3; k3++) {
|
|
|
|
for (int i2 = 0; i2 < nr2; i2++) {
|
|
|
|
for (int k2 = 0; k2 < ne2; k2++) {
|
|
|
|
for (int i1 = 0; i1 < nr1; i1++) {
|
|
|
|
for (int k1 = 0; k1 < ne1; k1++) {
|
|
|
|
for (int i0 = 0; i0 < nr0; i0++) {
|
|
|
|
ggml_vec_acc_f32(ne0,
|
|
|
|
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
|
|
|
|
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_repeat_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_repeat_back_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_concat
|
|
|
|
|
|
|
|
static void ggml_compute_forward_concat_any(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
const size_t len = ggml_type_size(src0->type);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
|
|
|
|
|
|
|
int64_t o[4] = {0, 0, 0, 0};
|
|
|
|
o[dim] = src0->ne[dim];
|
|
|
|
|
|
|
|
const char * x;
|
|
|
|
|
|
|
|
// TODO: smarter multi-theading
|
|
|
|
for (int i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
|
|
|
for (int i1 = 0; i1 < ne1; i1++) {
|
|
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
|
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
|
|
|
|
} else {
|
|
|
|
x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
|
|
|
|
}
|
|
|
|
|
|
|
|
char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
|
|
|
|
|
|
|
|
memcpy(y, x, len);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_concat_i8(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
|
|
|
|
|
|
|
int64_t o[4] = {0, 0, 0, 0};
|
|
|
|
o[dim] = src0->ne[dim];
|
|
|
|
|
|
|
|
const int8_t * x;
|
|
|
|
|
|
|
|
// TODO: smarter multi-theading
|
|
|
|
for (int i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
|
|
|
for (int i1 = 0; i1 < ne1; i1++) {
|
|
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
|
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
|
|
|
|
} else {
|
|
|
|
x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
|
|
|
|
}
|
|
|
|
|
|
|
|
int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
|
|
|
|
|
|
|
*y = *x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_concat_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
|
|
|
|
|
|
|
int64_t o[4] = {0, 0, 0, 0};
|
|
|
|
o[dim] = src0->ne[dim];
|
|
|
|
|
|
|
|
const ggml_fp16_t * x;
|
|
|
|
|
|
|
|
// TODO: smarter multi-theading
|
|
|
|
for (int i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
|
|
|
for (int i1 = 0; i1 < ne1; i1++) {
|
|
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
|
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
|
|
|
|
} else {
|
|
|
|
x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
|
|
|
|
|
|
|
*y = *x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_concat_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
GGML_ASSERT(dim >= 0 && dim < 4);
|
|
|
|
|
|
|
|
int64_t o[4] = {0, 0, 0, 0};
|
|
|
|
o[dim] = src0->ne[dim];
|
|
|
|
|
|
|
|
const float * x;
|
|
|
|
|
|
|
|
// TODO: smarter multi-theading
|
|
|
|
for (int i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int i2 = ith; i2 < ne2; i2 += nth) {
|
|
|
|
for (int i1 = 0; i1 < ne1; i1++) {
|
|
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
|
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
|
|
|
|
} else {
|
|
|
|
x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
|
|
|
|
}
|
|
|
|
|
|
|
|
float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
|
|
|
|
|
|
|
*y = *x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_concat(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
case GGML_TYPE_I16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_concat_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_I8:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_concat_i8(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
case GGML_TYPE_I32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_concat_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_concat_any(params, dst);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_gelu
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gelu_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_gelu_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
|
|
GGML_UNUSED(x);
|
|
|
|
assert(!isnan(x));
|
|
|
|
assert(!isinf(x));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gelu_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_gelu_f16(nc,
|
|
|
|
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
|
|
const float v = GGML_FP16_TO_FP32(x);
|
|
|
|
GGML_UNUSED(v);
|
|
|
|
assert(!isnan(v));
|
|
|
|
assert(!isinf(v));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gelu(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gelu_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gelu_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_gelu_quick
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gelu_quick_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_gelu_quick_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
|
|
GGML_UNUSED(x);
|
|
|
|
assert(!isnan(x));
|
|
|
|
assert(!isinf(x));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gelu_quick_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_gelu_quick_f16(nc,
|
|
|
|
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
|
|
const float v = GGML_FP16_TO_FP32(x);
|
|
|
|
GGML_UNUSED(v);
|
|
|
|
assert(!isnan(v));
|
|
|
|
assert(!isinf(v));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gelu_quick(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gelu_quick_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gelu_quick_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_silu
|
|
|
|
|
|
|
|
static void ggml_compute_forward_silu_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_silu_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
|
|
|
|
GGML_UNUSED(x);
|
|
|
|
assert(!isnan(x));
|
|
|
|
assert(!isinf(x));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_silu_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_silu_f16(nc,
|
|
|
|
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
|
|
|
|
const float v = GGML_FP16_TO_FP32(x);
|
|
|
|
GGML_UNUSED(v);
|
|
|
|
assert(!isnan(v));
|
|
|
|
assert(!isinf(v));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_silu(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_silu_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_silu_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// ggml_compute_forward_leaky_relu
|
|
|
|
|
|
|
|
static void ggml_compute_forward_leaky_relu_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int n = ggml_nrows(src0);
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
|
|
|
|
float negative_slope;
|
|
|
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
ggml_vec_leaky_relu_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_leaky_relu_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(src0));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
const int n = ggml_nrows(src0);
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
|
|
|
|
float negative_slope;
|
|
|
|
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
assert(dst->nb[0] == sizeof(ggml_fp16_t));
|
|
|
|
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
ggml_vec_leaky_relu_f16(nc,
|
|
|
|
(ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
|
|
|
|
(ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_leaky_relu(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_leaky_relu_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_leaky_relu_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_silu_back
|
|
|
|
|
|
|
|
static void ggml_compute_forward_silu_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * grad = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(grad));
|
|
|
|
assert(ggml_is_contiguous_1(src1));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src1, dst));
|
|
|
|
assert(ggml_are_same_shape(src1, grad));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src1->ne[0];
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_silu_backward_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(float *) ((char *) src1->data + i1*(src1->nb[1])),
|
|
|
|
(float *) ((char *) grad->data + i1*(grad->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
|
|
GGML_UNUSED(x);
|
|
|
|
assert(!isnan(x));
|
|
|
|
assert(!isinf(x));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_silu_back_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * grad = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous_1(grad));
|
|
|
|
assert(ggml_is_contiguous_1(src1));
|
|
|
|
assert(ggml_is_contiguous_1(dst));
|
|
|
|
assert(ggml_are_same_shape(src1, dst));
|
|
|
|
assert(ggml_are_same_shape(src1, grad));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src1->ne[0];
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
ggml_vec_silu_backward_f16(nc,
|
|
|
|
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
|
|
(ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
|
|
|
|
(ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int k = 0; k < nc; k++) {
|
|
|
|
const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
|
|
const float v = GGML_FP16_TO_FP32(x);
|
|
|
|
GGML_UNUSED(v);
|
|
|
|
assert(!isnan(v));
|
|
|
|
assert(!isinf(v));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_silu_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_silu_back_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_silu_back_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_norm
|
|
|
|
|
|
|
|
static void ggml_compute_forward_norm_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
float eps;
|
|
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
GGML_ASSERT(eps >= 0.0f);
|
|
|
|
|
|
|
|
// TODO: optimize
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
|
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
ggml_float sum = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
sum += (ggml_float)x[i00];
|
|
|
|
}
|
|
|
|
|
|
|
|
float mean = sum/ne00;
|
|
|
|
|
|
|
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
|
|
|
|
ggml_float sum2 = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
float v = x[i00] - mean;
|
|
|
|
y[i00] = v;
|
|
|
|
sum2 += (ggml_float)(v*v);
|
|
|
|
}
|
|
|
|
|
|
|
|
float variance = sum2/ne00;
|
|
|
|
const float scale = 1.0f/sqrtf(variance + eps);
|
|
|
|
|
|
|
|
ggml_vec_scale_f32(ne00, y, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_norm(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_norm_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_group_rms_norm
|
|
|
|
|
|
|
|
static void ggml_compute_forward_rms_norm_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
float eps;
|
|
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
GGML_ASSERT(eps >= 0.0f);
|
|
|
|
|
|
|
|
// TODO: optimize
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
|
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
ggml_float sum = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
sum += (ggml_float)(x[i00] * x[i00]);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float mean = sum/ne00;
|
|
|
|
|
|
|
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
|
|
|
|
memcpy(y, x, ne00 * sizeof(float));
|
|
|
|
// for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
// y[i00] = x[i00];
|
|
|
|
// }
|
|
|
|
|
|
|
|
const float scale = 1.0f/sqrtf(mean + eps);
|
|
|
|
|
|
|
|
ggml_vec_scale_f32(ne00, y, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_rms_norm(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rms_norm_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_rms_norm_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
|
|
|
|
const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
float eps;
|
|
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
// TODO: optimize
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
|
|
// src1 is same shape as src0 => same indices
|
|
|
|
const int64_t i11 = i01;
|
|
|
|
const int64_t i12 = i02;
|
|
|
|
const int64_t i13 = i03;
|
|
|
|
|
|
|
|
const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
|
|
|
|
|
|
|
|
ggml_float sum_xx = 0.0;
|
|
|
|
ggml_float sum_xdz = 0.0;
|
|
|
|
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
sum_xx += (ggml_float)(x[i00] * x[i00]);
|
|
|
|
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
|
|
|
|
}
|
|
|
|
|
|
|
|
//const float mean = (float)(sum_xx)/ne00;
|
|
|
|
const float mean_eps = (float)(sum_xx)/ne00 + eps;
|
|
|
|
const float sum_eps = (float)(sum_xx) + eps*ne00;
|
|
|
|
//const float mean_xdz = (float)(sum_xdz)/ne00;
|
|
|
|
// we could cache rms from forward pass to improve performance.
|
|
|
|
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
|
|
|
|
//const float rms = sqrtf(mean_eps);
|
|
|
|
const float rrms = 1.0f / sqrtf(mean_eps);
|
|
|
|
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
|
|
|
|
|
|
|
|
{
|
|
|
|
// z = rms_norm(x)
|
|
|
|
//
|
|
|
|
// rms_norm(src1) =
|
|
|
|
// scale(
|
|
|
|
// src1,
|
|
|
|
// div(
|
|
|
|
// 1,
|
|
|
|
// sqrt(
|
|
|
|
// add(
|
|
|
|
// scale(
|
|
|
|
// sum(
|
|
|
|
// sqr(
|
|
|
|
// src1)),
|
|
|
|
// (1.0/N)),
|
|
|
|
// eps))));
|
|
|
|
|
|
|
|
// postorder:
|
|
|
|
// ## op args grad
|
|
|
|
// 00 param src1 grad[#00]
|
|
|
|
// 01 const 1
|
|
|
|
// 02 sqr (#00) grad[#02]
|
|
|
|
// 03 sum (#02) grad[#03]
|
|
|
|
// 04 const 1/N
|
|
|
|
// 05 scale (#03, #04) grad[#05]
|
|
|
|
// 06 const eps
|
|
|
|
// 07 add (#05, #06) grad[#07]
|
|
|
|
// 08 sqrt (#07) grad[#08]
|
|
|
|
// 09 div (#01,#08) grad[#09]
|
|
|
|
// 10 scale (#00,#09) grad[#10]
|
|
|
|
//
|
|
|
|
// backward pass, given grad[#10]
|
|
|
|
// #10: scale
|
|
|
|
// grad[#00] += scale(grad[#10],#09)
|
|
|
|
// grad[#09] += sum(mul(grad[#10],#00))
|
|
|
|
// #09: div
|
|
|
|
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
|
|
|
|
// #08: sqrt
|
|
|
|
// grad[#07] += mul(grad[#08], div(0.5, #08))
|
|
|
|
// #07: add
|
|
|
|
// grad[#05] += grad[#07]
|
|
|
|
// #05: scale
|
|
|
|
// grad[#03] += scale(grad[#05],#04)
|
|
|
|
// #03: sum
|
|
|
|
// grad[#02] += repeat(grad[#03], #02)
|
|
|
|
// #02:
|
|
|
|
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
|
|
|
|
//
|
|
|
|
// substitute and simplify:
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
|
|
|
|
// grad[#02] = repeat(grad[#03], #02)
|
|
|
|
// grad[#02] = repeat(scale(grad[#05],#04), #02)
|
|
|
|
// grad[#02] = repeat(scale(grad[#07],#04), #02)
|
|
|
|
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
|
|
|
|
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
|
|
|
|
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
|
|
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
|
|
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
|
|
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
|
|
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
|
|
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
|
|
|
|
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
|
|
|
|
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
|
|
|
|
// a = b*c + d*e
|
|
|
|
// a = b*c*f/f + d*e*f/f
|
|
|
|
// a = (b*c*f + d*e*f)*(1/f)
|
|
|
|
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
|
|
|
|
// a = (b + d*e/c)*c
|
|
|
|
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
|
|
|
|
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
|
|
|
|
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
|
|
|
|
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
|
|
|
|
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
|
|
|
|
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
|
|
|
|
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
|
|
|
|
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
|
|
|
|
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
|
|
|
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
|
|
|
}
|
|
|
|
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
|
|
|
// post-order:
|
|
|
|
// dx := x
|
|
|
|
// dx := scale(dx,-mean_xdz/mean_eps)
|
|
|
|
// dx := add(dx, dz)
|
|
|
|
// dx := scale(dx, rrms)
|
|
|
|
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
|
|
|
|
// dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
|
|
|
|
ggml_vec_cpy_f32 (ne00, dx, x);
|
|
|
|
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
|
|
|
|
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
|
|
|
|
ggml_vec_acc_f32 (ne00, dx, dz);
|
|
|
|
ggml_vec_scale_f32(ne00, dx, rrms);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_rms_norm_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rms_norm_back_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_group_norm
|
|
|
|
|
|
|
|
static void ggml_compute_forward_group_norm_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
// TODO: optimize
|
|
|
|
|
|
|
|
float eps;
|
|
|
|
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
|
|
|
|
|
|
|
int n_channels = src0->ne[2];
|
|
|
|
int n_groups = dst->op_params[0];
|
|
|
|
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
|
|
|
|
for (int i = ith; i < n_groups; i += nth) {
|
|
|
|
int start = i * n_channels_per_group;
|
|
|
|
int end = start + n_channels_per_group;
|
|
|
|
if (end > n_channels) {
|
|
|
|
end = n_channels;
|
|
|
|
}
|
|
|
|
int step = end - start;
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
ggml_float sum = 0.0;
|
|
|
|
for (int64_t i02 = start; i02 < end; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
|
|
|
|
|
|
|
|
ggml_float sumr = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
sumr += (ggml_float)x[i00];
|
|
|
|
}
|
|
|
|
sum += sumr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const float mean = sum / (ne00 * ne01 * step);
|
|
|
|
|
|
|
|
ggml_float sum2 = 0.0;
|
|
|
|
for (int64_t i02 = start; i02 < end; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
|
|
|
|
|
|
|
|
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
|
|
|
|
|
|
|
|
ggml_float sumr = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
float v = x[i00] - mean;
|
|
|
|
y[i00] = v;
|
|
|
|
sumr += (ggml_float)(v * v);
|
|
|
|
}
|
|
|
|
sum2 += sumr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const float variance = sum2 / (ne00 * ne01 * step);
|
|
|
|
const float scale = 1.0f / sqrtf(variance + eps);
|
|
|
|
|
|
|
|
for (int64_t i02 = start; i02 < end; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
|
|
|
|
ggml_vec_scale_f32(ne00, y, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_group_norm(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_group_norm_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_l2_norm
|
|
|
|
|
|
|
|
static void ggml_compute_forward_l2_norm_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
float eps;
|
|
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
GGML_ASSERT(eps >= 0.0f);
|
|
|
|
|
|
|
|
// TODO: optimize
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
|
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
ggml_float sum = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
sum += (ggml_float)(x[i00] * x[i00]);
|
|
|
|
}
|
|
|
|
|
|
|
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
|
|
|
|
memcpy(y, x, ne00 * sizeof(float));
|
|
|
|
|
|
|
|
const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
|
|
|
|
|
|
|
|
ggml_vec_scale_f32(ne00, y, scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_l2_norm(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_l2_norm_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_out_prod
|
|
|
|
|
|
|
|
static void ggml_compute_forward_out_prod_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_ASSERT(ne0 == ne00);
|
|
|
|
GGML_ASSERT(ne1 == ne10);
|
|
|
|
GGML_ASSERT(ne2 == ne12);
|
|
|
|
GGML_ASSERT(ne3 == ne13);
|
|
|
|
|
|
|
|
GGML_ASSERT(ne2 % ne02 == 0);
|
|
|
|
GGML_ASSERT(ne3 % ne03 == 0);
|
|
|
|
|
|
|
|
// we don't support permuted src0 or src1
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
// dst cannot be transposed or permuted
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
