leveldb/doc/bench/db_bench_sqlite3.cc
Hans Wennborg 36a5f8ed7f A number of fixes:
- Replace raw slice comparison with a call to user comparator.
  Added test for custom comparators.

- Fix end of namespace comments.

- Fixed bug in picking inputs for a level-0 compaction.

  When finding overlapping files, the covered range may expand
  as files are added to the input set.  We now correctly expand
  the range when this happens instead of continuing to use the
  old range.  For example, suppose L0 contains files with the
  following ranges:

      F1: a .. d
      F2:    c .. g
      F3:       f .. j

  and the initial compaction target is F3.  We used to search
  for range f..j which yielded {F2,F3}.  However we now expand
  the range as soon as another file is added.  In this case,
  when F2 is added, we expand the range to c..j and restart the
  search.  That picks up file F1 as well.

  This change fixes a bug related to deleted keys showing up
  incorrectly after a compaction as described in Issue 44.

(Sync with upstream @25072954)
2011-10-31 17:22:06 +00:00

697 lines
21 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <stdio.h>
#include <stdlib.h>
#include <sqlite3.h>
#include "util/histogram.h"
#include "util/random.h"
#include "util/testutil.h"
// Comma-separated list of operations to run in the specified order
// Actual benchmarks:
//
// fillseq -- write N values in sequential key order in async mode
// fillseqsync -- write N/100 values in sequential key order in sync mode
// fillseqbatch -- batch write N values in sequential key order in async mode
// fillrandom -- write N values in random key order in async mode
// fillrandsync -- write N/100 values in random key order in sync mode
// fillrandbatch -- batch write N values in sequential key order in async mode
// overwrite -- overwrite N values in random key order in async mode
// fillrand100K -- write N/1000 100K values in random order in async mode
// fillseq100K -- write N/1000 100K values in sequential order in async mode
// readseq -- read N times sequentially
// readrandom -- read N times in random order
// readrand100K -- read N/1000 100K values in sequential order in async mode
static const char* FLAGS_benchmarks =
"fillseq,"
"fillseqsync,"
"fillseqbatch,"
"fillrandom,"
"fillrandsync,"
"fillrandbatch,"
"overwrite,"
"overwritebatch,"
"readrandom,"
"readseq,"
"fillrand100K,"
"fillseq100K,"
"readseq,"
"readrand100K,"
;
// Number of key/values to place in database
static int FLAGS_num = 1000000;
// Number of read operations to do. If negative, do FLAGS_num reads.
static int FLAGS_reads = -1;
// Size of each value
static int FLAGS_value_size = 100;
// Print histogram of operation timings
static bool FLAGS_histogram = false;
// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;
// Page size. Default 1 KB.
static int FLAGS_page_size = 1024;
// Number of pages.
// Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB.
static int FLAGS_num_pages = 4096;
// If true, do not destroy the existing database. If you set this
// flag and also specify a benchmark that wants a fresh database, that
// benchmark will fail.
static bool FLAGS_use_existing_db = false;
// If true, we allow batch writes to occur
static bool FLAGS_transaction = true;
// If true, we enable Write-Ahead Logging
static bool FLAGS_WAL_enabled = true;
inline
static void ExecErrorCheck(int status, char *err_msg) {
if (status != SQLITE_OK) {
fprintf(stderr, "SQL error: %s\n", err_msg);
sqlite3_free(err_msg);
exit(1);
}
}
inline
static void StepErrorCheck(int status) {
if (status != SQLITE_DONE) {
fprintf(stderr, "SQL step error: status = %d\n", status);
exit(1);
}
}
inline
static void ErrorCheck(int status) {
if (status != SQLITE_OK) {
fprintf(stderr, "sqlite3 error: status = %d\n", status);
exit(1);
}
}
inline
static void WalCheckpoint(sqlite3* db_) {
// Flush all writes to disk
if (FLAGS_WAL_enabled) {
sqlite3_wal_checkpoint_v2(db_, NULL, SQLITE_CHECKPOINT_FULL, NULL, NULL);
}
}
namespace leveldb {
// Helper for quickly generating random data.
namespace {
class RandomGenerator {
private:
std::string data_;
int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < 1048576) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(int len) {
if (pos_ + len > data_.size()) {
pos_ = 0;
assert(len < data_.size());
