leveldb/doc/index.html
jorlow@chromium.org e11bdf1935 Upstream changes
git-svn-id: https://leveldb.googlecode.com/svn/trunk@15 62dab493-f737-651d-591e-8d6aee1b9529
2011-03-25 20:27:43 +00:00

508 lines
19 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" type="text/css" href="doc.css" />
<title>Leveldb</title>
</head>
<body>
<h1>Leveldb</h1>
<address>Jeff Dean, Sanjay Ghemawat</address>
<p>
The <code>leveldb</code> library provides a persistent key value store. Keys and
values are arbitrary byte arrays. The keys are ordered within the key
value store according to a user-specified comparator function.
<p>
<h1>Opening A Database</h1>
<p>
A <code>leveldb</code> database has a name which corresponds to a file system
directory. All of the contents of database are stored in this
directory. The following example shows how to open a database,
creating it if necessary:
<p>
<pre>
#include &lt;assert&gt;
#include "leveldb/include/db.h"
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &amp;db);
assert(status.ok());
...
</pre>
If you want to raise an error if the database already exists, add
the following line before the <code>leveldb::DB::Open</code> call:
<pre>
options.error_if_exists = true;
</pre>
<h1>Status</h1>
<p>
You may have noticed the <code>leveldb::Status</code> type above. Values of this
type are returned by most functions in <code>leveldb</code> that may encounter an
error. You can check if such a result is ok, and also print an
associated error message:
<p>
<pre>
leveldb::Status s = ...;
if (!s.ok()) cerr &lt;&lt; s.ToString() &lt;&lt; endl;
</pre>
<h1>Closing A Database</h1>
<p>
When you are done with a database, just delete the database object.
Example:
<p>
<pre>
... open the db as described above ...
... do something with db ...
delete db;
</pre>
<h1>Reads And Writes</h1>
<p>
The database provides <code>Put</code>, <code>Delete</code>, and <code>Get</code> methods to
modify/query the database. For example, the following code
moves the value stored under key1 to key2.
<p>
<pre>
std::string value;
leveldb::Status s = db-&gt;Get(leveldb::ReadOptions(), key1, &amp;value);
if (s.ok()) s = db-&gt;Put(leveldb::WriteOptions(), key2, value);
if (s.ok()) s = db-&gt;Delete(leveldb::WriteOptions(), key1);
</pre>
See <a href="#async">important performance note</a> below for how to
speed up writes significantly.
<h1>Atomic Updates</h1>
<p>
Note that if the process dies after the Put of key2 but before the
delete of key1, the same value may be left stored under multiple keys.
Such problems can be avoided by using the <code>WriteBatch</code> class to
atomically apply a set of updates:
<p>
<pre>
#include "leveldb/include/write_batch.h"
...
std::string value;
leveldb::Status s = db-&gt;Get(leveldb::ReadOptions(), key1, &amp;value);
if (s.ok()) {
leveldb::WriteBatch batch;
batch.Delete(key1);
batch.Put(key2, value);
s = db-&gt;Write(leveldb::WriteOptions(), &amp;batch);
}
</pre>
The <code>WriteBatch</code> holds a sequence of edits to be made to the database,
and these edits within the batch are applied in order. Note that we
called <code>Delete</code> before <code>Put</code> so that if <code>key1</code> is identical to <code>key2</code>,
we do not end up erroneously dropping the value entirely.
<p>
Apart from its atomicity benefits, <code>WriteBatch</code> may also be used to
speed up bulk updates by placing lots of individual mutations into the
same batch.
<p>
<h1>Concurrency</h1>
<p>
A database may only be opened by one process at a time. The <code>leveldb</code>
implementation acquires a lock from the operating system to prevent
misuse. Within a single process, the same <code>leveldb::DB</code> object may
be safely used by multiple concurrent threads.
<p>
<h1>Iteration</h1>
<p>
The following example demonstrates how to print all key,value pairs
in a database.
<p>
<pre>
leveldb::Iterator* it = db-&gt;NewIterator(leveldb::ReadOptions());
for (it-&gt;SeekToFirst(); it-&gt;Valid(); it-&gt;Next()) {
cout &lt;&lt; it-&gt;key().ToString() &lt;&lt; ": " &lt;&lt; it-&gt;value().ToString() &lt;&lt; endl;
}
assert(it-&gt;status().ok()); // Check for any errors found during the scan
delete it;
</pre>
The following variation shows how to process just the keys in the
range <code>[start,limit)</code>:
<p>
<pre>
for (it-&gt;Seek(start);
it-&gt;Valid() &amp;&amp; it-&gt;key().ToString() &lt; limit;
it-&gt;Next()) {
...