// GGML_ASSERT(nb0 <= nb1);
|
|
|
|
// GGML_ASSERT(nb1 <= nb2);
|
|
|
|
// GGML_ASSERT(nb2 <= nb3);
|
|
|
|
|
|
|
|
// nb01 >= nb00 - src0 is not transposed
|
|
|
|
// compute by src0 rows
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
// dst[:,:,:,:] = 0
|
|
|
|
// for i2,i3:
|
|
|
|
// for i1:
|
|
|
|
// for i01:
|
|
|
|
// for i0:
|
|
|
|
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
|
|
|
|
|
|
|
|
// parallelize by last three dimensions
|
|
|
|
|
|
|
|
// total rows in dst
|
|
|
|
const int64_t nr = ne1*ne2*ne3;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int64_t ir0 = dr*ith;
|
|
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
// block-tiling attempt
|
|
|
|
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
|
|
|
|
const int64_t blck_1 = 16;
|
|
|
|
|
|
|
|
// dps == dst per src0, used for group query attention
|
|
|
|
const int64_t dps2 = ne2 / ne02;
|
|
|
|
const int64_t dps3 = ne3 / ne03;
|
|
|
|
|
|
|
|
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
|
|
|
|
const int64_t bir1 = MIN(bir + blck_1, ir1);
|
|
|
|
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
|
|
|
|
const int64_t bne01 = MIN(bi01 + blck_0, ne01);
|
|
|
|
for (int64_t ir = bir; ir < bir1; ++ir) {
|
|
|
|
// dst indices
|
|
|
|
const int64_t i3 = ir/(ne2*ne1);
|
|
|
|
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
const int64_t i02 = i2 / dps2;
|
|
|
|
const int64_t i03 = i3 / dps3;
|
|
|
|
|
|
|
|
//const int64_t i10 = i1;
|
|
|
|
const int64_t i12 = i2;
|
|
|
|
const int64_t i13 = i3;
|
|
|
|
|
|
|
|
#if GGML_VEC_MAD_UNROLL > 2
|
|
|
|
const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
|
|
|
|
for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
|
|
|
|
const int64_t i11 = i01;
|
|
|
|
|
|
|
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
|
|
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
|
|
|
|
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
|
|
|
|
}
|
|
|
|
for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
|
|
|
|
const int64_t i11 = i01;
|
|
|
|
|
|
|
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
|
|
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
|
|
|
|
ggml_vec_mad_f32(ne0, d, s0, *s1);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
for (int64_t i01 = bi01; i01 < bne01; ++i01) {
|
|
|
|
const int64_t i11 = i01;
|
|
|
|
|
|
|
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
|
|
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
|
|
|
|
ggml_vec_mad_f32(ne0, d, s0, *s1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_out_prod_q_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const ggml_type type = src0->type;
|
|
|
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
|
|
|
|
|
|
|
GGML_ASSERT(ne02 == ne12);
|
|
|
|
GGML_ASSERT(ne03 == ne13);
|
|
|
|
GGML_ASSERT(ne2 == ne12);
|
|
|
|
GGML_ASSERT(ne3 == ne13);
|
|
|
|
|
|
|
|
// we don't support permuted src0 dim0
|
|
|
|
GGML_ASSERT(nb00 == ggml_type_size(type));
|
|
|
|
|
|
|
|
// dst dim0 cannot be transposed or permuted
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
// GGML_ASSERT(nb0 <= nb1);
|
|
|
|
// GGML_ASSERT(nb1 <= nb2);
|
|
|
|
// GGML_ASSERT(nb2 <= nb3);
|
|
|
|
|
|
|
|
GGML_ASSERT(ne0 == ne00);
|
|
|
|
GGML_ASSERT(ne1 == ne10);
|
|
|
|
GGML_ASSERT(ne2 == ne02);
|
|
|
|
GGML_ASSERT(ne3 == ne03);
|
|
|
|
|
|
|
|
// nb01 >= nb00 - src0 is not transposed
|
|
|
|
// compute by src0 rows
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
// parallelize by last three dimensions
|
|
|
|
|
|
|
|
// total rows in dst
|
|
|
|
const int64_t nr = ne1*ne2*ne3;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int64_t ir0 = dr*ith;
|
|
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
// dst[:,:,:,:] = 0
|
|
|
|
// for i2,i3:
|
|
|
|
// for i1:
|
|
|
|
// for i01:
|
|
|
|
// for i0:
|
|
|
|
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
|
|
|
|
|
|
|
|
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
|
|
|
|
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// dst indices
|
|
|
|
const int64_t i3 = ir/(ne2*ne1);
|
|
|
|
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
|
|
|
|
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
|
|
const int64_t i02 = i2;
|
|
|
|
const int64_t i03 = i3;
|
|
|
|
|
|
|
|
//const int64_t i10 = i1;
|
|
|
|
const int64_t i12 = i2;
|
|
|
|
const int64_t i13 = i3;
|
|
|
|
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
|
|
|
const int64_t i11 = i01;
|
|
|
|
|
|
|
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
|
|
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
|
|
|
|
dequantize_row_q(s0, wdata, ne0);
|
|
|
|
ggml_vec_mad_f32(ne0, d, wdata, *s1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_out_prod(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_out_prod_q_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error"); // todo
|
|
|
|
// ggml_compute_forward_out_prod_f16_f32(params, dst);
|
|
|
|
}
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_out_prod_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_scale
|
|
|
|
|
|
|
|
static void ggml_compute_forward_scale_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
// scale factor
|
|
|
|
float v;
|
|
|
|
memcpy(&v, dst->op_params, sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
|
|
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
if (dst->data != src0->data) {
|
|
|
|
// src0 is same shape as dst => same indices
|
|
|
|
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
|
|
|
|
}
|
|
|
|
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_scale(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_scale_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_set
|
|
|
|
|
|
|
|
static void ggml_compute_forward_set_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
|
|
|
|
// view src0 and dst with these strides and data offset inbytes during set
|
|
|
|
// nb0 is implicitly element_size because src0 and dst are contiguous
|
|
|
|
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
|
|
|
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
|
|
|
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
|
|
|
size_t offset = ((int32_t *) dst->op_params)[3];
|
|
|
|
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
|
|
|
|
|
|
|
if (!inplace) {
|
|
|
|
if (params->ith == 0) {
|
|
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
|
|
// => do it in INIT phase
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data),
|
|
|
|
((char *) src0->data),
|
|
|
|
ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
|
|
const int nc = src1->ne[0];
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
|
|
|
|
|
|
|
// src0 and dst as viewed during set
|
|
|
|
const size_t nb0 = ggml_element_size(src0);
|
|
|
|
|
|
|
|
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
|
|
|
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
|
|
|
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
|
|
|
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
|
|
|
|
|
|
|
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
|
|
|
|
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are viewed with shape of src1 and offset
|
|
|
|
// => same indices
|
|
|
|
const int i3 = ir/(ne12*ne11);
|
|
|
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
|
|
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
|
|
|
|
|
|
|
ggml_vec_cpy_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
|
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_set_i32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
|
|
|
|
// view src0 and dst with these strides and data offset inbytes during set
|
|
|
|
// nb0 is implicitly element_size because src0 and dst are contiguous
|
|
|
|
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
|
|
|
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
|
|
|
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
|
|
|
size_t offset = ((int32_t *) dst->op_params)[3];
|
|
|
|
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
|
|
|
|
|
|
|
if (!inplace) {
|
|
|
|
if (params->ith == 0) {
|
|
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
|
|
// => do it in INIT phase
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data),
|
|
|
|
((char *) src0->data),
|
|
|
|
ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
|
|
const int nc = src1->ne[0];
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
|
|
|
|
|
|
|
// src0 and dst as viewed during set
|
|
|
|
const size_t nb0 = ggml_element_size(src0);
|
|
|
|
|
|
|
|
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
|
|
|
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
|
|
|
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
|
|
|
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
|
|
|
|
|
|
|
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
|
|
|
|
|
|
|
|
GGML_ASSERT(nb10 == sizeof(int32_t));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// src0 and dst are viewed with shape of src1 and offset
|
|
|
|
// => same indices
|
|
|
|
const int i3 = ir/(ne12*ne11);
|
|
|
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
|
|
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
|
|
|
|
|
|
|
ggml_vec_cpy_i32(nc,
|
|
|
|
(int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
|
|
|
(int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_set(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_set_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_I32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_set_i32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q8_1:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_cpy
|
|
|
|
|
|
|
|
void ggml_compute_forward_cpy(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
ggml_compute_forward_dup(params, dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_cont
|
|
|
|
|
|
|
|
void ggml_compute_forward_cont(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
ggml_compute_forward_dup(params, dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_reshape
|
|
|
|
|
|
|
|
void ggml_compute_forward_reshape(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
// NOP
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
GGML_UNUSED(dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_view
|
|
|
|
|
|
|
|
void ggml_compute_forward_view(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
// NOP
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
GGML_UNUSED(dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_permute
|
|
|
|
|
|
|
|
void ggml_compute_forward_permute(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
// NOP
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
GGML_UNUSED(dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_transpose
|
|
|
|
|
|
|
|
void ggml_compute_forward_transpose(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
// NOP
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
GGML_UNUSED(dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_get_rows
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_q(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int64_t nc = ne00;
|
|
|
|
const int64_t nr = ggml_nelements(src1);
|
|
|
|
|
|
|
|
const ggml_type type = src0->type;
|
|
|
|
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
|
|
|
|
|
|
|
assert(ne0 == nc);
|
|
|
|
assert(ne02 == ne11);
|
|
|
|
assert(nb00 == ggml_type_size(type));
|
|
|
|
assert(ggml_nrows(dst) == nr);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t i = ir0; i < ir1; ++i) {
|
|
|
|
const int64_t i12 = i/(ne11*ne10);
|
|
|
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
|
|
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
|
|
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
|
|
|
|
|
|
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
|
|
|
|
|
|
|
dequantize_row_q(
|
|
|
|
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
|
|
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int64_t nc = ne00;
|
|
|
|
const int64_t nr = ggml_nelements(src1);
|
|
|
|
|
|
|
|
assert(ne0 == nc);
|
|
|
|
assert(ne02 == ne11);
|
|
|
|
assert(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
assert(ggml_nrows(dst) == nr);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t i = ir0; i < ir1; ++i) {
|
|
|
|
const int64_t i12 = i/(ne11*ne10);
|
|
|
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
|
|
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
|
|
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
|
|
|
|
|
|
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
|
|
|
|
|
|
|
ggml_fp16_to_fp32_row(
|
|
|
|
(const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
|
|
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_bf16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int64_t nc = ne00;
|
|
|
|
const int64_t nr = ggml_nelements(src1);
|
|
|
|
|
|
|
|
assert(ne0 == nc);
|
|
|
|
assert(ne02 == ne11);
|
|
|
|
assert(nb00 == sizeof(ggml_bf16_t));
|
|
|
|
assert(ggml_nrows(dst) == nr);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t i = ir0; i < ir1; ++i) {
|
|
|
|
const int64_t i12 = i/(ne11*ne10);
|
|
|
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
|
|
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
|
|
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
|
|
|
|
|
|
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
|
|
|
|
|
|
|
ggml_bf16_to_fp32_row(
|
|
|
|
(const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
|
|
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int64_t nc = ne00;
|
|
|
|
const int64_t nr = ggml_nelements(src1);
|
|
|
|
|
|
|
|
assert(ne0 == nc);
|
|
|
|
assert(ne02 == ne11);
|
|
|
|
assert(nb00 == sizeof(float));
|
|
|
|
assert(ggml_nrows(dst) == nr);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t i = ir0; i < ir1; ++i) {
|
|
|
|
const int64_t i12 = i/(ne11*ne10);
|
|
|
|
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
|
|
|
|
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
|
|
|
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
|
|
|
|
|
|
|
GGML_ASSERT(i01 >= 0 && i01 < ne01);
|
|
|
|
|
|
|
|
ggml_vec_cpy_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
|
|
|
|
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_get_rows(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q8_1:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rows_q(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rows_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rows_bf16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
case GGML_TYPE_I32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rows_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//static bool first = true;
|
|
|
|
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
|
|
|
//if (first) {
|
|
|
|
// first = false;
|
|
|
|
//} else {
|
|
|
|
// for (int k = 0; k < dst->ne[1]; ++k) {
|
|
|
|
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
|
|
|
// for (int i = 0; i < 16; ++i) {
|
|
|
|
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
|
|
|
// }
|
|
|
|
// printf("\n");
|
|
|
|
// }
|
|
|
|
// printf("\n");
|
|
|
|
// }
|
|
|
|
// printf("\n");
|
|
|
|
// exit(0);
|
|
|
|
//}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_get_rows_back
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_back_f32_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
|
|
|
|
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
|
|
|
|
|
|
|
memset(dst->data, 0, ggml_nbytes(dst));
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nelements(src1);
|
|
|
|
|
|
|
|
GGML_ASSERT( dst->ne[0] == nc);
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
|
|
|
|
for (int j = 0; j < nc; ++j) {
|
|
|
|
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
|
|
|
|
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
|
|
|
|
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
|
|
|
|
|
|
|
memset(dst->data, 0, ggml_nbytes(dst));
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nelements(src1);
|
|
|
|
|
|
|
|
GGML_ASSERT( dst->ne[0] == nc);
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
|
|
|
|
ggml_vec_add_f32(nc,
|
|
|
|
(float *) ((char *) dst->data + r*dst->nb[1]),
|
|
|
|
(float *) ((char *) dst->data + r*dst->nb[1]),
|
|
|
|
(float *) ((char *) src0->data + i*src0->nb[1]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_get_rows_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rows_back_f32_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rows_back_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//static bool first = true;
|
|
|
|
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
|
|
|
//if (first) {
|
|
|
|
// first = false;
|
|
|
|
//} else {
|
|
|
|
// for (int k = 0; k < dst->ne[1]; ++k) {
|
|
|
|
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
|
|
|
// for (int i = 0; i < 16; ++i) {
|
|
|
|
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
|
|
|
// }
|
|
|
|
// printf("\n");
|
|
|
|
// }
|
|
|
|
// printf("\n");
|
|
|
|
// }
|
|
|
|
// printf("\n");
|
|
|
|
// exit(0);
|
|
|
|
//}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_diag
|
|
|
|
|
|
|
|
static void ggml_compute_forward_diag_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(ne00 == ne0);
|
|
|
|
GGML_ASSERT(ne00 == ne1);
|
|
|
|
GGML_ASSERT(ne01 == 1);
|
|
|
|
GGML_ASSERT(ne02 == ne2);
|
|
|
|
GGML_ASSERT(ne03 == ne3);
|
|
|
|
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
|
|
|
|
for (int i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int i2 = 0; i2 < ne2; i2++) {
|
|
|
|
for (int i1 = 0; i1 < ne1; i1++) {
|
|
|
|
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
|
|
|
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
|
|
|
|
for (int i0 = 0; i0 < i1; i0++) {
|
|
|
|
d[i0] = 0;
|
|
|
|
}
|
|
|
|
d[i1] = s[i1];
|
|
|
|
for (int i0 = i1+1; i0 < ne0; i0++) {
|
|
|
|
d[i0] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_diag(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_diag_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_diag_mask_inf
|
|
|
|
|
|
|
|
static void ggml_compute_forward_diag_mask_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst,
|
|
|
|
const float value) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
const bool inplace = src0->data == dst->data;
|
|
|
|
|
|
|
|
GGML_ASSERT(n_past >= 0);
|
|
|
|
|
|
|
|
if (!inplace) {
|
|
|
|
if (ith == 0) {
|
|
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
|
|
// => do it in INIT phase
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
memcpy(
|
|
|
|
((char *) dst->data),
|
|
|
|
((char *) src0->data),
|
|
|
|
ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
|
|
|
|
const int n = ggml_nrows(src0);
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = src0->ne[1];
|
|
|
|
const int nz = n/nr;
|
|
|
|
|
|
|
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
for (int k = 0; k < nz; k++) {
|
|
|
|
for (int j = ith; j < nr; j += nth) {
|
|
|
|
for (int i = n_past; i < nc; i++) {
|
|
|
|
if (i > n_past + j) {
|
|
|
|
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_diag_mask_inf(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_diag_mask_zero(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_diag_mask_f32(params, dst, 0);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_soft_max
|
|
|
|
|
|
|
|
static void ggml_compute_forward_soft_max_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
assert(ggml_is_contiguous(dst));
|
|
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
|
|
|
|
float scale = 1.0f;
|
|
|
|
float max_bias = 0.0f;
|
|
|
|
|
|
|
|
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
|
|
|
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
|
|
|
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
//const int64_t ne11 = src1 ? src1->ne[1] : 1;
|
|
|
|
|
|
|
|
// TODO: is this supposed to be ceil instead of floor?
