Files
llama.cpp/ggml/src/ggml-sycl/rope.cpp

470 lines
22 KiB
C++
Raw Normal View History

#include "rope.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml.h"
struct rope_corr_dims {
float v[2];
};
struct mrope_sections {
int v[4];
};
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
}
*cos_theta = sycl::cos(theta) * mscale;
*sin_theta = sycl::sin(theta) * mscale;
}
template <typename T, bool has_ff>
static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, float freq_scale, float ext_factor, float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
const sycl::nd_item<3> & item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
const int row0 = row % ne1;
const int channel0 = row / ne1;
const int i = row * ne0 + i0;
const int i2 = channel0 * s2 + row0 * s1 + i0;
if (i0 >= n_dims) {
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2);
return;
}
const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i2 + 0];
const float x1 = x[i2 + 1];
dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
dst[i + 1] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
const sycl::nd_item<3> & item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
const int row0 = row % ne1;
const int channel0 = row / ne1;
const int i = row * ne0 + i0 / 2;
const int i2 = channel0 * s2 + row0 * s1 + i0 / 2;
if (i0 >= n_dims) {
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2 + i0 / 2);
return;
}
const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i2 + 0];
const float x1 = x[i2 + n_dims / 2];
dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
if (i0 >= n_dims) {
*reinterpret_cast<sycl::vec<T, 2> *>(dst + idst + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i0 / 2 + ix);
return;
}
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
const int sect_dims = sections.v[0] + sections.v[1];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0f;
if (sector < sections.v[0]) {
const int p = sector;
theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
} else {
// Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
const int p = sector - sections.v[0];
theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T>
static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
/*
DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_norm<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
} else {
/*
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_norm<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
}
}
template <typename T>
static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
const int n_dims, const int nr, const int32_t * pos, const float freq_scale,
const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
} else {
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
}
}
template <typename T>
static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
// rope vision
template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(dst->src[0]->type == dst->type);
const int64_t ne00 = dst->src[0]->ne[0]; // head dims
const int64_t ne01 = dst->src[0]->ne[1]; // num heads
const int64_t ne02 = dst->src[0]->ne[2]; // num heads
const int64_t nr = ggml_nrows(dst->src[0]);
const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
mrope_sections sections;
// RoPE alteration for extended context
float freq_base;
float freq_scale;
float ext_factor;
float attn_factor;
float beta_fast;
float beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
ggml : move rope type enum to ggml.h (#8949) * ggml : move rope type enum to ggml.h This commit moves the `llama_rope_type` enum from `llama.h` to `ggml.h` and changes its name to `ggml_rope_type`. The motivation for this change is to address the TODO in `llama.h` and use the enum in ggml. Note: This commit does not change the `mode` parameter to be of type `enum ggml_rope_type`. The name `mode` and its usage suggest that it might be more generic and possibly used as a bit field for multiple flags. Further investigation/discussion may be needed to determine if `mode` should be restricted to RoPE types. * squash! ggml : move rope type enum to ggml.h This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from ggml.h, and back the llama_rope_type enum. I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is safe to remove it yet. * squash! ggml : move rope type enum to ggml.h This commit removes the enum ggml_rope_type from ggml.h and replaces it with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has been updated to reflect this change. * squash! ggml : move rope type enum to ggml.h This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX macro/define to be passed to the shader compiler. * squash! ggml : move rope type enum to ggml.h This commit fixes the editorconfig-checker warnings. * squash! ggml : move rope type enum to ggml.h Update comment for ggml_rope function. * Revert "squash! ggml : move rope type enum to ggml.h" This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6. * squash! ggml : move rope type enum to ggml.h Add GGML_ROPE_TYPE_NEOX to rope_common.comp. * remove extra line --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-08-13 21:13:15 +02:00
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr;
if (dst->src[2] != nullptr) {
freq_factors = (const float *) dst->src[2]->data;
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
// compute
if (is_neox) {
GGML_SYCL_DEBUG("%s: neox path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
main_stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_mrope && !is_vision) {
GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else {
GGML_SYCL_DEBUG("%s: norm path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
main_stream);
} else {
GGML_ABORT("fatal error");
}
}
}
void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
2025-05-26 10:28:53 +02:00
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3);
ggml_sycl_op_rope(ctx, dst);
}