}
</pre>
You can also process entries in reverse order. (Caveat: reverse
iteration may be somewhat slower than forward iteration.)
<p>
<pre>
for (it-&gt;SeekToLast(); it-&gt;Valid(); it-&gt;Prev()) {
...
}
</pre>
<h1>Snapshots</h1>
<p>
Snapshots provide consistent read-only views over the entire state of
the key-value store. <code>ReadOptions::snapshot</code> may be non-NULL to indicate
that a read should operate on a particular version of the DB state.
If <code>ReadOptions::snapshot</code> is NULL, the read will operate on an
implicit snapshot of the current state.
<p>
Snapshots typically are created by the DB::GetSnapshot() method:
<p>
<pre>
leveldb::ReadOptions options;
options.snapshot = db-&gt;GetSnapshot();
... apply some updates to db ...
leveldb::Iterator* iter = db-&gt;NewIterator(options);
... read using iter to view the state when the snapshot was created ...
delete iter;
db-&gt;ReleaseSnapshot(options.snapshot);
</pre>
Note that when a snapshot is no longer needed, it should be released
using the DB::ReleaseSnapshot interface. This allows the
implementation to get rid of state that was being maintained just to
support reading as of that snapshot.
<p>
A Write operation can also return a snapshot that
represents the state of the database just after applying a particular
set of updates:
<p>
<pre>
leveldb::Snapshot* snapshot;
leveldb::WriteOptions write_options;
write_options.post_write_snapshot = &amp;snapshot;
leveldb::Status status = db-&gt;Write(write_options, ...);
... perform other mutations to db ...
leveldb::ReadOptions read_options;
read_options.snapshot = snapshot;
leveldb::Iterator* iter = db-&gt;NewIterator(read_options);
... read as of the state just after the Write call returned ...
delete iter;
db-&gt;ReleaseSnapshot(snapshot);
</pre>
<h1>Slice</h1>
<p>
The return value of the <code>it->key()</code> and <code>it->value()</code> calls above
are instances of the <code>leveldb::Slice</code> type. <code>Slice</code> is a simple
structure that contains a length and a pointer to an external byte
array. Returning a <code>Slice</code> is a cheaper alternative to returning a
<code>std::string</code> since we do not need to copy potentially large keys and
values. In addition, <code>leveldb</code> methods do not return null-terminated
C-style strings since <code>leveldb</code> keys and values are allowed to
contain '\0' bytes.
<p>
C++ strings and null-terminated C-style strings can be easily converted
to a Slice:
<p>
<pre>
leveldb::Slice s1 = "hello";
std::string str("world");
leveldb::Slice s2 = str;
</pre>
A Slice can be easily converted back to a C++ string:
<pre>
std::string str = s1.ToString();
assert(str == std::string("hello"));
</pre>
Be careful when using Slices since it is up to the caller to ensure that
the external byte array into which the Slice points remains live while
the Slice is in use. For example, the following is buggy:
<p>
<pre>
leveldb::Slice slice;
if (...) {
std::string str = ...;
slice = str;
}
Use(slice);
</pre>
When the <code>if</code> statement goes out of scope, <code>str</code> will be destroyed and the
backing storage for <code>slice</code> will disappear.
<p>
<h1>Comparators</h1>
<p>
The preceding examples used the default ordering function for key,
which orders bytes lexicographically. You can however supply a custom
comparator when opening a database. For example, suppose each
database key consists of two numbers and we should sort by the first
number, breaking ties by the second number. First, define a proper
subclass of <code>leveldb::Comparator</code> that expresses these rules:
<p>
<pre>
class TwoPartComparator : public leveldb::Comparator {
public:
// Three-way comparison function:
// if a &lt; b: negative result
// if a &gt; b: positive result
// else: zero result
int Compare(const leveldb::Slice&amp; a, const leveldb::Slice&amp; b) const {
int a1, a2, b1, b2;
ParseKey(a, &amp;a1, &amp;a2);
ParseKey(b, &amp;b1, &amp;b2);
if (a1 &lt; b1) return -1;
if (a1 &gt; b1) return +1;
if (a2 &lt; b2) return -1;
if (a2 &gt; b2) return +1;
return 0;
}
// Ignore the following methods for now:
const char* Name() { return "TwoPartComparator"; }
void FindShortestSeparator(std::string*, const leveldb::Slice&amp;) const { }
void FindShortSuccessor(std::string*) const { }
};
</pre>
Now create a database using this custom comparator:
<p>
<pre>
TwoPartComparator cmp;
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
options.comparator = &amp;cmp;
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &amp;db);
...