|
|
|
|
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
|
|
|
|
const uint32_t n_head = ne02;
|
|
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
|
|
|
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
|
|
|
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
// ALiBi
|
|
|
|
const uint32_t h = (i1/ne01)%ne02; // head
|
|
|
|
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
|
|
|
|
|
|
|
|
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
|
|
|
|
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
|
|
|
|
|
|
|
|
// broadcast the mask across rows
|
|
|
|
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
|
|
|
|
float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
|
|
|
|
|
|
|
|
ggml_vec_cpy_f32 (nc, wp, sp);
|
|
|
|
ggml_vec_scale_f32(nc, wp, scale);
|
|
|
|
if (mp_f32) {
|
|
|
|
if (use_f16) {
|
|
|
|
for (int i = 0; i < nc; ++i) {
|
|
|
|
wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int i = 0; i < nc; ++i) {
|
|
|
|
wp[i] += slope*mp_f32[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int i = 0; i < nc; ++i) {
|
|
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
|
|
assert(!isnan(wp[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float max = -INFINITY;
|
|
|
|
ggml_vec_max_f32(nc, &max, wp);
|
|
|
|
|
|
|
|
ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
|
|
|
|
assert(sum > 0.0);
|
|
|
|
|
|
|
|
sum = 1.0/sum;
|
|
|
|
ggml_vec_scale_f32(nc, dp, sum);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int i = 0; i < nc; ++i) {
|
|
|
|
assert(!isnan(dp[i]));
|
|
|
|
assert(!isinf(dp[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_soft_max(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_soft_max_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ggml_compute_forward_soft_max_ext_back
|
|
|
|
|
|
|
|
static void ggml_compute_forward_soft_max_ext_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src1, dst));
|
|
|
|
|
|
|
|
float scale = 1.0f;
|
|
|
|
float max_bias = 0.0f;
|
|
|
|
|
|
|
|
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
|
|
|
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
|
|
|
|
|
|
|
GGML_ASSERT(max_bias == 0.0f);
|
|
|
|
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
|
|
|
|
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
|
|
|
|
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int i = 0; i < nc; ++i) {
|
|
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
|
|
assert(!isnan(dy[i]));
|
|
|
|
assert(!isnan(y[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// Jii = yi - yi*yi
|
|
|
|
// Jij = -yi*yj
|
|
|
|
// J = diag(y)-y.T*y
|
|
|
|
// dx = J * dy
|
|
|
|
// dxk = sum_i(Jki * dyi)
|
|
|
|
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
|
|
|
|
// dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
|
|
|
|
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
|
|
|
|
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
|
|
|
|
// dxk = -yk * dot(y, dy) + yk*dyk
|
|
|
|
// dxk = yk * (- dot(y, dy) + dyk)
|
|
|
|
// dxk = yk * (dyk - dot(y, dy))
|
|
|
|
//
|
|
|
|
// post-order:
|
|
|
|
// dot_y_dy := dot(y, dy)
|
|
|
|
// dx := dy
|
|
|
|
// dx := dx - dot_y_dy
|
|
|
|
// dx := dx * y
|
|
|
|
|
|
|
|
// linear runtime, no additional memory
|
|
|
|
float dot_y_dy = 0;
|
|
|
|
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
|
|
|
|
ggml_vec_cpy_f32 (nc, dx, dy);
|
|
|
|
ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
|
|
|
|
ggml_vec_mul_f32 (nc, dx, dx, y);
|
|
|
|
ggml_vec_scale_f32(nc, dx, scale);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int i = 0; i < nc; ++i) {
|
|
|
|
assert(!isnan(dx[i]));
|
|
|
|
assert(!isinf(dx[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_soft_max_ext_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_soft_max_ext_back_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_clamp
|
|
|
|
|
|
|
|
static void ggml_compute_forward_clamp_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
float min;
|
|
|
|
float max;
|
|
|
|
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
|
|
|
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int n = ggml_nrows(src0);
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
|
|
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
for (int j = ith; j < n; j += nth) {
|
|
|
|
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
|
|
|
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
|
|
|
|
|
|
|
for (int i = 0; i < nc; i++) {
|
|
|
|
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_clamp_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
float min;
|
|
|
|
float max;
|
|
|
|
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
|
|
|
|
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int n = ggml_nrows(src0);
|
|
|
|
const int nc = src0->ne[0];
|
|
|
|
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
|
|
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
|
|
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
for (int j = ith; j < n; j += nth) {
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
|
|
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
|
|
|
|
|
|
|
|
for (int i = 0; i < nc; i++) {
|
|
|
|
float v = GGML_FP16_TO_FP32(src0_ptr[i]);
|
|
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_clamp(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_clamp_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_clamp_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
case GGML_TYPE_Q4_0:
|
|
|
|
case GGML_TYPE_Q4_1:
|
|
|
|
case GGML_TYPE_Q5_0:
|
|
|
|
case GGML_TYPE_Q5_1:
|
|
|
|
case GGML_TYPE_Q8_0:
|
|
|
|
case GGML_TYPE_Q8_1:
|
|
|
|
case GGML_TYPE_Q2_K:
|
|
|
|
case GGML_TYPE_Q3_K:
|
|
|
|
case GGML_TYPE_Q4_K:
|
|
|
|
case GGML_TYPE_Q5_K:
|
|
|
|
case GGML_TYPE_Q6_K:
|
|
|
|
case GGML_TYPE_TQ1_0:
|
|
|
|
case GGML_TYPE_TQ2_0:
|
|
|
|
case GGML_TYPE_IQ2_XXS:
|
|
|
|
case GGML_TYPE_IQ2_XS:
|
|
|
|
case GGML_TYPE_IQ3_XXS:
|
|
|
|
case GGML_TYPE_IQ1_S:
|
|
|
|
case GGML_TYPE_IQ1_M:
|
|
|
|
case GGML_TYPE_IQ4_NL:
|
|
|
|
case GGML_TYPE_IQ4_XS:
|
|
|
|
case GGML_TYPE_IQ3_S:
|
|
|
|
case GGML_TYPE_IQ2_S:
|
|
|
|
case GGML_TYPE_Q8_K:
|
|
|
|
case GGML_TYPE_I8:
|
|
|
|
case GGML_TYPE_I16:
|
|
|
|
case GGML_TYPE_I32:
|
|
|
|
case GGML_TYPE_I64:
|
|
|
|
case GGML_TYPE_F64:
|
|
|
|
case GGML_TYPE_COUNT:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_rope
|
|
|
|
|
|
|
|
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
|
|
|
const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
|
|
|
|
return 1 - MIN(1, MAX(0, y));
|
|
|
|
}
|
|
|
|
|
|
|
|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
|
|
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
|
|
|
static void rope_yarn(
|
|
|
|
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
|
|
|
|
float * cos_theta, float * sin_theta) {
|
|
|
|
// Get n-d rotational scaling corrected for extrapolation
|
|
|
|
float theta_interp = freq_scale * theta_extrap;
|
|
|
|
float theta = theta_interp;
|
|
|
|
if (ext_factor != 0.0f) {
|
|
|
|
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
|
|
|
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
|
|
|
|
|
|
|
// Get n-d magnitude scaling corrected for interpolation
|
|
|
|
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
|
|
|
}
|
|
|
|
*cos_theta = cosf(theta) * mscale;
|
|
|
|
*sin_theta = sinf(theta) * mscale;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_rope_cache_init(
|
|
|
|
float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
|
|
|
|
float * cache, float sin_sign, float theta_scale) {
|
|
|
|
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
|
|
|
|
float theta = theta_base;
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
|
|
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
|
|
|
|
rope_yarn(
|
|
|
|
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
|
|
|
|
);
|
|
|
|
cache[i0 + 1] *= sin_sign;
|
|
|
|
|
|
|
|
theta *= theta_scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_mrope_cache_init(
|
|
|
|
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
|
|
|
|
float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
|
|
|
|
float * cache, float sin_sign, float theta_scale) {
|
|
|
|
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
|
|
|
|
float theta_t = theta_base_t;
|
|
|
|
float theta_h = theta_base_h;
|
|
|
|
float theta_w = theta_base_w;
|
|
|
|
float theta_e = theta_base_e; // extra position id for vision encoder
|
|
|
|
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
|
|
|
|
int sec_w = sections[1] + sections[0];
|
|
|
|
int sec_e = sections[2] + sec_w;
|
|
|
|
GGML_ASSERT(sect_dims <= ne0);
|
|
|
|
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
|
|
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
|
|
|
|
|
|
|
|
int sector = (i0 / 2) % sect_dims;
|
|
|
|
if (indep_sects) {
|
|
|
|
// compute theta independently for each dim sections
|
|
|
|
// (i.e. reset corresponding theta when `i0` go from one section to another)
|
|
|
|
if (sector == 0) {
|
|
|
|
theta_t = theta_base_t;
|
|
|
|
}
|
|
|
|
else if (sector == sections[0]) {
|
|
|
|
theta_h = theta_base_h;;
|
|
|
|
}
|
|
|
|
else if (sector == sec_w) {
|
|
|
|
theta_w = theta_base_w;
|
|
|
|
}
|
|
|
|
else if (sector == sec_e) {
|
|
|
|
theta_e = theta_base_e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
float theta = theta_t;
|
|
|
|
if (sector >= sections[0] && sector < sec_w) {
|
|
|
|
theta = theta_h;
|
|
|
|
}
|
|
|
|
else if (sector >= sec_w && sector < sec_w + sections[2]) {
|
|
|
|
theta = theta_w;
|
|
|
|
}
|
|
|
|
else if (sector >= sec_w + sections[2]) {
|
|
|
|
theta = theta_e;
|
|
|
|
}
|
|
|
|
|
|
|
|
rope_yarn(
|
|
|
|
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
|
|
|
|
);
|
|
|
|
cache[i0 + 1] *= sin_sign;
|
|
|
|
|
|
|
|
theta_t *= theta_scale;
|
|
|
|
theta_w *= theta_scale;
|
|
|
|
theta_h *= theta_scale;
|
|
|
|
theta_e *= theta_scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_rope_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst,
|
|
|
|
const bool forward) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
const ggml_tensor * src2 = dst->src[2];
|
|
|
|
|
|
|
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
|
|
|
int sections[4];
|
|
|
|
|
|
|
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
|
|
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
|
|
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
|
|
|
|
|
|
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
|
|
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
|
|
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
|
|
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
|
|
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
|
|
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
|
|
|
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
|
|
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
|
|
|
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(dst);
|
|
|
|
|
|
|
|
GGML_ASSERT(n_dims <= ne0);
|
|
|
|
GGML_ASSERT(n_dims % 2 == 0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
// row index used to determine which thread to use
|
|
|
|
int ir = 0;
|
|
|
|
|
|
|
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
|
|
|
|
|
|
|
float corr_dims[2];
|
|
|
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
|
|
|
|
|
|
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
|
|
|
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
|
|
|
|
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
|
|
|
|
|
|
|
if (is_mrope) {
|
|
|
|
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_vision) {
|
|
|
|
GGML_ASSERT(n_dims == ne0/2);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float * freq_factors = NULL;
|
|
|
|
if (src2 != NULL) {
|
|
|
|
GGML_ASSERT(src2->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
|
|
|
|
freq_factors = (const float *) src2->data;
|
|
|
|
}
|
|
|
|
|
|
|
|
// backward process uses inverse rotation by cos and sin.
|
|
|
|
// cos and sin build a rotation matrix, where the inverse is the transpose.
|
|
|
|
// this essentially just switches the sign of sin.
|
|
|
|
const float sin_sign = forward ? 1.0f : -1.0f;
|
|
|
|
|
|
|
|
const int32_t * pos = (const int32_t *) src1->data;
|
|
|
|
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
|
|
|
|
|
|
|
|
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
|
|
|
|
if (!is_mrope) {
|
|
|
|
const int64_t p = pos[i2];
|
|
|
|
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
const int64_t p_t = pos[i2];
|
|
|
|
const int64_t p_h = pos[i2 + ne2];
|
|
|
|
const int64_t p_w = pos[i2 + ne2 * 2];
|
|
|
|
const int64_t p_e = pos[i2 + ne2 * 3];
|
|
|
|
ggml_mrope_cache_init(
|
|
|
|
p_t, p_h, p_w, p_e, sections, is_vision,
|
|
|
|
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
|
|
|
|
if (ir++ < ir0) continue;
|
|
|
|
if (ir > ir1) break;
|
|
|
|
|
|
|
|
if (is_neox || is_mrope) {
|
|
|
|
if (is_vision){
|
|
|
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
|
|
|
|
|
|
|
const float x0 = src[0];
|
|
|
|
const float x1 = src[n_dims];
|
|
|
|
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
|
|
dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
|
|
|
|
|
|
|
const float x0 = src[0];
|
|
|
|
const float x1 = src[n_dims/2];
|
|
|
|
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
|
|
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
const float x0 = src[0];
|
|
|
|
const float x1 = src[1];
|
|
|
|
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
|
|
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_vision) {
|
|
|
|
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
|
|
|
|
|
|
|
const float x0 = src[0];
|
|
|
|
const float x1 = src[n_dims];
|
|
|
|
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
|
|
dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// fill the remain channels with data from src tensor
|
|
|
|
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
dst_data[0] = src[0];
|
|
|
|
dst_data[1] = src[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: deduplicate f16/f32 code
|
|
|
|
static void ggml_compute_forward_rope_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst,
|
|
|
|
const bool forward) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
const ggml_tensor * src2 = dst->src[2];
|
|
|
|
|
|
|
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
|
|
|
int sections[4];
|
|
|
|
|
|
|
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
|
|
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
|
|
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
|
|
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
|
|
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
|
|
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
|
|
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
|
|
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
|
|
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
|
|
|
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
|
|
|
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
|
|
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
|
|
|
|
|
|
|
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(dst);
|
|
|
|
|
|
|
|
GGML_ASSERT(n_dims <= ne0);
|
|
|
|
GGML_ASSERT(n_dims % 2 == 0);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
// row index used to determine which thread to use
|
|
|
|
int ir = 0;
|
|
|
|
|
|
|
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
|
|
|
|
|
|
|
float corr_dims[2];
|
|
|
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
|
|
|
|
|
|
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
|
|
|
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
|
|
|
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
|
|
|
|
|
|
|
if (is_mrope) {
|
|
|
|
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_vision) {
|
|
|
|
GGML_ASSERT(n_dims == ne0/2);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float * freq_factors = NULL;
|
|
|
|
if (src2 != NULL) {
|
|
|
|
GGML_ASSERT(src2->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
|
|
|
|
freq_factors = (const float *) src2->data;
|
|
|
|
}
|
|
|
|
|
|
|
|
// backward process uses inverse rotation by cos and sin.
|
|
|
|
// cos and sin build a rotation matrix, where the inverse is the transpose.
|
|
|
|
// this essentially just switches the sign of sin.