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
static Slice TrimSpace(Slice s) {
int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
int limit = s.size();
while (limit > start && isspace(s[limit-1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
} // namespace
class Benchmark {
private:
sqlite3* db_;
int db_num_;
int num_;
int reads_;
double start_;
double last_op_finish_;
int64_t bytes_;
std::string message_;
Histogram hist_;
RandomGenerator gen_;
Random rand_;
// State kept for progress messages
int done_;
int next_report_; // When to report next
void PrintHeader() {
const int kKeySize = 16;
PrintEnvironment();
fprintf(stdout, "Keys: %d bytes each\n", kKeySize);
fprintf(stdout, "Values: %d bytes each\n", FLAGS_value_size);
fprintf(stdout, "Entries: %d\n", num_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_)
/ 1048576.0));
PrintWarnings();
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
);
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
}
void PrintEnvironment() {
fprintf(stderr, "SQLite: version %s\n", SQLITE_VERSION);
#if defined(__linux)
time_t now = time(NULL);
fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != NULL) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != NULL) {
const char* sep = strchr(line, ':');
if (sep == NULL) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#endif
}
void Start() {
start_ = Env::Default()->NowMicros() * 1e-6;
bytes_ = 0;
message_.clear();
last_op_finish_ = start_;
hist_.Clear();
done_ = 0;
next_report_ = 100;
}
void FinishedSingleOp() {
if (FLAGS_histogram) {
double now = Env::Default()->NowMicros() * 1e-6;
double micros = (now - last_op_finish_) * 1e6;
hist_.Add(micros);
if (micros > 20000) {
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_++;
if (done_ >= next_report_) {
if (next_report_ < 1000) next_report_ += 100;
else if (next_report_ < 5000) next_report_ += 500;
else if (next_report_ < 10000) next_report_ += 1000;
else if (next_report_ < 50000) next_report_ += 5000;
else if (next_report_ < 100000) next_report_ += 10000;
else if (next_report_ < 500000) next_report_ += 50000;
else next_report_ += 100000;
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
fflush(stderr);
}
}
void Stop(const Slice& name) {
double finish = Env::Default()->NowMicros() * 1e-6;
// Pretend at least one op was done in case we are running a benchmark
// that does not call FinishedSingleOp().
if (done_ < 1) done_ = 1;
if (bytes_ > 0) {
char rate[100];
snprintf(rate, sizeof(rate), "%6.1f MB/s",
(bytes_ / 1048576.0) / (finish - start_));
if (!message_.empty()) {
message_ = std::string(rate) + " " + message_;
} else {
message_ = rate;
}
}
fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
name.ToString().c_str(),
(finish - start_) * 1e6 / done_,
(message_.empty() ? "" : " "),
message_.c_str());
if (FLAGS_histogram) {
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
}
fflush(stdout);
}
public:
enum Order {
SEQUENTIAL,
RANDOM
};
enum DBState {
FRESH,
EXISTING
};
Benchmark()
: db_(NULL),
db_num_(0),
num_(FLAGS_num),
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
bytes_(0),
rand_(301) {
std::vector<std::string> files;
Env::Default()->GetChildren("/tmp", &files);
if (!FLAGS_use_existing_db) {
for (int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("dbbench_sqlite3")) {
Env::Default()->DeleteFile("/tmp/" + files[i]);
}
}
}
}
~Benchmark() {
int status = sqlite3_close(db_);
ErrorCheck(status);
}
void Run() {
PrintHeader();
Open();
const char* benchmarks = FLAGS_benchmarks;
while (benchmarks != NULL) {
const char* sep = strchr(benchmarks, ',');
Slice name;
if (sep == NULL) {
name = benchmarks;
benchmarks = NULL;
} else {
name = Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
bytes_ = 0;
Start();
bool known = true;
bool write_sync = false;
if (name == Slice("fillseq")) {
Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillseqbatch")) {
Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
WalCheckpoint(db_);
} else if (name == Slice("fillrandom")) {
Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillrandbatch")) {
Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000);
WalCheckpoint(db_);
} else if (name == Slice("overwrite")) {
Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("overwritebatch")) {
Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000);
WalCheckpoint(db_);
} else if (name == Slice("fillrandsync")) {
write_sync = true;
Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillseqsync")) {
write_sync = true;
Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillrand100K")) {
Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
WalCheckpoint(db_);
} else if (name == Slice("fillseq100K")) {
Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1);
WalCheckpoint(db_);
} else if (name == Slice("readseq")) {
ReadSequential();
} else if (name == Slice("readrandom")) {
Read(RANDOM, 1);
} else if (name == Slice("readrand100K")) {
int n = reads_;
reads_ /= 1000;
Read(RANDOM, 1);
reads_ = n;
} else {
known = false;
if (name != Slice()) { // No error message for empty name
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
}
}
if (known) {
Stop(name);
}
}
}
void Open() {
assert(db_ == NULL);
int status;
char file_name[100];
char* err_msg = NULL;
db_num_++;
// Open database
snprintf(file_name, sizeof(file_name), "/tmp/dbbench_sqlite3-%d.db",
db_num_);
status = sqlite3_open(file_name, &db_);
if (status) {
fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_));
exit(1);
}
// Change SQLite cache size
char cache_size[100];
snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d",
FLAGS_num_pages);
status = sqlite3_exec(db_, cache_size, NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
// FLAGS_page_size is defaulted to 1024
if (FLAGS_page_size != 1024) {
char page_size[100];
snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d",
FLAGS_page_size);
status = sqlite3_exec(db_, page_size, NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
}
// Change journal mode to WAL if WAL enabled flag is on
if (FLAGS_WAL_enabled) {
std::string WAL_stmt = "PRAGMA journal_mode = WAL";
// LevelDB's default cache size is a combined 4 MB
std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096";
status = sqlite3_exec(db_, WAL_stmt.c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
status = sqlite3_exec(db_, WAL_checkpoint.c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
}
// Change locking mode to exclusive and create tables/index for database
std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE";
std::string create_stmt =
"CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))";
std::string stmt_array[] = { locking_stmt, create_stmt };
int stmt_array_length = sizeof(stmt_array) / sizeof(std::string);
for (int i = 0; i < stmt_array_length; i++) {
status = sqlite3_exec(db_, stmt_array[i].c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
}
}
void Write(bool write_sync, Order order, DBState state,
int num_entries, int value_size, int entries_per_batch) {
// Create new database if state == FRESH
if (state == FRESH) {
if (FLAGS_use_existing_db) {
message_ = "skipping (--use_existing_db is true)";
return;
}
sqlite3_close(db_);
db_ = NULL;
Open();
Start();
}
if (num_entries != num_) {
char msg[100];
snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
message_ = msg;
}
char* err_msg = NULL;
int status;
sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt;
std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)";
std::string begin_trans_str = "BEGIN TRANSACTION;";
std::string end_trans_str = "END TRANSACTION;";
// Check for synchronous flag in options
std::string sync_stmt = (write_sync) ? "PRAGMA synchronous = FULL" :
"PRAGMA synchronous = OFF";
status = sqlite3_exec(db_, sync_stmt.c_str(), NULL, NULL, &err_msg);
ExecErrorCheck(status, err_msg);
// Preparing sqlite3 statements
status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1,
&replace_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
&begin_trans_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1,
&end_trans_stmt, NULL);
ErrorCheck(status);
bool transaction = (entries_per_batch > 1);
for (int i = 0; i < num_entries; i += entries_per_batch) {
// Begin write transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(begin_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(begin_trans_stmt);
ErrorCheck(status);
}
// Create and execute SQL statements
for (int j = 0; j < entries_per_batch; j++) {
const char* value = gen_.Generate(value_size).data();
// Create values for key-value pair
const int k = (order == SEQUENTIAL) ? i + j :
(rand_.Next() % num_entries);