</pre>
<h2>Backwards compatibility</h2>
<p>
The result of the comparator's <code>Name</code> method is attached to the
database when it is created, and is checked on every subsequent
database open. If the name changes, the <code>leveldb::DB::Open</code> call will
fail. Therefore, change the name if and only if the new key format
and comparison function are incompatible with existing databases, and
it is ok to discard the contents of all existing databases.
<p>
You can however still gradually evolve your key format over time with
a little bit of pre-planning. For example, you could store a version
number at the end of each key (one byte should suffice for most uses).
When you wish to switch to a new key format (e.g., adding an optional
third part to the keys processed by <code>TwoPartComparator</code>),
(a) keep the same comparator name (b) increment the version number
for new keys (c) change the comparator function so it uses the
version numbers found in the keys to decide how to interpret them.
<p>
<h1>Performance</h1>
<p>
Performance can be tuned by changing the default values of the
types defined in <code>leveldb/include/options.h</code>.
<p>
<h2><a name="async">Asynchronous Writes</a></h2>
By default, each write to <code>leveldb</code> is synchronous: it does
not return until the write has been pushed from memory to persistent
storage. (On Posix systems, this is implemented by calling either
<code>fdatasync(...)</code> or <code>msync(..., MS_SYNC)</code>.)
<strong>Synchronous writes may be very slow and the synchrony can be
optionally disabled</strong>:
<pre>
leveldb::WriteOptions write_options;
write_options.sync = false;
db-&gt;Put(write_options, ...);
</pre>
Asynchronous writes are often more than a hundred times as fast as
synchronous writes. The downside of asynchronous writes is that a
crash of the machine may cause the last few updates to be lost. Note
that a crash of just the writing process (i.e., not a reboot) will not
cause any loss since even when <code>sync</code> is false, an update
is pushed from the process memory into the operating system before it
is considered done.
<p>
Asynchronous writes can be particularly beneficial when loading a
large amount of data into the database since you can mitigate the
problem of lost updates by restarting the bulk load. A hybrid scheme
is also possible where every Nth write is synchronous, and in the
event of a crash, the bulk load is restarted just after the last
synchronous write finished by the previous run.
<p>
<code>WriteBatch</code> provides an alternative to asynchronous writes.
Multiple updates may be placed in the same <code>WriteBatch</code> and
applied together using a synchronous write. The extra cost of the
synchronous write will be amortized across all of the writes in the batch.
<p>
<h2>Block size</h2>
<p>
<code>leveldb</code> groups adjacent keys together into the same block and such a
block is the unit of transfer to and from persistent storage. The
default block size is approximately 8192 uncompressed bytes.
Applications that mostly do bulk scans over the contents of the
database may wish to increase this size. Applications that do a lot
of point reads of small values may wish to switch to a smaller block
size if performance measurements indicate an improvement. There isn't
much benefit in using blocks smaller than one kilobyte, or larger than
a few megabytes. Also note that compression will be more effective
with larger block sizes.
<p>
<h2>Compression</h2>
<p>
Each block is individually compressed before being written to
persistent storage. Compression is on by default since the default
compression method is very fast, and is automatically disabled for
uncompressible data. In rare cases, applications may want to disable
compression entirely, but should only do so if benchmarks show a
performance improvement:
<p>
<pre>
leveldb::Options options;
options.compression = leveldb::kNoCompression;
... leveldb::DB::Open(options, name, ...) ....
</pre>
<h2>Cache</h2>
<p>
The contents of the database are stored in a set of files in the
filesystem and each file stores a sequence of compressed blocks. If
<code>options.cache</code> is non-NULL, it is used to cache frequently used
uncompressed block contents.
<p>
<pre>
#include "leveldb/include/cache.h"
leveldb::Options options;
options.cache = leveldb::NewLRUCache(100 * 1048576); // 100MB cache
leveldb::DB* db;
leveldb::DB::Open(options, name, &db);
... use the db ...
delete db
delete options.cache;
</pre>
Note that the cache holds uncompressed data, and therefore it should
be sized according to application level data sizes, without any
reduction from compression. (Caching of compressed blocks is left to
the operating system buffer cache, or any custom <code>Env</code>
implementation provided by the client.)