|
|
|
|
const float sin_sign = forward ? 1.0f : -1.0f;
|
|
|
|
|
|
|
|
const int32_t * pos = (const int32_t *) src1->data;
|
|
|
|
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
|
|
|
|
|
|
|
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
|
|
|
|
if (!is_mrope) {
|
|
|
|
const int64_t p = pos[i2];
|
|
|
|
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
const int64_t p_t = pos[i2];
|
|
|
|
const int64_t p_h = pos[i2 + ne2];
|
|
|
|
const int64_t p_w = pos[i2 + ne2 * 2];
|
|
|
|
const int64_t p_e = pos[i2 + ne2 * 3];
|
|
|
|
ggml_mrope_cache_init(
|
|
|
|
p_t, p_h, p_w, p_e, sections, is_vision,
|
|
|
|
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
|
|
if (ir++ < ir0) continue;
|
|
|
|
if (ir > ir1) break;
|
|
|
|
|
|
|
|
if (is_neox || is_mrope) {
|
|
|
|
if (is_vision) {
|
|
|
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
|
|
|
|
|
|
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
|
|
|
const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
|
|
|
|
|
|
|
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
|
|
|
dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
|
|
|
|
|
|
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
|
|
|
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
|
|
|
|
|
|
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
|
|
|
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
|
|
|
const float x1 = GGML_FP16_TO_FP32(src[1]);
|
|
|
|
|
|
|
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
|
|
|
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_vision) {
|
|
|
|
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float cos_theta = cache[i0 + 0];
|
|
|
|
const float sin_theta = cache[i0 + 1];
|
|
|
|
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
|
|
|
|
|
|
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
|
|
|
const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
|
|
|
|
|
|
|
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
|
|
|
dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
dst_data[0] = src[0];
|
|
|
|
dst_data[1] = src[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_rope(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rope_f16(params, dst, true);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rope_f32(params, dst, true);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_rope_back
|
|
|
|
|
|
|
|
void ggml_compute_forward_rope_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rope_f16(params, dst, false);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rope_f32(params, dst, false);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_conv_transpose_1d
|
|
|
|
|
|
|
|
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nk = ne00*ne01*ne02;
|
|
|
|
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
|
|
|
|
// permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
|
|
|
|
{
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
|
|
|
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
|
|
|
|
ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
dst_data[i00*ne02 + i02] = src[i00];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// permute source data (src1) from (L x Cin) to (Cin x L)
|
|
|
|
{
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
|
|
|
|
ggml_fp16_t * dst_data = wdata;
|
|
|
|
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
|
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
|
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
|
|
dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// need to zero dst since we are accumulating into it
|
|
|
|
memset(dst->data, 0, ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
|
|
|
|
|
|
|
// total rows in dst
|
|
|
|
const int nr = ne1;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
|
|
|
ggml_fp16_t * const wdata_src = wdata + nk;
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
|
|
|
ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
|
|
|
|
for (int i10 = 0; i10 < ne10; i10++) {
|
|
|
|
const int i1n = i10*ne11;
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
float v = 0;
|
|
|
|
ggml_vec_dot_f16(ne02, &v, 0,
|
|
|
|
(ggml_fp16_t *) wdata_src + i1n, 0,
|
|
|
|
(ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
|
|
|
|
dst_data[i10*s0 + i00] += v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_conv_transpose_1d_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nk = ne00*ne01*ne02;
|
|
|
|
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
|
|
|
|
// prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
|
|
|
|
{
|
|
|
|
float * const wdata = (float *) params->wdata + 0;
|
|
|
|
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
|
|
|
|
float * dst_data = wdata + i01*ne00*ne02;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
dst_data[i00*ne02 + i02] = src[i00];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// prepare source data (src1)
|
|
|
|
{
|
|
|
|
float * const wdata = (float *) params->wdata + nk;
|
|
|
|
float * dst_data = wdata;
|
|
|
|
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
|
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
|
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
|
|
dst_data[i10*ne11 + i11] = src[i10];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// need to zero dst since we are accumulating into it
|
|
|
|
memset(dst->data, 0, ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
|
|
|
|
|
|
|
// total rows in dst
|
|
|
|
const int nr = ne1;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
float * const wdata = (float *) params->wdata + 0;
|
|
|
|
float * const wdata_src = wdata + nk;
|
|
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
|
|
|
float * wdata_kernel = wdata + i1*ne02*ne00;
|
|
|
|
for (int i10 = 0; i10 < ne10; i10++) {
|
|
|
|
const int i1n = i10*ne11;
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
float v = 0;
|
|
|
|
ggml_vec_dot_f32(ne02, &v, 0,
|
|
|
|
wdata_src + i1n, 0,
|
|
|
|
wdata_kernel + i00*ne02, 0, 1);
|
|
|
|
dst_data[i10*s0 + i00] += v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_conv_transpose_1d(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_conv_transpose_1d_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_im2col_f32
|
|
|
|
// src0: kernel [OC, IC, KH, KW]
|
|
|
|
// src1: image [N, IC, IH, IW]
|
|
|
|
// dst: result [N, OH, OW, IC*KH*KW]
|
|
|
|
static void ggml_compute_forward_im2col_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
|
|
|
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
|
|
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
|
|
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
|
|
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
|
|
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
|
|
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t N = is_2D ? ne13 : ne12;
|
|
|
|
const int64_t IC = is_2D ? ne12 : ne11;
|
|
|
|
const int64_t IH = is_2D ? ne11 : 1;
|
|
|
|
const int64_t IW = ne10;
|
|
|
|
|
|
|
|
const int64_t KH = is_2D ? ne01 : 1;
|
|
|
|
const int64_t KW = ne00;
|
|
|
|
|
|
|
|
const int64_t OH = is_2D ? ne2 : 1;
|
|
|
|
const int64_t OW = ne1;
|
|
|
|
|
|
|
|
int ofs0 = is_2D ? nb13 : nb12;
|
|
|
|
int ofs1 = is_2D ? nb12 : nb11;
|
|
|
|
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
|
|
|
{
|
|
|
|
float * const wdata = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int64_t in = 0; in < N; in++) {
|
|
|
|
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
|
|
|
|
for (int64_t iow = 0; iow < OW; iow++) {
|
|
|
|
for (int64_t iic = ith; iic < IC; iic += nth) {
|
|
|
|
|
|
|
|
// micro kernel
|
|
|
|
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
|
|
|
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
|
|
|
|
|
|
|
|
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
|
|
|
|
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
|
|
|
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
|
|
|
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
|
|
|
|
|
|
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
|
|
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
|
|
|
} else {
|
|
|
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ggml_compute_forward_im2col_f16
|
|
|
|
// src0: kernel [OC, IC, KH, KW]
|
|
|
|
// src1: image [N, IC, IH, IW]
|
|
|
|
// dst: result [N, OH, OW, IC*KH*KW]
|
|
|
|
static void ggml_compute_forward_im2col_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
|
|
|
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
|
|
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
|
|
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
|
|
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
|
|
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
|
|
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t N = is_2D ? ne13 : ne12;
|
|
|
|
const int64_t IC = is_2D ? ne12 : ne11;
|
|
|
|
const int64_t IH = is_2D ? ne11 : 1;
|
|
|
|
const int64_t IW = ne10;
|
|
|
|
|
|
|
|
const int64_t KH = is_2D ? ne01 : 1;
|
|
|
|
const int64_t KW = ne00;
|
|
|
|
|
|
|
|
const int64_t OH = is_2D ? ne2 : 1;
|
|
|
|
const int64_t OW = ne1;
|
|
|
|
|
|
|
|
int ofs0 = is_2D ? nb13 : nb12;
|
|
|
|
int ofs1 = is_2D ? nb12 : nb11;
|
|
|
|
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
|
|
|
{
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int64_t in = 0; in < N; in++) {
|
|
|
|
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
|
|
|
|
for (int64_t iow = 0; iow < OW; iow++) {
|
|
|
|
for (int64_t iic = ith; iic < IC; iic += nth) {
|
|
|
|
|
|
|
|
// micro kernel
|
|
|
|
ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
|
|
|
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
|
|
|
|
|
|
|
|
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
|
|
|
|
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
|
|
|
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
|
|
|
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
|
|
|
|
|
|
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
|
|
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
|
|
|
} else {
|
|
|
|
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_im2col(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
switch (dst->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_im2col_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_im2col_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_im2col_back_f32
|
|
|
|
|
|
|
|
void ggml_compute_forward_im2col_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
|
|
|
|
const ggml_tensor * src1 = dst->src[1]; // convolution kernel
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
|
|
|
|
|
|
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
|
|
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
|
|
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
|
|
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
|
|
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
|
|
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t N = is_2D ? ne3 : ne2;
|
|
|
|
const int64_t IC = is_2D ? ne2 : ne1;
|
|
|
|
const int64_t IH = is_2D ? ne1 : 1;
|
|
|
|
const int64_t IW = ne0;
|
|
|
|
|
|
|
|
const int64_t KH = is_2D ? ne11 : 1;
|
|
|
|
const int64_t KW = ne10;
|
|
|
|
|
|
|
|
const int64_t OH = is_2D ? ne02 : 1;
|
|
|
|
const int64_t OW = ne01;
|
|
|
|
|
|
|
|
int ofs0 = is_2D ? nb3 : nb2;
|
|
|
|
int ofs1 = is_2D ? nb2 : nb1;
|
|
|
|
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
|
|
|
|
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
|
|
|
{
|
|
|
|
float * const wdata = (float *) dst->data;
|
|
|
|
|
|
|
|
for (int64_t in = 0; in < N; in++) {
|
|
|
|
for (int64_t iic = ith; iic < IC; iic += nth) {
|
|
|
|
for (int64_t iih = 0; iih < IH; iih++) {
|
|
|
|
for (int64_t iiw = 0; iiw < IW; iiw++) {
|
|
|
|
|
|
|
|
// micro kernel
|
|
|
|
float grad = 0.0f;
|
|
|
|
for (int64_t ikh = 0; ikh < KH; ikh++) {
|
|
|
|
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
|
|
|
// For s0 > 1 some values were skipped over in the forward pass.
|
|
|
|
// These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
|
|
|
|
const int64_t tmpw = (iiw + p0 - ikw*d0);
|
|
|
|
if (tmpw % s0 != 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
const int64_t iow = tmpw / s0;
|
|
|
|
|
|
|
|
// Equivalent logic as above except for s1.
|
|
|
|
int64_t ioh;
|
|
|
|
if (is_2D) {
|
|
|
|
const int64_t tmph = iih + p1 - ikh*d1;
|
|
|
|
|
|
|
|
if (tmph % s1 != 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
ioh = tmph / s1;
|
|
|
|
} else {
|
|
|
|
ioh = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float * const grad_in = (const float *) src0->data
|
|
|
|
+ (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
|
|
|
grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
|
|
|
|
dst_data[iih*IW + iiw] = grad;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_conv_transpose_2d
|
|
|
|
|
|
|
|
void ggml_compute_forward_conv_transpose_2d(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nk = ne00*ne01*ne02*ne03;
|
|
|
|
|
|
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
|
|
|
|
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
|
|
|
|
{
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
|
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
|
|
|
|
ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
|
|
dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
|
|
|
|
{
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
|
|
|
|
for (int i12 = 0; i12 < ne12; i12++) {
|
|
|
|
for (int i11 = 0; i11 < ne11; i11++) {
|
|
|
|
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
|
|
|
|
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
|
|
|
|
for (int i10 = 0; i10 < ne10; i10++) {
|
|
|
|
dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
memset(dst->data, 0, ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
const int32_t stride = ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
// total patches in dst
|
|
|
|
const int np = ne2;
|
|
|
|
|
|
|
|
// patches per thread
|
|
|
|
const int dp = (np + nth - 1)/nth;
|
|
|
|
|
|
|
|
// patch range for this thread
|
|
|
|
const int ip0 = dp*ith;
|
|
|
|
const int ip1 = MIN(ip0 + dp, np);
|
|
|
|
|
|
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
|
|
|
ggml_fp16_t * const wdata_src = wdata + nk;
|
|
|
|
|
|
|
|
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
|
|
|
|
float * dst_data = (float *)((char *) dst->data + i2*nb2);
|
|
|
|
ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
|
|
|
|
for (int i11 = 0; i11 < ne11; i11++) {
|
|
|
|
for (int i10 = 0; i10 < ne10; i10++) {
|
|
|
|
const int i1n = i11*ne10*ne12 + i10*ne12;
|
|
|
|
for (int i01 = 0; i01 < ne01; i01++) {
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
|
|
float v = 0;
|
|
|
|
ggml_vec_dot_f16(ne03, &v, 0,
|
|
|
|
wdata_src + i1n, 0,
|
|
|
|
wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
|
|
|
|
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-04-17 14:16:45 +02:00
|
|
|
// ggml_compute_forward_conv_2d_dw
|
|
|
|
|
|
|
|
struct ggml_conv_2d_dw_params {
|
|
|
|
int64_t channels;
|
|
|
|
int64_t batch;
|
|
|
|
int64_t src_w;
|
|
|
|
int64_t src_h;
|
|
|
|
int64_t dst_w;
|
|
|
|
int64_t dst_h;
|
|
|
|
int64_t knl_w;
|
|
|
|
int64_t knl_h;
|
|
|
|
int stride_x;
|
|
|
|
int stride_y;
|
|
|
|
int pad_x;
|
|
|
|
int pad_y;
|
|
|
|
int dilation_x;
|
|
|
|
int dilation_y;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void ggml_compute_forward_conv_2d_dw_cwhn(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const ggml_tensor * src,
|
|
|
|
const ggml_tensor * kernel,
|
|
|
|
ggml_tensor * dst,
|
|
|
|
const ggml_conv_2d_dw_params & p) {
|
|
|
|
|
|
|
|
const int64_t c = p.channels;
|
|
|
|
const float * knl_data = (const float *)kernel->data;
|
|
|
|
|
|
|
|
const int64_t rows_total = p.dst_h * p.batch;
|
|
|
|
const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
|
|
|
|
const int64_t row_start = params->ith * rows_per_thread;
|
|
|
|
const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
|
|
|
|
|
|
|
|
#ifdef GGML_SIMD
|
|
|
|
const int64_t pkg_size = GGML_F32_EPR;
|
|
|
|
const int64_t pkg_count = c / pkg_size;
|
|
|
|
const int64_t c_pkg_end = pkg_count * pkg_size;
|
|
|
|
#else
|
|
|
|
const int64_t c_pkg_end = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (int64_t row = row_start; row < row_end; ++row) {
|
|
|
|
const int64_t dst_y = row % p.dst_h;
|
|
|
|
const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
|
|
|
|
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
|
|
|
|
float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
|
|
|
|
const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
|
|
|
|
const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
|
|
|
|
|
|
|
|
#ifdef GGML_SIMD
|
|
|
|
// Vectorized loop
|
|
|
|
for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
|
|
|
|
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
|
|
|
|
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
|
|
|
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
|
|
|
|
if (src_y < 0 || src_y >= p.src_h) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
|
|
|
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
|
|
|
|
if (src_x < 0 || src_x >= p.src_w) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
|
|
|
|
GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
|
|
|
|
sum = GGML_F32_VEC_FMA(sum, k, s);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
GGML_F32_VEC_STORE(dst_data + c_i, sum);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// Scalar loop
|
|
|
|
for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
|
|
|
|
float sum = 0.0f;
|
|
|
|
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
|
|
|
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
|
|
|
|
if (src_y < 0 || src_y >= p.src_h) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
|
|
|
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
|
|
|
|
if (src_x < 0 || src_x >= p.src_w) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
|
|
|
|
* src_data[(src_y * p.src_w + src_x) * c + c_i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dst_data[c_i] = sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_conv_2d_dw_whcn(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const ggml_tensor * src,
|
|
|
|
const ggml_tensor * kernel,
|
|
|
|
ggml_tensor * dst,
|
|
|
|
const ggml_conv_2d_dw_params & p) {
|
|
|
|
|
|
|
|
const int64_t n = p.channels * p.batch;
|
|
|
|
const int64_t per_thread = (n + params->nth - 1) / params->nth;
|
|
|
|
const int64_t start = params->ith * per_thread;
|
|
|
|
const int64_t end = MIN(start + per_thread, n);
|
|
|
|
|
|
|
|
for (int64_t i = start; i < end; ++i) {
|
|
|
|
const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
|
|
|
|
const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
|
|
|
|
float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
|
|
|
|
|
|
|
|
for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
|
|
|
|
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
|
|
|
|
|
|
|
|
float sum = 0.0f;
|
|
|
|
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
|
|
|
const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
|
|
|
if (src_y < 0 || src_y >= p.src_h) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
|
|
|
const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
|
|
|
if (src_x < 0 || src_x >= p.src_w) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
sum += knl_data[knl_y * p.knl_w + knl_x]
|
|
|
|
* src_data[src_y * p.src_w + src_x];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dst_data[dst_y * p.dst_w + dst_x] = sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_conv_2d_dw(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * kernel = dst->src[0];
|
|
|
|
const ggml_tensor * src = dst->src[1];
|
|
|
|
ggml_conv_2d_dw_params p;
|
|
|
|
p.channels = src->ne[2];
|
|
|
|
p.batch = src->ne[3];
|
|
|
|
p.src_w = src->ne[0];
|
|
|
|
p.src_h = src->ne[1];
|
|
|
|
p.dst_w = dst->ne[0];
|
|
|
|
p.dst_h = dst->ne[1];
|
|
|
|
p.knl_w = kernel->ne[0];
|
|
|
|
p.knl_h = kernel->ne[1];
|
|
|
|
p.stride_x = dst->op_params[0];
|
|
|
|
p.stride_y = dst->op_params[1];
|
|
|
|
p.pad_x = dst->op_params[2];
|
|
|
|
p.pad_y = dst->op_params[3];
|
|
|
|
p.dilation_x = dst->op_params[4];
|
|
|
|
p.dilation_y = dst->op_params[5];
|
|
|
|
|
|
|
|
GGML_ASSERT(kernel->ne[3] == p.channels);
|
|
|
|
GGML_ASSERT(dst->ne[3] == p.batch);
|
|
|
|
|
|
|
|
if (ggml_is_contiguous(src)) {
|
|
|
|
ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
|
|
|
|
} else if (ggml_is_contiguous_channels(src)) {
|
|
|
|
// kernel should also have channels most contiguous in memory
|
|
|
|
GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
|
|
|
|
ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
|
|
|
|
} else {
|
|
|
|
GGML_ABORT("non-contiguous memory layout not supported");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-04-02 17:46:16 +05:30
|
|
|
// ggml_compute_forward_pool_1d_sk_p0
|
|
|
|
|
|
|
|
static void ggml_compute_forward_pool_1d_sk_p0(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const ggml_op_pool op,
|
|
|
|
const int k,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src = dst->src[0];
|
|
|
|
|
|
|
|
assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const char * cdata = (const char *)src->data;
|
|
|
|
const char * const data_end = cdata + ggml_nbytes(src);
|
|
|
|
float * drow = (float *)dst->data;
|
|
|
|
|
|
|
|
const int64_t rs = dst->ne[0];
|
|
|
|
|
|
|
|
while (cdata < data_end) {
|
|
|
|
const void * srow = (const void *)cdata;
|
|
|
|
int j = 0;
|
|
|
|
for (int64_t i = 0; i < rs; ++i) {
|
|
|
|
switch (op) {
|
|
|
|
case GGML_OP_POOL_AVG: drow[i] = 0; break;
|
|
|
|
case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
|
|
|
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
for (int ki = 0; ki < k; ++ki) {
|
|
|
|
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
|
|
|
switch (op) {
|
|
|
|
case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
|
|
|
|
case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
|
|
|
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
++j;
|
|
|
|
}
|
|
|
|
switch (op) {
|
|
|
|
case GGML_OP_POOL_AVG: drow[i] /= k; break;
|
|
|
|
case GGML_OP_POOL_MAX: break;
|
|
|
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdata += src->nb[1];
|
|
|
|
drow += rs;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_pool_1d
|
|
|
|
|
|
|
|
void ggml_compute_forward_pool_1d(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
|
|
|
ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
|
|
|
const int k0 = opts[1];
|
|
|
|
const int s0 = opts[2];
|
|
|
|
const int p0 = opts[3];
|
|
|
|
GGML_ASSERT(p0 == 0); // padding not supported
|
|
|
|
GGML_ASSERT(k0 == s0); // only s = k supported
|
|
|
|
|
|
|
|
ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_pool_2d
|
|
|
|
|
|
|
|
void ggml_compute_forward_pool_2d(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src = dst->src[0];
|
|
|
|
|
|
|
|
assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
|
|
|
ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
|
|
|
const int k0 = opts[1];
|
|
|
|
const int k1 = opts[2];
|
|
|
|
const int s0 = opts[3];
|
|
|
|
const int s1 = opts[4];
|
|
|
|
const int p0 = opts[5];
|
|
|
|
const int p1 = opts[6];
|
|
|
|
const char * cdata = (const char*)src->data;
|
|
|
|
const char * const data_end = cdata + ggml_nbytes(src);
|
|
|
|
|
|
|
|
const int64_t px = dst->ne[0];
|
|
|
|
const int64_t py = dst->ne[1];
|
|
|
|
const int64_t pa = px * py;
|
|
|
|
|
|
|
|
float * dplane = (float *)dst->data;
|
|
|
|
|
|
|
|
const int ka = k0 * k1;
|
|
|
|
const int offset0 = -p0;
|
|
|
|
const int offset1 = -p1;
|
|
|
|
|
|
|
|
while (cdata < data_end) {
|
|
|
|
for (int oy = 0; oy < py; ++oy) {
|
|
|
|
float * const drow = dplane + oy * px;
|
|
|
|
for (int ox = 0; ox < px; ++ox) {
|
|
|
|
float * const out = drow + ox;
|
|
|
|
switch (op) {
|
|
|
|
case GGML_OP_POOL_AVG: *out = 0; break;
|
|
|
|
case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
|
|
|
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ix = offset0 + ox * s0;
|
|
|
|
const int iy = offset1 + oy * s1;
|
|
|
|
|
|
|
|
for (int ky = 0; ky < k1; ++ky) {
|
|
|
|
if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
|
|
|
|
const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
|
|
|
|
for (int kx = 0; kx < k0; ++kx) {
|
|
|
|
int j = ix + kx;
|
|
|
|
if (j < 0 || j >= src->ne[0]) continue;
|
|
|
|
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
|
|
|
|
switch (op) {
|
|
|
|
case GGML_OP_POOL_AVG: *out += srow_j; break;
|
|
|
|
case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
|
|
|
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
switch (op) {
|
|
|
|
case GGML_OP_POOL_AVG: *out /= ka; break;
|
|
|
|
case GGML_OP_POOL_MAX: break;
|
|
|
|
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdata += src->nb[2];
|
|
|
|
dplane += pa;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_pool_2d_back
|
|
|
|
|
|
|
|
void ggml_compute_forward_pool_2d_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src = dst->src[0];
|
|
|
|
const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
|
|
|
|
|
|
|
|
assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
|
|
|
|
|
|
|
if (params->ith != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
|
|
|
ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
|
|
|
const int k0 = opts[1];
|
|
|
|
const int k1 = opts[2];
|
|
|
|
const int s0 = opts[3];
|
|
|
|
const int s1 = opts[4];
|
|
|
|
const int p0 = opts[5];
|
|
|
|
const int p1 = opts[6];
|
|
|
|
|
|
|
|
char * cdata = (char *) dst->data;
|
|
|
|
const char * cdataf = (const char *) dstf->data;
|
|
|
|
const char * const data_end = cdata + ggml_nbytes(dst);
|
|
|
|
|
|
|
|
GGML_ASSERT(params->ith == 0);
|
|
|
|
memset(cdata, 0, ggml_nbytes(dst));
|
|
|
|
|
|
|
|
const int64_t px = src->ne[0];
|
|
|
|
const int64_t py = src->ne[1];
|
|
|
|
const int64_t pa = px * py;
|
|
|
|
|
|
|
|
const float * splane = (const float *) src->data;
|
|
|
|
|
|
|
|
const int ka = k0 * k1;
|
|
|
|
const int offset0 = -p0;
|
|
|
|
const int offset1 = -p1;
|
|
|
|
|
|
|
|
while (cdata < data_end) {
|
|
|
|
for (int oy = 0; oy < py; ++oy) {
|
|
|
|
const float * const srow = splane + oy * px;
|
|
|
|
for (int ox = 0; ox < px; ++ox) {
|
|
|
|
const float grad0 = srow[ox];
|
|
|
|
|
|
|
|
const int ix = offset0 + ox * s0;
|
|
|
|
const int iy = offset1 + oy * s1;
|
|
|
|
|
|
|
|
if (op == GGML_OP_POOL_MAX) {
|
|
|
|
float maxval = -FLT_MAX;
|
|
|
|
int kxmax = -1;
|
|
|
|
int kymax = -1;
|
|
|
|
|
|
|
|
for (int ky = 0; ky < k1; ++ky) {
|
|
|
|
if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
|
|
|
|
for (int kx = 0; kx < k0; ++kx) {
|
|
|
|
int j = ix + kx;
|
|
|
|
if (j < 0 || j >= dst->ne[0]) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float val = dst->type == GGML_TYPE_F32 ?