char key[100];
snprintf(key, sizeof(key), "%016d", k);
// Bind KV values into replace_stmt
status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC);
ErrorCheck(status);
status = sqlite3_bind_blob(replace_stmt, 2, value,
value_size, SQLITE_STATIC);
ErrorCheck(status);
// Execute replace_stmt
bytes_ += value_size + strlen(key);
status = sqlite3_step(replace_stmt);
StepErrorCheck(status);
// Reset SQLite statement for another use
status = sqlite3_clear_bindings(replace_stmt);
ErrorCheck(status);
status = sqlite3_reset(replace_stmt);
ErrorCheck(status);
FinishedSingleOp();
}
// End write transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(end_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(end_trans_stmt);
ErrorCheck(status);
}
}
status = sqlite3_finalize(replace_stmt);
ErrorCheck(status);
status = sqlite3_finalize(begin_trans_stmt);
ErrorCheck(status);
status = sqlite3_finalize(end_trans_stmt);
ErrorCheck(status);
}
void Read(Order order, int entries_per_batch) {
int status;
sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt;
std::string read_str = "SELECT * FROM test WHERE key = ?";
std::string begin_trans_str = "BEGIN TRANSACTION;";
std::string end_trans_str = "END TRANSACTION;";
// Preparing sqlite3 statements
status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
&begin_trans_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1,
&end_trans_stmt, NULL);
ErrorCheck(status);
status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, NULL);
ErrorCheck(status);
bool transaction = (entries_per_batch > 1);
for (int i = 0; i < reads_; i += entries_per_batch) {
// Begin read transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(begin_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(begin_trans_stmt);
ErrorCheck(status);
}
// Create and execute SQL statements
for (int j = 0; j < entries_per_batch; j++) {
// Create key value
char key[100];
int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_);
snprintf(key, sizeof(key), "%016d", k);
// Bind key value into read_stmt
status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC);
ErrorCheck(status);
// Execute read statement
while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW);
StepErrorCheck(status);
// Reset SQLite statement for another use
status = sqlite3_clear_bindings(read_stmt);
ErrorCheck(status);
status = sqlite3_reset(read_stmt);
ErrorCheck(status);
FinishedSingleOp();
}
// End read transaction
if (FLAGS_transaction && transaction) {
status = sqlite3_step(end_trans_stmt);
StepErrorCheck(status);
status = sqlite3_reset(end_trans_stmt);
ErrorCheck(status);
}
}
status = sqlite3_finalize(read_stmt);
ErrorCheck(status);
status = sqlite3_finalize(begin_trans_stmt);
ErrorCheck(status);
status = sqlite3_finalize(end_trans_stmt);
ErrorCheck(status);
}
void ReadSequential() {
int status;
sqlite3_stmt *pStmt;
std::string read_str = "SELECT * FROM test ORDER BY key";
status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, NULL);
ErrorCheck(status);
for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) {
bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2);
FinishedSingleOp();
}
status = sqlite3_finalize(pStmt);
ErrorCheck(status);
}
};
} // namespace leveldb
int main(int argc, char** argv) {
for (int i = 1; i < argc; i++) {
double d;
int n;
char junk;
if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
} else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_histogram = n;
} else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
FLAGS_compression_ratio = d;
} else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_existing_db = n;
} else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
FLAGS_num = n;
} else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
FLAGS_reads = n;
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
FLAGS_value_size = n;
} else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) {
FLAGS_transaction = false;
} else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) {
FLAGS_page_size = n;
} else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) {
FLAGS_num_pages = n;
} else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_WAL_enabled = n;
} else {
fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
exit(1);
}
}
leveldb::Benchmark benchmark;
benchmark.Run();
return 0;
}