<p>
When performing a bulk read, the application may wish to disable
caching so that the data processed by the bulk read does not end up
displacing most of the cached contents. A per-iterator option can be
used to achieve this:
<p>
<pre>
leveldb::ReadOptions options;
options.fill_cache = false;
leveldb::Iterator* it = db-&gt;NewIterator(options);
for (it-&gt;SeekToFirst(); it-&gt;Valid(); it-&gt;Next()) {
...
}
</pre>
<h2>Key Layout</h2>
<p>
Note that the unit of disk transfer and caching is a block. Adjacent
keys (according to the database sort order) will usually be placed in
the same block. Therefore the application can improve its performance
by placing keys that are accessed together near each other and placing
infrequently used keys in a separate region of the key space.
<p>
For example, suppose we are implementing a simple file system on top
of <code>leveldb</code>. The types of entries we might wish to store are:
<p>
<pre>
filename -&gt; permission-bits, length, list of file_block_ids
file_block_id -&gt; data
</pre>
We might want to prefix <code>filename</code> keys with one letter (say '/') and the
<code>file_block_id</code> keys with a different letter (say '0') so that scans
over just the metadata do not force us to fetch and cache bulky file
contents.
<p>
<h2>Large Values</h2>
<p>
<code>leveldb</code> has special treatment of large values (by default, a value
of length greater than or equal to 64K is considered large, though a
field in Options can be used to adjust this threshold). Each such
large value is placed in a separate operating system file, and the
normal database blocks just contain pointers to such files.
<p>
Furthermore, if the same large value occurs multiple times in a single
database, it will be stored just once.
<p>
<h1>Checksums</h1>
<p>
<code>leveldb</code> associates checksums with all data it stores in the file system.
There are two separate controls provided over how aggressively these
checksums are verified:
<p>
<ul>
<li> <code>ReadOptions::verify_checksums</code> may be set to true to force
checksum verification of all data that is read from the file system on
behalf of a particular read. By default, no such verification is
done.
<p>
<li> <code>Options::paranoid_checks</code> may be set to true before opening a
database to make the database implementation raise an error as soon as
it detects an internal corruption. Depending on which portion of the
database has been corrupted, the error may be raised when the database
is opened, or later by another database operation. By default,
paranoid checking is off so that the database can be used even if
parts of its persistent storage have been corrupted.
<p>
If a database is corrupted (perhaps it cannot be opened when
paranoid checking is turned on), the <code>leveldb::RepairDB</code> function
may be used to recover as much of the data as possible
<p>
</ul>
<h1>Approximate Sizes</h1>
<p>
The <code>GetApproximateSizes</code> method can used to get the approximate
number of bytes of file system space used by one or more key ranges.
<p>
<pre>
leveldb::Range ranges[2];
ranges[0] = leveldb::Range("a", "c");
ranges[1] = leveldb::Range("x", "z");
uint64_t sizes[2];
leveldb::Status s = db-&gt;GetApproximateSizes(ranges, 2, sizes);
</pre>
The preceding call will set <code>sizes[0]</code> to the approximate number of
bytes of file system space used by the key range <code>[a..c)</code> and
<code>sizes[1]</code> to the approximate number of bytes used by the key range
<code>[x..z)</code>.
<p>
<h1>Environment</h1>
<p>
All file operations (and other operating system calls) issued by the
<code>leveldb</code> implementation are routed through a <code>leveldb::Env</code> object.
Sophisticated clients may wish to provide their own <code>Env</code>
implementation to get better control. For example, an application may
introduce artificial delays in the file IO paths to limit the impact
of <code>leveldb</code> on other activities in the system.
<p>
<pre>
class SlowEnv : public leveldb::Env {
.. implementation of the Env interface ...
};
SlowEnv env;
leveldb::Options options;
options.env = &amp;env;
Status s = leveldb::DB::Open(options, ...);
</pre>
<h1>Porting</h1>
<p>
<code>leveldb</code> may be ported to a new platform by providing platform
specific implementations of the types/methods/functions exported by
<code>leveldb/port/port.h</code>. See <code>leveldb/port/port_example.h</code> for more
details.
<p>
In addition, the new platform may need a new default <code>leveldb::Env</code>
implementation. See <code>leveldb/util/env_posix.h</code> for an example.
<h1>Other Information</h1>
<p>
Details about the <code>leveldb</code> implementation may be found in
the following documents:
<ul>
<li> <a href="impl.html">Implementation notes</a>
<li> <a href="table_format.txt">Format of an immutable Table file</a>
<li> <a href="log_format.txt">Format of a log file</a>
</ul>
</body>
</html>