|
|
|
|
((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
|
|
|
|
if (val <= maxval) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
maxval = val;
|
|
|
|
kxmax = kx;
|
|
|
|
kymax = ky;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (kxmax == -1 || kymax == -1) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
|
|
|
|
const int j = ix + kxmax;
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
((float *) drow)[j] += grad0;
|
|
|
|
} else {
|
|
|
|
((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
|
|
|
|
}
|
|
|
|
} else if (op == GGML_OP_POOL_AVG) {
|
|
|
|
const float grad = grad0 / ka;
|
|
|
|
|
|
|
|
for (int ky = 0; ky < k1; ++ky) {
|
|
|
|
if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
|
|
|
|
for (int kx = 0; kx < k0; ++kx) {
|
|
|
|
int j = ix + kx;
|
|
|
|
if (j < 0 || j >= dst->ne[0]) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
|
|
((float *) drow)[j] += grad;
|
|
|
|
} else {
|
|
|
|
((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdata += dst->nb[2];
|
|
|
|
cdataf += dst->nb[2];
|
|
|
|
splane += pa;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_upscale
|
|
|
|
|
|
|
|
static void ggml_compute_forward_upscale_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const float sf0 = (float)ne0/src0->ne[0];
|
|
|
|
const float sf1 = (float)ne1/src0->ne[1];
|
|
|
|
const float sf2 = (float)ne2/src0->ne[2];
|
|
|
|
const float sf3 = (float)ne3/src0->ne[3];
|
|
|
|
|
2025-04-09 12:32:13 +02:00
|
|
|
const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
if (mode == GGML_SCALE_MODE_NEAREST) {
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
|
|
const int64_t i03 = i3 / sf3;
|
|
|
|
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
|
|
|
|
const int64_t i02 = i2 / sf2;
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
|
|
const int64_t i01 = i1 / sf1;
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; i0++) {
|
|
|
|
const int64_t i00 = i0 / sf0;
|
|
|
|
|
|
|
|
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
|
|
|
|
|
|
|
*y = *x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
|
|
|
|
// setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True
|
|
|
|
const float pixel_offset = 0.5f;
|
|
|
|
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
|
|
const int64_t i03 = i3 / sf3;
|
|
|
|
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
|
|
|
|
const int64_t i02 = i2 / sf2;
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
|
|
const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
|
|
|
|
int64_t y0 = (int64_t)floorf(y);
|
|
|
|
int64_t y1 = y0 + 1;
|
|
|
|
|
|
|
|
y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
|
|
|
|
y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
|
|
|
|
|
|
|
|
float dy = y - (float)y0;
|
|
|
|
dy = std::max(0.0f, std::min(dy, 1.0f));
|
|
|
|
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; i0++) {
|
|
|
|
const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
|
|
|
|
int64_t x0 = (int64_t)floorf(x);
|
|
|
|
int64_t x1 = x0 + 1;
|
|
|
|
|
|
|
|
x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
|
|
|
|
x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
|
|
|
|
|
|
|
|
float dx = x - (float)x0;
|
|
|
|
dx = std::max(0.0f, std::min(dx, 1.0f));
|
|
|
|
|
|
|
|
// fetch the four surrounding pixel values and interpolate
|
|
|
|
const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
|
|
|
|
const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
|
|
|
|
|
|
|
|
float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
|
|
|
*y_dst = val;
|
|
|
|
}
|
2025-04-02 17:46:16 +05:30
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2025-04-09 12:32:13 +02:00
|
|
|
} else {
|
|
|
|
GGML_ABORT("unsupported upscale mode");
|
2025-04-02 17:46:16 +05:30
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_upscale(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_upscale_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ggml_compute_forward_pad
|
|
|
|
|
|
|
|
static void ggml_compute_forward_pad_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
|
|
|
|
// TODO: optimize
|
|
|
|
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
|
|
|
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
|
|
|
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
|
|
|
|
|
|
|
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
|
|
|
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
dst_ptr[dst_idx] = *src_ptr;
|
|
|
|
} else {
|
|
|
|
dst_ptr[dst_idx] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_pad(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_pad_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_pad_reflect_1d
|
|
|
|
|
|
|
|
void ggml_compute_forward_pad_reflect_1d(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int32_t * opts = (const int32_t *) dst->op_params;
|
|
|
|
const int p0 = opts[0];
|
|
|
|
const int p1 = opts[1];
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
|
|
|
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
|
|
|
float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
|
|
|
|
float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
|
|
|
|
|
|
|
|
ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
|
|
|
|
|
|
|
|
for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
|
|
|
|
for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_arange
|
|
|
|
|
|
|
|
static void ggml_compute_forward_arange_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
GGML_ASSERT(dst->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const float start = ggml_get_op_params_f32(dst, 0);
|
|
|
|
const float stop = ggml_get_op_params_f32(dst, 1);
|
|
|
|
const float step = ggml_get_op_params_f32(dst, 2);
|
|
|
|
|
|
|
|
const int64_t steps = (int64_t) ceilf((stop - start) / step);
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(dst) == steps);
|
|
|
|
|
|
|
|
for (int64_t i = ith; i < steps; i+= nth) {
|
|
|
|
float value = start + step * i;
|
|
|
|
((float *)dst->data)[i] = value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_arange(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
switch (dst->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_arange_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_timestep_embedding_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int dim = ggml_get_op_params_i32(dst, 0);
|
|
|
|
const int max_period = ggml_get_op_params_i32(dst, 1);
|
|
|
|
|
|
|
|
int half = dim / 2;
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < ne00; i++) {
|
|
|
|
float * embed_data = (float *)((char *) dst->data + i*nb1);
|
|
|
|
for (int64_t j = ith; j < half; j += nth) {
|
|
|
|
float timestep = ((float *)src0->data)[i];
|
|
|
|
float freq = (float)expf(-logf(max_period) * j / half);
|
|
|
|
float arg = timestep * freq;
|
|
|
|
embed_data[j] = cosf(arg);
|
|
|
|
embed_data[j + half] = sinf(arg);
|
|
|
|
}
|
|
|
|
if (dim % 2 != 0 && ith == 0) {
|
|
|
|
embed_data[dim] = 0.f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_timestep_embedding(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_timestep_embedding_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_argsort
|
|
|
|
|
|
|
|
static void ggml_compute_forward_argsort_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
|
|
|
|
|
|
|
for (int64_t i = ith; i < nr; i += nth) {
|
|
|
|
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
|
|
|
const float * src_data = (float *)((char *) src0->data + i*nb01);
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < ne0; j++) {
|
|
|
|
dst_data[j] = j;
|
|
|
|
}
|
|
|
|
|
|
|
|
// C doesn't have a functional sort, so we do a bubble sort instead
|
|
|
|
for (int64_t j = 0; j < ne0; j++) {
|
|
|
|
for (int64_t k = j + 1; k < ne0; k++) {
|
|
|
|
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
|
|
|
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
|
|
|
int32_t tmp = dst_data[j];
|
|
|
|
dst_data[j] = dst_data[k];
|
|
|
|
dst_data[k] = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_argsort(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_argsort_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_flash_attn_ext
|
|
|
|
|
|
|
|
static void ggml_compute_forward_flash_attn_ext_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const ggml_tensor * q,
|
|
|
|
const ggml_tensor * k,
|
|
|
|
const ggml_tensor * v,
|
|
|
|
const ggml_tensor * mask,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t DK = nek0;
|
|
|
|
const int64_t DV = nev0;
|
|
|
|
const int64_t N = neq1;
|
|
|
|
|
|
|
|
GGML_ASSERT(ne0 == DV);
|
|
|
|
GGML_ASSERT(ne2 == N);
|
|
|
|
|
|
|
|
// input tensor rows must be contiguous
|
|
|
|
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
|
|
|
|
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
|
|
|
|
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
|
|
|
|
|
|
|
|
GGML_ASSERT(neq0 == DK);
|
|
|
|
GGML_ASSERT(nek0 == DK);
|
|
|
|
GGML_ASSERT(nev0 == DV);
|
|
|
|
|
|
|
|
GGML_ASSERT(neq1 == N);
|
|
|
|
|
|
|
|
// dst cannot be transposed or permuted
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
|
|
|
|
// broadcast factors
|
|
|
|
const int64_t rk2 = neq2/nek2;
|
|
|
|
const int64_t rk3 = neq3/nek3;
|
|
|
|
|
|
|
|
const int64_t rv2 = neq2/nev2;
|
|
|
|
const int64_t rv3 = neq3/nev3;
|
|
|
|
|
|
|
|
// parallelize by q rows using ggml_vec_dot_f32
|
|
|
|
|
|
|
|
// total rows in q
|
|
|
|
const int nr = neq1*neq2*neq3;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
float scale = 1.0f;
|
|
|
|
float max_bias = 0.0f;
|
|
|
|
float logit_softcap = 0.0f;
|
|
|
|
|
|
|
|
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
|
|
|
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
|
|
|
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
|
|
|
|
|
|
|
|
if (logit_softcap != 0) {
|
|
|
|
scale /= logit_softcap;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint32_t n_head = neq2;
|
|
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
|
|
|
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
|
|
|
|
ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
|
|
|
|
ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
|
|
|
|
ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
|
|
|
|
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
|
|
|
|
|
2025-04-08 19:54:51 +03:00
|
|
|
GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
|
|
|
|
GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
|
2025-04-02 17:46:16 +05:30
|
|
|
|
|
|
|
// loop over n_batch and n_head
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// q indices
|
|
|
|
const int iq3 = ir/(neq2*neq1);
|
|
|
|
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
|
|
|
|
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
|
|
|
|
|
|
|
|
const uint32_t h = iq2; // head index
|
|
|
|
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
|
|
|
|
|
|
|
|
float S = 0.0f; // sum
|
|
|
|
float M = -INFINITY; // maximum KQ value
|
|
|
|
|
|
|
|
float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
|
|
|
|
float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
|
|
|
|
ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
|
|
|
|
ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
|
|
|
|
|
|
|
|
if (v->type == GGML_TYPE_F16) {
|
|
|
|
memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
|
|
|
|
} else {
|
|
|
|
memset(VKQ32, 0, DV*sizeof(float));
|
|
|
|
}
|
|
|
|
|
|
|
|
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
|
|
|
|
|
|
|
|
// k indices
|
|
|
|
const int ik3 = iq3 / rk3;
|
|
|
|
const int ik2 = iq2 / rk2;
|
|
|
|
|
|
|
|
// v indices
|
|
|
|
const int iv3 = iq3 / rv3;
|
|
|
|
const int iv2 = iq2 / rv2;
|
|
|
|
|
|
|
|
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
|
|
|
|
q_to_vec_dot(pq, Q_q, DK);
|
|
|
|
|
|
|
|
// online softmax / attention
|
|
|
|
// loop over n_kv and n_head_kv
|
|
|
|
// ref: https://arxiv.org/pdf/2112.05682.pdf
|
|
|
|
for (int64_t ic = 0; ic < nek1; ++ic) {
|
|
|
|
const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
|
|
|
|
if (mv == -INFINITY) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
float s; // KQ value
|
|
|
|
|
|
|
|
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
|
|
|
|
kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
|
|
|
|
|
|
|
|
s = s*scale; // scale KQ value
|
|
|
|
|
|
|
|
if (logit_softcap != 0.0f) {
|
|
|
|
s = logit_softcap*tanhf(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
s += mv; // apply mask
|
|
|
|
|
|
|
|
const float Mold = M;
|
|
|
|
|
|
|
|
float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
|
|
|
|
float vs = 1.0f; // post-softmax KQ value, expf(s - M)
|
|
|
|
|
|
|
|
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
|
|
|
|
|
|
|
|
if (v->type == GGML_TYPE_F16) {
|
|
|
|
if (s > M) {
|
|
|
|
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
|
|
|
|
M = s;
|
|
|
|
ms = expf(Mold - M);
|
|
|
|
|
|
|
|
// V = V*expf(Mold - M)
|
|
|
|
ggml_vec_scale_f16(DV, VKQ16, ms);
|
|
|
|
} else {
|
|
|
|
// no new maximum, ms == 1.0f, vs != 1.0f
|
|
|
|
vs = expf(s - M);
|
|
|
|
}
|
|
|
|
|
|
|
|
// V += v*expf(s - M)
|
|
|
|
ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
|
|
|
|
} else {
|
|
|
|
if (s > M) {
|
|
|
|
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
|
|
|
|
M = s;
|
|
|
|
ms = expf(Mold - M);
|
|
|
|
|
|
|
|
// V = V*expf(Mold - M)
|
|
|
|
ggml_vec_scale_f32(DV, VKQ32, ms);
|
|
|
|
} else {
|
|
|
|
// no new maximum, ms == 1.0f, vs != 1.0f
|
|
|
|
vs = expf(s - M);
|
|
|
|
}
|
|
|
|
|
|
|
|
// V += v*expf(s - M)
|
2025-04-08 19:54:51 +03:00
|
|
|
if (v_to_float) {
|
|
|
|
v_to_float(v_data, V32, DV);
|
|
|
|
ggml_vec_mad_f32(DV, VKQ32, V32, vs);
|
|
|
|
} else {
|
|
|
|
// V is F32
|
|
|
|
ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
|
|
|
|
}
|
2025-04-02 17:46:16 +05:30
|
|
|
}
|
|
|
|
|
|
|
|
S = S*ms + vs; // scale and increment sum with partial sum
|
|
|
|
}
|
|
|
|
|
|
|
|
if (v->type == GGML_TYPE_F16) {
|
|
|
|
for (int64_t d = 0; d < DV; ++d) {
|
|
|
|
VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// V /= S
|
|
|
|
const float S_inv = 1.0f/S;
|
|
|
|
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
|
|
|
|
|
|
|
// dst indices
|
|
|
|
const int i1 = iq1;
|
|
|
|
const int i2 = iq2;
|
|
|
|
const int i3 = iq3;
|
|
|
|
|
|
|
|
// original
|
|
|
|
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
|
|
|
|
|
|
|
|
// permute(0, 2, 1, 3)
|
|
|
|
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_flash_attn_ext(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const ggml_tensor * q,
|
|
|
|
const ggml_tensor * k,
|
|
|
|
const ggml_tensor * v,
|
|
|
|
const ggml_tensor * mask,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
switch (dst->op_params[3]) {
|
|
|
|
case GGML_PREC_DEFAULT:
|
|
|
|
case GGML_PREC_F32:
|
|
|
|
{
|
|
|
|
// uses F32 accumulators
|
|
|
|
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_flash_attn_back
|
|
|
|
|
|
|
|
static void ggml_compute_forward_flash_attn_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const bool masked,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * q = dst->src[0];
|
|
|
|
const ggml_tensor * k = dst->src[1];
|
|
|
|
const ggml_tensor * v = dst->src[2];
|
|
|
|
const ggml_tensor * d = dst->src[3];
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t D = neq0;
|
|
|
|
const int64_t N = neq1;
|
|
|
|
const int64_t P = nek1 - N;
|
|
|
|
const int64_t M = P + N;
|
|
|
|
|
|
|
|
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
|
|
|
const int mxDM = MAX(D, Mup);
|
|
|
|
|
|
|
|
// GGML_ASSERT(ne0 == D);
|
|
|
|
// GGML_ASSERT(ne1 == N);
|
|
|
|
GGML_ASSERT(P >= 0);
|
|
|
|
|
|
|
|
GGML_ASSERT(nbq0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nbk0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nbv0 == sizeof(float));
|
|
|
|
|
|
|
|
GGML_ASSERT(neq0 == D);
|
|
|
|
GGML_ASSERT(nek0 == D);
|
|
|
|
GGML_ASSERT(nev1 == D);
|
|
|
|
GGML_ASSERT(ned0 == D);
|
|
|
|
|
|
|
|
GGML_ASSERT(neq1 == N);
|
|
|
|
GGML_ASSERT(nek1 == N + P);
|
|
|
|
GGML_ASSERT(nev1 == D);
|
|
|
|
GGML_ASSERT(ned1 == N);
|
|
|
|
|
|
|
|
// dst cannot be transposed or permuted
|
|
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
const int64_t elem_q = ggml_nelements(q);
|
|
|
|
const int64_t elem_k = ggml_nelements(k);
|
|
|
|
|
|
|
|
ggml_type result_type = dst->type;
|
|
|
|
GGML_ASSERT(ggml_blck_size(result_type) == 1);
|
|
|
|
const size_t tsize = ggml_type_size(result_type);
|
|
|
|
|
|
|
|
const size_t offs_q = 0;
|
|
|
|
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
|
|
|
|
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
|
|
|
|
|
|
|
|
void * grad_q = (char *) dst->data;
|
|
|
|
void * grad_k = (char *) dst->data + offs_k;
|
|
|
|
void * grad_v = (char *) dst->data + offs_v;
|
|
|
|
|
|
|
|
const size_t nbgq1 = nb0*neq0;
|
|
|
|
const size_t nbgq2 = nb0*neq0*neq1;
|
|
|
|
const size_t nbgq3 = nb0*neq0*neq1*neq2;
|
|
|
|
|
|
|
|
const size_t nbgk1 = nb0*nek0;
|
|
|
|
const size_t nbgk2 = nb0*nek0*nek1;
|
|
|
|
const size_t nbgk3 = nb0*nek0*nek1*neq2;
|
|
|
|
|
|
|
|
const size_t nbgv1 = nb0*nev0;
|
|
|
|
const size_t nbgv2 = nb0*nev0*nev1;
|
|
|
|
const size_t nbgv3 = nb0*nev0*nev1*neq2;
|
|
|
|
|
|
|
|
// parallelize by k rows using ggml_vec_dot_f32
|
|
|
|
|
|
|
|
// total rows in k
|
|
|
|
const int nr = nek2*nek3;
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
const float scale = 1.0f/sqrtf(D);
|
|
|
|
|
|
|
|
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
|
|
|
|
|
|
|
// how often k2 (and v2) is repeated in q2
|
|
|
|
int nrep = neq2/nek2;
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
// q indices
|
|
|
|
const int ik3 = ir/(nek2);
|
|
|
|
const int ik2 = ir - ik3*nek2;
|
|
|
|
|
|
|
|
const int iq3 = ik3;
|
|
|
|
const int id3 = ik3;
|
|
|
|
const int iv3 = ik3;
|
|
|
|
const int iv2 = ik2;
|
|
|
|
|
|
|
|
for (int irep = 0; irep < nrep; ++irep) {
|
|
|
|
const int iq2 = ik2 + irep*nek2;
|
|
|
|
const int id2 = iq2;
|
|
|
|
|
|
|
|
// (ik2 + irep*nek2) % nek2 == ik2
|
|
|
|
for (int iq1 = 0; iq1 < neq1; ++iq1) {
|
|
|
|
const int id1 = iq1;
|
|
|
|
|
|
|
|
// not sure about CACHE_LINE_SIZE_F32..
|
|
|
|
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
|
|
|
|
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
|
|
|
|
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
|
|
|
|
|
|
|
|
for (int i = M; i < Mup; ++i) {
|
|
|
|
S[i] = -INFINITY;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
|
|
|
|
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
|
|
|
// k indices
|
|
|
|
const int ik1 = ic;
|
|
|
|
|
|
|
|
// S indices
|
|
|
|
const int i1 = ik1;
|
|
|
|
|
|
|
|
ggml_vec_dot_f32(neq0,
|
|
|
|
S + i1, 0,
|
|
|
|
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
|
|
|
|
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// scale
|
|
|
|
ggml_vec_scale_f32(masked_begin, S, scale);
|
|
|
|
|
|
|
|
for (int64_t i = masked_begin; i < M; i++) {
|
|
|
|
S[i] = -INFINITY;
|
|
|
|
}
|
|
|
|
|
|
|
|
// softmax
|
|
|
|
// exclude known -INF S[..] values from max and loop
|
|
|
|
// dont forget to set their SM values to zero
|
|
|
|
{
|
|
|
|
float max = -INFINITY;
|
|
|
|
ggml_vec_max_f32(masked_begin, &max, S);
|
|
|
|
|
|
|
|
ggml_float sum = 0.0;
|
|
|
|
{
|
|
|
|
#ifdef GGML_SOFT_MAX_ACCELERATE
|
|
|
|
max = -max;
|
|
|
|
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
|
|
|
|
vvexpf(SM, SM, &Mup);
|
|
|
|
ggml_vec_sum_f32(Mup, &sum, SM);
|
|
|
|
#else
|
|
|
|
sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(sum > 0.0);
|
|
|
|
|
|
|
|
sum = 1.0/sum;
|
|
|
|
ggml_vec_scale_f32(masked_begin, SM, sum);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// step-by-step explanation
|
|
|
|
{
|
|
|
|
// forward-process shape grads from backward process
|
|
|
|
// parallel_for ik2,ik3:
|
|
|
|
// for irep:
|
|
|
|
// iq2 = ik2 + irep*nek2
|
|
|
|
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
|
|
|
|
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
|
|
|
|
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
|
|
|
|
// for iq1:
|
|
|
|
// kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
|
|
|
|
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
|
|
|
|
// vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
|
|
|
|
// S0 = -Inf [D,1,1,1]
|
|
|
|
// ~S1[i] = dot(kcur[:D,i], qcur)
|
|
|
|
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
|
|
|
|
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
|
|
|
|
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
|
|
|
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
|
|
|
|
// ~S5[i] = dot(vcur[:,i], S4)
|
|
|
|
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
|
|
|
|
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
|
|
|
|
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
|
|
|
|
// dst backward-/ grad[dst] = d
|
|
|
|
//
|
|
|
|
// output gradients with their dependencies:
|
|
|
|
//
|
|
|
|
// grad[kcur] = grad[S1].T @ qcur
|
|
|
|
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
|
|
|
|
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
|
|
|
// grad[S4] = grad[S5] @ vcur
|
|
|
|
// grad[S4] = d[:D,id1,id2,id3] @ vcur
|
|
|
|
// grad[qcur] = grad[S1] @ kcur
|
|
|
|
// grad[vcur] = grad[S5].T @ S4
|
|
|
|
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
|
|
|
|
//
|
|
|
|
// in post-order:
|
|
|
|
//
|
|
|
|
// S1 = qcur @ kcur.T
|
|
|
|
// S2 = S1 * scale
|
|
|
|
// S3 = diag_mask_inf(S2, P)
|
|
|
|
// S4 = softmax(S3)
|
|
|
|
// grad[S4] = d[:D,id1,id2,id3] @ vcur
|
|
|
|
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
|
|
|
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
|
|
|
|
// grad[qcur] = grad[S1] @ kcur
|
|
|
|
// grad[kcur] = grad[S1].T @ qcur
|
|
|
|
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
|
|
|
|
//
|
|
|
|
// using less variables (SM=S4):
|
|
|
|
//
|
|
|
|
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
|
|
|
|
// SM = softmax(S)
|
|
|
|
// S = d[:D,iq1,iq2,iq3] @ vcur
|
|
|
|
// dot_SM_gradSM = dot(SM, S)
|
|
|
|
// S = SM * (S - dot(SM, S))
|
|
|
|
// S = diag_mask_zero(S, P) * scale
|
|
|
|
//
|
|
|
|
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
|
|
|
|
// grad[k][:D,:M,ik2,ik3] += S.T @ qcur
|
|
|
|
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
|
|
|
|
}
|
|
|
|
|
|
|
|
// S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
|
|
|
|
// S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
|
|
|
|
// for ic:
|
|
|
|
// S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
|
|
|
|
// exclude known future zero S[..] values from operation
|
|
|
|
ggml_vec_set_f32(masked_begin, S, 0);
|
|
|
|
for (int64_t ic = 0; ic < D; ++ic) {
|
|
|
|
ggml_vec_mad_f32(masked_begin,
|
|
|
|
S,
|
|
|
|
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
|
|
|
|
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// S = SM * (S - dot(SM, S))
|
|
|
|
float dot_SM_gradSM = 0;
|
|
|
|
ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
|
|
|
|
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
|
|
|
|
ggml_vec_mul_f32 (masked_begin, S, S, SM);
|
|
|
|
|
|
|
|
// S = diag_mask_zero(S, P) * scale
|
|
|
|
// already done by above ggml_vec_set_f32
|
|
|
|
|
|
|
|
// exclude known zero S[..] values from operation
|
|
|
|
ggml_vec_scale_f32(masked_begin, S, scale);
|
|
|
|
|
|
|
|
// S shape [M,1]
|
|
|
|
// SM shape [M,1]
|
|
|
|
// kcur shape [D,M]
|
|
|
|
// qcur shape [D,1]
|
|
|
|
// vcur shape [M,D]
|
|
|
|
|
|
|
|
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
|
|
|
|
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
|
|
|
|
// for ic:
|
|
|
|
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
|
|
|
|
// exclude known zero S[..] values from loop
|
|
|
|
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
|
|
|
ggml_vec_mad_f32(D,
|
|
|
|
(float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
|
|
|
|
(float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
|
|
|
S[ic]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
|
|
|
|
// for ic:
|
|
|
|
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
|
|
|
|
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
|
|
|
|
// exclude known zero S[..] values from loop
|
|
|
|
for (int64_t ic = 0; ic < masked_begin; ++ic) {
|
|
|
|
ggml_vec_mad_f32(D,
|
|
|
|
(float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
|
|
|
|
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
|
|
|
|
S[ic]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
|
|
|
|
// for ic:
|
|
|
|
// grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
|
|
|
|
// grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
|
|
|
|
// exclude known zero SM[..] values from mad
|
|
|
|
for (int64_t ic = 0; ic < D; ++ic) {
|
|
|
|
ggml_vec_mad_f32(masked_begin,
|
|
|
|
(float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
|
|
|
|
SM,
|
|
|
|
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_flash_attn_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
const bool masked,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * q = dst->src[0];
|
|
|
|
|
|
|
|
switch (q->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_ssm_conv
|
|
|
|
|
|
|
|
static void ggml_compute_forward_ssm_conv_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
const ggml_tensor * src0 = dst->src[0]; // conv_x
|
|
|
|
const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nc = src1->ne[0]; // d_conv
|
|
|
|
const int ncs = src0->ne[0]; // d_conv - 1 + n_t
|
|
|
|
const int nr = src0->ne[1]; // d_inner
|
|
|
|
const int n_t = dst->ne[1]; // tokens per sequence
|
|
|
|
const int n_s = dst->ne[2]; // number of sequences in the batch
|
|
|
|
|
|
|
|
GGML_ASSERT( dst->ne[0] == nr);
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
const int ir = ir1 - ir0;
|
|
|
|
|
|
|
|
for (int i3 = 0; i3 < n_s; ++i3) {
|
|
|
|
for (int i2 = 0; i2 < n_t; ++i2) {
|
|
|
|
// {d_conv - 1 + n_t, d_inner, n_seqs}
|
|
|
|
// sliding window
|
|
|
|
const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
|
|
|
|
const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
|
|
|
|
float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
|
|
|
|
|
|
|
|
// TODO: transpose the output for smaller strides for big batches?
|
|
|
|
// d_inner
|
|
|
|
for (int i1 = 0; i1 < ir; ++i1) {
|
|
|
|
// rowwise dot product
|
|
|
|
// NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
|
|
|
|
float sumf = 0.0f;
|
|
|
|
|
|
|
|
// d_conv
|
|
|
|
for (int i0 = 0; i0 < nc; ++i0) {
|
|
|
|
sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
|
|
|
|
}
|
|
|
|
x[i1] = sumf;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_ssm_conv(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
switch (dst->src[0]->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_ssm_conv_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_ssm_scan
|
|
|
|
|
|
|
|
static void ggml_compute_forward_ssm_scan_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
const ggml_tensor * src0 = dst->src[0]; // s
|
|
|
|
const ggml_tensor * src1 = dst->src[1]; // x
|
|
|
|
const ggml_tensor * src2 = dst->src[2]; // dt
|
|
|
|
const ggml_tensor * src3 = dst->src[3]; // A
|
|
|
|
const ggml_tensor * src4 = dst->src[4]; // B
|
|
|
|
const ggml_tensor * src5 = dst->src[5]; // C
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int64_t nc = src0->ne[0]; // d_state
|
|
|
|
const int64_t nr = src0->ne[1]; // d_inner
|
|
|
|
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
|
|
|
|
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src2->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src3->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src4->nb[0] == sizeof(float));
|
|
|
|
GGML_ASSERT(src5->nb[0] == sizeof(float));
|
|
|
|
// required for the dot product between s and C
|
|
|
|
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
|
|
|
|
// required for per-sequence offsets for states
|
|
|
|
GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
|
|
|
|
// required to get correct offset for state destination (i.e. src1->nb[3])
|
|
|
|
GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
const int ir = ir1 - ir0;
|
|
|
|
|
|
|
|
for (int i3 = 0; i3 < n_s; ++i3) {
|
|
|
|
for (int i2 = 0; i2 < n_t; ++i2) {
|
|
|
|
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
|
|
|
|
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
|
|
|
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
|
|
|
|
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
|
|
|
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
|
|
|
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
|
|
|
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
|
|
|
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
|
|
|
|
|
|
|
// use the output as the source for the next token-wise iterations
|
|
|
|
if (i2 > 0) { s0 = s; }
|
|
|
|
|
|
|
|
// d_inner
|
|
|
|
for (int i1 = 0; i1 < ir; ++i1) {
|
|
|
|
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
|
|
|
|
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
|
|
|
|
float x_dt = x[i1] * dt_soft_plus;
|
|
|
|
float sumf = 0.0f;
|
|
|
|
// d_state
|
|
|
|
for (int i0 = 0; i0 < nc; ++i0) {
|
|
|
|
int i = i0 + i1*nc;
|
|
|
|
// state = prev_state * dA + dB * x
|
|
|
|
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
|
|
|
// y = rowwise_dotprod(state, C)
|
|
|
|
sumf += state * C[i0];
|
|
|
|
s[i] = state;
|
|
|
|
}
|
|
|
|
y[i1] = sumf;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_ssm_scan(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
switch (dst->src[0]->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_ssm_scan_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_win_part
|
|
|
|
|
|
|
|
static void ggml_compute_forward_win_part_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
|
|
|
|
|
|
const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
|
|
|
|
const int32_t w = ((const int32_t *)(dst->op_params))[2];
|
|
|
|
|
|
|
|
assert(ne00 == ne0);
|
|
|
|
assert(ne3 == nep0*nep1);
|
|
|
|
|
|
|
|
// TODO: optimize / multi-thread
|
|
|
|
for (int py = 0; py < nep1; ++py) {
|
|
|
|
for (int px = 0; px < nep0; ++px) {
|
|
|
|
const int64_t i3 = py*nep0 + px;
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; ++i1) {
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
|
|
|
const int64_t i02 = py*w + i2;
|
|
|
|
const int64_t i01 = px*w + i1;
|
|
|
|
const int64_t i00 = i0;
|
|
|
|
|
|
|
|
const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
|
|
|
|
const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
|
|
|
|
|
|
|
|
if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
|
|
|
|
((float *) dst->data)[i] = 0.0f;
|
|
|
|
} else {
|
|
|
|
((float *) dst->data)[i] = ((float *) src0->data)[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_win_part(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_win_part_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_win_unpart
|
|
|
|
|
|
|
|
static void ggml_compute_forward_win_unpart_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
|
|
|
|
|
|
const int32_t w = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
|
|
|
|
// padding
|
|
|
|
const int px = (w - ne1%w)%w;
|
|
|
|
//const int py = (w - ne2%w)%w;
|
|
|
|
|
|
|
|
const int npx = (px + ne1)/w;
|
|
|
|
//const int npy = (py + ne2)/w;
|
|
|
|
|
|
|
|
assert(ne0 == ne00);
|
|
|
|
|
|
|
|
// TODO: optimize / multi-thread
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; ++i1) {
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
|
|
|
const int ip2 = i2/w;
|
|
|
|
const int ip1 = i1/w;
|
|
|
|
|
|
|
|
const int64_t i02 = i2%w;
|
|
|
|
const int64_t i01 = i1%w;
|
|
|
|
const int64_t i00 = i0;
|
|
|
|
|
|
|
|
const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
|
|
|
|
const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
|
|
|
|
|
|
|
|
((float *) dst->data)[j] = ((float *) src0->data)[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_win_unpart(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_win_unpart_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//gmml_compute_forward_unary
|
|
|
|
|
|
|
|
void ggml_compute_forward_unary(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_unary_op op = ggml_get_unary_op(dst);
|
|
|
|
|
|
|
|
switch (op) {
|
|
|
|
case GGML_UNARY_OP_ABS:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_abs(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_SGN:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_sgn(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_NEG:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_neg(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_STEP:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_step(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_TANH:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_tanh(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_ELU:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_elu(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_RELU:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_relu(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_SIGMOID:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_sigmoid(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_GELU:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gelu(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gelu_quick(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_SILU:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_silu(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_HARDSWISH:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_hardswish(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_HARDSIGMOID:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_hardsigmoid(params, dst);
|
|
|
|
} break;
|
|
|
|
case GGML_UNARY_OP_EXP:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_exp(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_get_rel_pos
|
|
|
|
|
|
|
|
static void ggml_compute_forward_get_rel_pos_f16(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
GGML_UNUSED(params);
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
|
|
|
|
const int64_t w = ne1;
|
|
|
|
|
|
|
|
ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
|
|
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
|
|
|
|
|
|
|
|
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
|
|
|
for (int64_t i1 = 0; i1 < ne1; ++i1) {
|
|
|
|
const int64_t pos = (w - i1 - 1) + i2;
|
|
|
|
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
|
|
|
dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_get_rel_pos(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F16:
|
|
|
|
case GGML_TYPE_BF16:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_get_rel_pos_f16(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_add_rel_pos
|
|
|
|
|
|
|
|
static void ggml_compute_forward_add_rel_pos_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
const ggml_tensor * src2 = dst->src[2];
|
|
|
|
|
|
|
|
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
|
|
|
|
if (!inplace) {
|
|
|
|
if (params->ith == 0) {
|
|
|
|
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
}
|
|
|
|
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
|
|
|
|
|
|
|
|
float * src1_data = (float *) src1->data;
|
|
|
|
float * src2_data = (float *) src2->data;
|
|
|
|
float * dst_data = (float *) dst->data;
|
|
|
|
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
// total patches in dst
|
|
|
|
const int np = ne13;
|
|
|
|
|
|
|
|
// patches per thread
|
|
|
|
const int dp = (np + nth - 1)/nth;
|
|
|
|
|
|
|
|
// patch range for this thread
|
|
|
|
const int ip0 = dp*ith;
|
|
|
|
const int ip1 = MIN(ip0 + dp, np);
|
|
|
|
|
|
|
|
for (int64_t i13 = ip0; i13 < ip1; ++i13) {
|
|
|
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
|
|
|
const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
|
|
|
|
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
|
|
|
const int64_t jp0 = jp1 + i10;
|
|
|
|
const float src1_e = src1_data[jp0];
|
|
|
|
const float src2_e = src2_data[jp0];
|
|
|
|
|
|
|
|
const int64_t jdh = jp0 * ne10;
|
|
|
|
const int64_t jdw = jdh - (ne10 - 1) * i10;
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < ne10; ++j) {
|
|
|
|
dst_data[jdh + j ] += src2_e;
|
|
|
|
dst_data[jdw + j*ne10] += src1_e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_add_rel_pos(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_add_rel_pos_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_rwkv_wkv6
|
|
|
|
|
|
|
|
static void ggml_compute_forward_rwkv_wkv6_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
const int64_t T = dst->src[1]->ne[2];
|
|
|
|
const int64_t C = dst->ne[0];
|
|
|
|
const int64_t HEADS = dst->src[1]->ne[1];
|
|
|
|
const int64_t n_seqs = dst->src[5]->ne[1];
|
|
|
|
const int64_t head_size = C / HEADS;
|
|
|
|
|
|
|
|
float * dst_data = (float *) dst->data;
|
|
|
|
float * state = ((float *) dst->data) + C * T;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
if (ith >= HEADS) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int h_start = (HEADS * ith) / nth;
|
|
|
|
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
|
|
|
|
(HEADS * (ith + 1)) / nth : HEADS;
|
|
|
|
|
|
|
|
float * k = (float *) dst->src[0]->data;
|
|
|
|
float * v = (float *) dst->src[1]->data;
|
|
|
|
float * r = (float *) dst->src[2]->data;
|
|
|
|
float * time_faaaa = (float *) dst->src[3]->data;
|
|
|
|
float * time_decay = (float *) dst->src[4]->data;
|
|
|
|
|
|
|
|
size_t t_stride = HEADS * head_size; // Same to C
|
|
|
|
|
|
|
|
size_t h_stride = C / HEADS;
|
|
|
|
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
|
|
|
|
size_t h_stride_2d = head_size * head_size;
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
memset(dst_data, 0, T * C * sizeof(float));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(__AVX__) && !defined(__AVX512F__)
|
|
|
|
#define GGML_F32X GGML_F32x8
|
|
|
|
#define GGML_F32X_SET1 GGML_F32x8_SET1
|
|
|
|
#define GGML_F32X_LOAD GGML_F32x8_LOAD
|
|
|
|
#define GGML_F32X_STORE GGML_F32x8_STORE
|
|
|
|
#define GGML_F32X_MUL GGML_F32x8_MUL
|
|
|
|
#define GGML_F32X_FMA GGML_F32x8_FMA
|
|
|
|
#define WKV_VECTOR_SIZE 8
|
|
|
|
#elif defined(__AVX512F__)
|
|
|
|
#define GGML_F32X GGML_F32x16
|
|
|
|
#define GGML_F32X_SET1 GGML_F32x16_SET1
|
|
|
|
#define GGML_F32X_LOAD GGML_F32x16_LOAD
|
|
|
|
#define GGML_F32X_STORE GGML_F32x16_STORE
|
|
|
|
#define GGML_F32X_MUL GGML_F32x16_MUL
|
|
|
|
#define GGML_F32X_FMA GGML_F32x16_FMA
|
|
|
|
#define WKV_VECTOR_SIZE 16
|
|
|
|
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
|
|
|
#define GGML_F32X GGML_F32x4
|
|
|
|
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
|
|
|
#define GGML_F32X_LOAD GGML_F32x4_LOAD
|
|
|
|
#define GGML_F32X_STORE GGML_F32x4_STORE
|
|
|
|
#define GGML_F32X_MUL GGML_F32x4_MUL
|
|
|
|
#define GGML_F32X_FMA GGML_F32x4_FMA
|
|
|
|
#define WKV_VECTOR_SIZE 4
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef WKV_VECTOR_SIZE
|
|
|
|
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
|
|
|
|
|
|
|
|
for (int64_t t = 0; t < T; t++) {
|
|
|
|
size_t t_offset = t * t_stride;
|
|
|
|
size_t state_offset = head_size * C * (t / (T / n_seqs));
|
|
|
|
float * state_cur = state + state_offset;
|
|
|
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
|
|
|
|
|
|
|
|
for (int64_t h = h_start; h < h_end; h++) {
|
|
|
|
size_t h_offset = h * h_stride;
|
|
|
|
size_t t_h_offset = t_offset + h_offset;
|
|
|
|
size_t h_2d_offset = h * h_stride_2d;
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < head_size; i++) {
|
|
|
|
size_t t_h_i_offset = t_h_offset + i;
|
|
|
|
size_t h_i_offset = h_offset + i;
|
|
|
|
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
|
|
|
|
|
|
|
float k_val = k[t_h_i_offset];
|
|
|
|
float r_val = r[t_h_i_offset];
|
|
|
|
float time_faaaa_val = time_faaaa[h_i_offset];
|
|
|
|
float time_decay_val = time_decay[t_h_i_offset];
|
|
|
|
|
|
|
|
// Broadcast scalar values to vectors
|
|
|
|
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
|
|
|
|
GGML_F32X r_vec = GGML_F32X_SET1(r_val);
|
|
|
|
GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
|
|
|
|
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < vec_count; j++) {
|
|
|
|
size_t base_j = j * WKV_VECTOR_SIZE;
|
|
|
|
size_t t_h_j_offset = t_h_offset + base_j;
|
|
|
|
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
|
|
|
|
|
|
|
// Load x elements at once
|
|
|
|
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
|
|
|
|
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
|
|
|
|
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
|
|
|
|
|
|
|
|
// Compute kv = v * k
|
|
|
|
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
|
|
|
|
|
|
|
|
// Compute temp = kv * time_faaaa + prev_state
|
|
|
|
GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
|
|
|
|
|
|
|
|
// Update dst: dst += temp * r
|
|
|
|
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
|
|
|
|
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
|
|
|
|
|
|
|
|
// Update state: state = prev_state * time_decay + kv
|
|
|
|
GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
|
|
|
|
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle remaining elements, this will not be used.
|
|
|
|
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
|
|
|
|
size_t t_h_j_offset = t_h_offset + j;
|
|
|
|
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
|
|
|
float v_val = v[t_h_j_offset];
|
|
|
|
float kv_val = v_val * k_val;
|
|
|
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
|
|
|
float temp_val = kv_val * time_faaaa_val + prev_state_val;
|
|
|
|
dst_data[t_h_j_offset] += temp_val * r_val;
|
|
|
|
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
// basically fused operations:
|
|
|
|
// dst = r @ (time_faaaa * (k @ v) + state),
|
|
|
|
// state = time_decay * state + (k @ v),
|
|
|
|
// recursive through each token
|
|
|
|
for (int64_t t = 0; t < T; t++) {
|
|
|
|
size_t t_offset = t * t_stride;
|
|
|
|
size_t state_offset = head_size * C * (t / (T / n_seqs));
|
|
|
|
float * state_cur = state + state_offset;
|
|
|
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
|
|
|
|
|
|
|
|
for (int64_t h = h_start; h < h_end; h++) {
|
|
|
|
size_t h_offset = h * h_stride;
|
|
|
|
size_t t_h_offset = t_offset + h_offset;
|
|
|
|
size_t h_2d_offset = h * h_stride_2d;
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < head_size; i++) {
|
|
|
|
size_t t_h_i_offset = t_h_offset + i;
|
|
|
|
size_t h_i_offset = h_offset + i;
|
|
|
|
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
|
|
|
|
|
|
|
float k_val = k[t_h_i_offset];
|
|
|
|
float r_val = r[t_h_i_offset];
|
|
|
|
float time_faaaa_val = time_faaaa[h_i_offset];
|
|
|
|
// RWKV v6: different time_decay for each token.
|
|
|
|
float time_decay_val = time_decay[t_h_i_offset];
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < head_size; j++) {
|
|
|
|
size_t t_h_j_offset = t_h_offset + j;
|
|
|
|
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
|
|
|
|
|
|
|
float v_val = v[t_h_j_offset];
|
|
|
|
float kv_val = v_val * k_val;
|
|
|
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
|
|
|
float temp_val = kv_val * time_faaaa_val + prev_state_val;
|
|
|
|
dst_data[t_h_j_offset] += temp_val * r_val;
|
|
|
|
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ggml_compute_forward_rwkv_wkv6(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rwkv_wkv6_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_gla
|
|
|
|
|
|
|
|
static void ggml_compute_forward_gla_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
const int64_t T = dst->src[1]->ne[2];
|
|
|
|
const int64_t C = dst->ne[0];
|
|
|
|
const int64_t HEADS = dst->src[1]->ne[1];
|
|
|
|
const int64_t n_seqs = dst->src[4]->ne[1];
|
|
|
|
const int64_t head_size = C / HEADS;
|
|
|
|
const float scale = ggml_get_op_params_f32(dst, 0);
|
|
|
|
|
|
|
|
float * dst_data = (float *) dst->data;
|
|
|
|
float * state = ((float *) dst->data) + C * T;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
if (ith >= HEADS) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int h_start = (HEADS * ith) / nth;
|
|
|
|
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
|
|
|
|
(HEADS * (ith + 1)) / nth : HEADS;
|
|
|
|
|
|
|
|
float * k = (float *) dst->src[0]->data;
|
|
|
|
float * v = (float *) dst->src[1]->data;
|
|
|
|
float * q = (float *) dst->src[2]->data;
|
|
|
|
float * g = (float *) dst->src[3]->data;
|
|
|
|
|
|
|
|
size_t t_stride = HEADS * head_size; // Same to C
|
|
|
|
|
|
|
|
size_t h_stride = C / HEADS;
|
|
|
|
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
|
|
|
|
size_t h_stride_2d = head_size * head_size;
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
memset(dst_data, 0, T * C * sizeof(float));
|
|
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(__AVX__) && !defined(__AVX512F__)
|
|
|
|
#define GGML_F32X GGML_F32x8
|
|
|
|
#define GGML_F32X_SET1 GGML_F32x8_SET1
|
|
|
|
#define GGML_F32X_LOAD GGML_F32x8_LOAD
|
|
|
|
#define GGML_F32X_STORE GGML_F32x8_STORE
|
|
|
|
#define GGML_F32X_MUL GGML_F32x8_MUL
|
|
|
|
#define GGML_F32X_FMA GGML_F32x8_FMA
|
|
|
|
#define GLA_VECTOR_SIZE 8
|
|
|
|
#elif defined(__AVX512F__)
|
|
|
|
#define GGML_F32X GGML_F32x16
|
|
|
|
#define GGML_F32X_SET1 GGML_F32x16_SET1
|
|
|
|
#define GGML_F32X_LOAD GGML_F32x16_LOAD
|
|
|
|
#define GGML_F32X_STORE GGML_F32x16_STORE
|
|
|
|
#define GGML_F32X_MUL GGML_F32x16_MUL
|
|
|
|
#define GGML_F32X_FMA GGML_F32x16_FMA
|
|
|
|
#define GLA_VECTOR_SIZE 16
|
|
|
|
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
|
|
|
#define GGML_F32X GGML_F32x4
|
|
|
|
#define GGML_F32X_SET1 GGML_F32x4_SET1
|
|
|
|
#define GGML_F32X_LOAD GGML_F32x4_LOAD
|
|
|
|
#define GGML_F32X_STORE GGML_F32x4_STORE
|
|
|
|
#define GGML_F32X_MUL GGML_F32x4_MUL
|
|
|
|
#define GGML_F32X_FMA GGML_F32x4_FMA
|
|
|
|
#define GLA_VECTOR_SIZE 4
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef GLA_VECTOR_SIZE
|
|
|
|
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
|
|
|
|
|
|
|
|
for (int64_t t = 0; t < T; t++) {
|
|
|
|
size_t t_offset = t * t_stride;
|
|
|
|
size_t state_offset = head_size * C * (t / (T / n_seqs));
|
|
|
|
float * state_cur = state + state_offset;
|
|
|
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
|
|
|
|
|
|
|
|
for (int64_t h = h_start; h < h_end; h++) {
|
|
|
|
size_t h_offset = h * h_stride;
|
|
|
|
size_t t_h_offset = t_offset + h_offset;
|
|
|
|
size_t h_2d_offset = h * h_stride_2d;
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < head_size; i++) {
|
|
|
|
size_t t_h_i_offset = t_h_offset + i;
|
|
|
|
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
|
|
|
|
|
|
|
float k_val = k[t_h_i_offset];
|
|
|
|
float q_val = q[t_h_i_offset] * scale;
|
|
|
|
float g_val = g[t_h_i_offset];
|
|
|
|
|
|
|
|
// Broadcast scalar values to vectors
|
|
|
|
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
|
|
|
|
GGML_F32X q_vec = GGML_F32X_SET1(q_val);
|
|
|
|
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < vec_count; j++) {
|
|
|
|
size_t base_j = j * GLA_VECTOR_SIZE;
|
|
|
|
size_t t_h_j_offset = t_h_offset + base_j;
|
|
|
|
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
|
|
|
|
|
|
|
|
// Load x elements at once
|
|
|
|
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
|
|
|
|
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
|
|
|
|
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
|
|
|
|
|
|
|
|
// Compute kv = v * k
|
|
|
|
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
|
|
|
|
|
|
|
|
// Compute temp = prev_state * g + kv
|
|
|
|
GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
|
|
|
|
|
|
|
|
// Update dst: dst += temp * q
|
|
|
|
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
|
|
|
|
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
|
|
|
|
|
|
|
|
// Update state
|
|
|
|
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle remaining elements, this will not be used.
|
|
|
|
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
|
|
|
|
size_t t_h_j_offset = t_h_offset + j;
|
|
|
|
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
|
|
|
float v_val = v[t_h_j_offset];
|
|
|
|
float kv_val = v_val * k_val;
|
|
|
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
|
|
|
float temp_val = kv_val + prev_state_val * g_val;
|
|
|
|
dst_data[t_h_j_offset] += temp_val * q_val;
|
|
|
|
state_cur[h_2d_i_j_offset] = temp_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
for (int64_t t = 0; t < T; t++) {
|
|
|
|
size_t t_offset = t * t_stride;
|
|
|
|
size_t state_offset = head_size * C * (t / (T / n_seqs));
|
|
|
|
float * state_cur = state + state_offset;
|
|
|
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
|
|
|
|
|
|
|
|
for (int64_t h = h_start; h < h_end; h++) {
|
|
|
|
size_t h_offset = h * h_stride;
|
|
|
|
size_t t_h_offset = t_offset + h_offset;
|
|
|
|
size_t h_2d_offset = h * h_stride_2d;
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < head_size; i++) {
|
|
|
|
size_t t_h_i_offset = t_h_offset + i;
|
|
|
|
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
|
|
|
|
|
|
|
float k_val = k[t_h_i_offset];
|
|
|
|
float q_val = q[t_h_i_offset] * scale;
|
|
|
|
float g_val = g[t_h_i_offset];
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < head_size; j++) {
|
|
|
|
size_t t_h_j_offset = t_h_offset + j;
|
|
|
|
size_t h_2d_i_j_offset = h_2d_i_offset + j;
|
|
|
|
|
|
|
|
float v_val = v[t_h_j_offset];
|
|
|
|
float kv_val = v_val * k_val;
|
|
|
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
|
|
|
float temp_val = prev_state_val * g_val + kv_val;
|
|
|
|
dst_data[t_h_j_offset] += temp_val * q_val;
|
|
|
|
state_cur[h_2d_i_j_offset] = temp_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ggml_compute_forward_gla(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_gla_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_rwkv_wkv7
|
|
|
|
|
|
|
|
static void ggml_compute_forward_rwkv_wkv7_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
const int64_t T = dst->src[1]->ne[2];
|
|
|
|
const int64_t C = dst->ne[0];
|
|
|
|
const int64_t HEADS = dst->src[1]->ne[1];
|
|
|
|
const int64_t n_seqs = dst->src[6]->ne[1];
|
|
|
|
const int64_t head_size = C / HEADS;
|
|
|
|
|
|
|
|
float * dst_data = (float *) dst->data;
|
|
|
|
float * state = ((float *) dst->data) + C * T;
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
if (ith >= HEADS) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int h_start = (HEADS * ith) / nth;
|
|
|
|
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
|
|
|
|
(HEADS * (ith + 1)) / nth : HEADS;
|
|
|
|
|
|
|
|
float * r = (float *) dst->src[0]->data;
|
|
|
|
float * w = (float *) dst->src[1]->data;
|
|
|
|
float * k = (float *) dst->src[2]->data;
|
|
|
|
float * v = (float *) dst->src[3]->data;
|
|
|
|
float * a = (float *) dst->src[4]->data;
|
|
|
|
float * b = (float *) dst->src[5]->data;
|
|
|
|
|
|
|
|
int64_t t_stride = HEADS * head_size; // Same to C
|
|
|
|
|
|
|
|
int64_t h_stride = C / HEADS;
|
|
|
|
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
|
|
|
|
int64_t h_stride_2d = head_size * head_size;
|
|
|
|
|
|
|
|
#if defined(GGML_SIMD)
|
|
|
|
for (int64_t t = 0; t < T; t++) {
|
|
|
|
int64_t t_offset = t * t_stride;
|
|
|
|
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
|
|
|
float * state_cur = state + state_offset;
|
|
|
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
|
|
|
|
|
|
|
for (int64_t h = h_start; h < h_end; h++) {
|
|
|
|
int64_t h_offset = h * h_stride;
|
|
|
|
int64_t t_h_offset = t_offset + h_offset;
|
|
|
|
int64_t h_2d_offset = h * h_stride_2d;
|
|
|
|
|
|
|
|
for (int64_t ii = 0; ii < head_size; ii++) {
|
|
|
|
int64_t t_h_i_offset = t_h_offset + ii;
|
|
|
|
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
|
|
|
|
|
|
|
|
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
|
|
|
|
|
|
|
|
float sa = 0;
|
|
|
|
{
|
|
|
|
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
|
|
|
GGML_F32_VEC ax[GGML_F32_ARR];
|
|
|
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
|
|
|
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
|
|
|
|
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
|
|
|
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
|
|
|
|
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
|
|
|
|
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
GGML_F32_VEC_REDUCE(sa, sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
|
|
|
|
|
|
|
|
int64_t j = 0;
|
|
|
|
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
|
|
|
for (; j < head_size; j += GGML_F32_STEP) {
|
|
|
|
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
|
|
|
|
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
|
|
|
|
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
|
|
|
|
|
|
|
|
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
|
|
|
|
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
|
|
|
|
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
|
|
|
|
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
|
|
|
|
|
|
|
|
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
|
|
|
|
|
|
|
|
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
|
|
|
|
// kv + s * decay + sa * b
|
|
|
|
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
|
|
|
|
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
|
|
|
|
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
|
|
|
|
|
|
|
|
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
|
|
|
|
|
|
|
|
// There shouldn't be left-overs though.
|
|
|
|
for (; j < head_size; j++) {
|
|
|
|
int64_t t_h_j_offset = t_h_offset + j;
|
|
|
|
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
|
|
|
|
|
|
|
float r_val = r[t_h_j_offset];
|
|
|
|
float w_val = w[t_h_j_offset];
|
|
|
|
float k_val = k[t_h_j_offset];
|
|
|
|
float b_val = b[t_h_j_offset];
|
|
|
|
float kv_val = v[t_h_i_offset] * k_val;
|
|
|
|
|
|
|
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
|
|
|
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
|
|
|
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
for (int64_t t = 0; t < T; t++) {
|
|
|
|
int64_t t_offset = t * t_stride;
|
|
|
|
int64_t state_offset = head_size * C * (t / (T / n_seqs));
|
|
|
|
float * state_cur = state + state_offset;
|
|
|
|
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
|
|
|
|
|
|
|
|
for (int64_t h = h_start; h < h_end; h++) {
|
|
|
|
int64_t h_offset = h * h_stride;
|
|
|
|
int64_t t_h_offset = t_offset + h_offset;
|
|
|
|
int64_t h_2d_offset = h * h_stride_2d;
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < head_size; i++) {
|
|
|
|
int64_t t_h_i_offset = t_h_offset + i;
|
|
|
|
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
|
|
|
|
|
|
|
|
float v_val = v[t_h_i_offset];
|
|
|
|
|
|
|
|
float sa = 0, result = 0;
|
|
|
|
for (int64_t j = 0; j < head_size; j++) {
|
|
|
|
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int64_t j = 0; j < head_size; j++) {
|
|
|
|
int64_t t_h_j_offset = t_h_offset + j;
|
|
|
|
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
|
|
|
|
|
|
|
|
float r_val = r[t_h_j_offset];
|
|
|
|
float w_val = w[t_h_j_offset];
|
|
|
|
float k_val = k[t_h_j_offset];
|
|
|
|
float b_val = b[t_h_j_offset];
|
|
|
|
float kv_val = v_val * k_val;
|
|
|
|
float prev_state_val = state_prev[h_2d_i_j_offset];
|
|
|
|
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
|
|
|
|
result += state_cur[h_2d_i_j_offset] * r_val;
|
|
|
|
}
|
|
|
|
dst_data[t_h_i_offset] = result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ggml_compute_forward_rwkv_wkv7(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_rwkv_wkv7_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_map_custom1
|
|
|
|
|
|
|
|
void ggml_compute_forward_map_custom1(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * a = dst->src[0];
|
|
|
|
|
|
|
|
struct ggml_map_custom1_op_params p;
|
|
|
|
memcpy(&p, dst->op_params, sizeof(p));
|
|
|
|
|
|
|
|
p.fun(dst, a, params->ith, params->nth, p.userdata);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_map_custom2
|
|
|
|
|
|
|
|
void ggml_compute_forward_map_custom2(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * a = dst->src[0];
|
|
|
|
const ggml_tensor * b = dst->src[1];
|
|
|
|
|
|
|
|
struct ggml_map_custom2_op_params p;
|
|
|
|
memcpy(&p, dst->op_params, sizeof(p));
|
|
|
|
|
|
|
|
p.fun(dst, a, b, params->ith, params->nth, p.userdata);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_map_custom3
|
|
|
|
|
|
|
|
void ggml_compute_forward_map_custom3(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * a = dst->src[0];
|
|
|
|
const ggml_tensor * b = dst->src[1];
|
|
|
|
const ggml_tensor * c = dst->src[2];
|
|
|
|
|
|
|
|
struct ggml_map_custom3_op_params p;
|
|
|
|
memcpy(&p, dst->op_params, sizeof(p));
|
|
|
|
|
|
|
|
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
|
|
|
|
}
|
|
|
|
|
2025-04-09 12:31:34 +02:00
|
|
|
// ggml_compute_forward_custom
|
|
|
|
|
|
|
|
void ggml_compute_forward_custom(
|
|
|
|
const struct ggml_compute_params * params,
|
|
|
|
struct ggml_tensor * dst) {
|
|
|
|
|
|
|
|
struct ggml_custom_op_params p;
|
|
|
|
memcpy(&p, dst->op_params, sizeof(p));
|
|
|
|
|
|
|
|
p.fun(dst, params->ith, params->nth, p.userdata);
|
|
|
|
}
|
|
|
|
|
2025-04-02 17:46:16 +05:30
|
|
|
// ggml_compute_forward_cross_entropy_loss
|
|
|
|
|
|
|
|
static void ggml_compute_forward_cross_entropy_loss_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
|
|
|
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
|
|
GGML_ASSERT(ggml_is_scalar(dst));
|
|
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
const int64_t nc = src0->ne[0];
|
|
|
|
const int64_t nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
float * sums = (float *) params->wdata;
|
|
|
|
float * st = ((float *) params->wdata) + nth + ith*nc;
|
|
|
|
float sum_thread = 0.0f;
|
|
|
|
|
|
|
|
GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int64_t ir0 = dr*ith;
|
|
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
for (int64_t i1 = ir0; i1 < ir1; ++i1) {
|
|
|
|
const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
|
|
|
|
const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int64_t i = 0; i < nc; ++i) {
|
|
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
|
|
assert(!isnan(s0[i]));
|
|
|
|
assert(!isnan(s1[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float max = -INFINITY;
|
|
|
|
ggml_vec_max_f32(nc, &max, s0);
|
|
|
|
const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
|
|
|
|
assert(sum_softmax >= 0.0);
|
|
|
|
|
|
|
|
ggml_vec_add1_f32(nc, st, st, -sum_softmax);
|
|
|
|
ggml_vec_mul_f32(nc, st, st, s1);
|
|
|
|
|
|
|
|
float sum_st = 0.0f;
|
|
|
|
ggml_vec_sum_f32(nc, &sum_st, st);
|
|
|
|
sum_thread += sum_st;
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int64_t i = 0; i < nc; ++i) {
|
|
|
|
assert(!isnan(st[i]));
|
|
|
|
assert(!isinf(st[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
sums[ith] = sum_thread;
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
|
|
|
|
if (ith == 0) {
|
|
|
|
float * dp = (float *) dst->data;
|
|
|
|
ggml_vec_sum_f32(nth, dp, sums);
|
|
|
|
dp[0] *= -1.0f / (float) nr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_cross_entropy_loss(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_cross_entropy_loss_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ggml_compute_forward_cross_entropy_loss_back
|
|
|
|
|
|
|
|
static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
|
|
|
|
const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
|
|
|
|
const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0f));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src1f));
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(grad));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
|
|
|
|
|
|
|
|
const int64_t ith = params->ith;
|
|
|
|
const int64_t nth = params->nth;
|
|
|
|
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
const int64_t nc = src0f->ne[0];
|
|
|
|
const int64_t nr = ggml_nrows(src0f);
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int64_t ir0 = dr*ith;
|
|
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
|
|
|
|
|
|
|
|
for (int64_t i1 = ir0; i1 < ir1; i1++) {
|
|
|
|
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
|
|
|
|
const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
|
|
|
|
const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int64_t i = 0; i < nc; ++i) {
|
|
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
|
|
assert(!isnan(s0[i]));
|
|
|
|
assert(!isnan(s1[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// soft_max
|
|
|
|
float max = -INFINITY;
|
|
|
|
ggml_vec_max_f32(nc, &max, s0);
|
|
|
|
const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
|
|
|
|
assert(sum > 0.0);
|
|
|
|
ggml_vec_scale_f32(nc, ds0, 1.0/sum);
|
|
|
|
|
|
|
|
// grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
|
|
|
|
ggml_vec_sub_f32(nc, ds0, ds0, s1);
|
|
|
|
ggml_vec_scale_f32(nc, ds0, d_by_nr);
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
for (int64_t i = 0; i < nc; ++i) {
|
|
|
|
assert(!isnan(ds0[i]));
|
|
|
|
assert(!isinf(ds0[i]));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_cross_entropy_loss_back(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ggml_compute_forward_opt_step_adamw_f32(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
const ggml_tensor * src0_grad = dst->src[1];
|
|
|
|
const ggml_tensor * src0_grad_m = dst->src[2];
|
|
|
|
const ggml_tensor * src0_grad_v = dst->src[3];
|
|
|
|
const ggml_tensor * adamw_params = dst->src[4];
|
|
|
|
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
|
|
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
|
|
|
|
GGML_ASSERT(ggml_nelements(adamw_params) == 7);
|
|
|
|
|
|
|
|
const int ith = params->ith;
|
|
|
|
const int nth = params->nth;
|
|
|
|
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
|
|
|
|
GGML_TENSOR_UNARY_OP_LOCALS
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
|
|
|
|
// rows per thread
|
|
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
|
|
|
|
// row range for this thread
|
|
|
|
const int ir0 = dr*ith;
|
|
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
|
|
|
|
const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
|
|
|
|
const float alpha = adamw_params_ptr[0];
|
|
|
|
const float beta1 = adamw_params_ptr[1];
|
|
|
|
const float beta2 = adamw_params_ptr[2];
|
|
|
|
const float eps = adamw_params_ptr[3];
|
|
|
|
const float wd = adamw_params_ptr[4];
|
|
|
|
const float beta1h = adamw_params_ptr[5];
|
|
|
|
const float beta2h = adamw_params_ptr[6];
|
|
|
|
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
|
|
const int64_t i03 = ir/(ne02*ne01);
|
|
|
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
|
|
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
|
|
|
|
const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
|
|
|
|
|
|
|
|
float * w = (float *) ((char *) src0->data + offset); // weight
|
|
|
|
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
|
|
|
|
float * m = (float *) ((char *) src0_grad_m->data + offset);
|
|
|
|
float * v = (float *) ((char *) src0_grad_v->data + offset);
|
|
|
|
|
|
|
|
for (int i00 = 0; i00 < ne00; ++i00) {
|
|
|
|
m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
|
|
|
|
v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
|
|
|
|
|
|
|
|
const float mh = m[i00]*beta1h;
|
|
|
|
const float vh = sqrtf(v[i00]*beta2h) + eps;
|
|
|
|
|
|
|
|
// The weight decay is applied independently of the Adam momenta m and v.
|
|
|
|
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
|
|
|
|
// See: https://arxiv.org/pdf/1711.05101v3.pdf
|
|
|
|
w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_compute_forward_opt_step_adamw(
|
|
|
|
const ggml_compute_params * params,
|
|
|
|
ggml_tensor * dst) {
|
|
|
|
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
|
|
|
|
|
|
switch (src0->type) {
|
|
|
|
case GGML_TYPE_F32:
|
|
|
|
{
|
|
|
|
ggml_compute_forward_opt_step_adamw_f32(params, dst);
|
|
|
|
} break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
GGML_ABORT("fatal error");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|