297e66afc1
Use clang-format to correct formatting to be in agreement with the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html). Doing this simplifies the process of accepting changes. Also fixed a few warnings flagged by clang-tidy. PiperOrigin-RevId: 246350737
715 lines
22 KiB
C++
715 lines
22 KiB
C++
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include <sqlite3.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "util/histogram.h"
|
|
#include "util/random.h"
|
|
#include "util/testutil.h"
|
|
|
|
// Comma-separated list of operations to run in the specified order
|
|
// Actual benchmarks:
|
|
//
|
|
// fillseq -- write N values in sequential key order in async mode
|
|
// fillseqsync -- write N/100 values in sequential key order in sync mode
|
|
// fillseqbatch -- batch write N values in sequential key order in async mode
|
|
// fillrandom -- write N values in random key order in async mode
|
|
// fillrandsync -- write N/100 values in random key order in sync mode
|
|
// fillrandbatch -- batch write N values in sequential key order in async mode
|
|
// overwrite -- overwrite N values in random key order in async mode
|
|
// fillrand100K -- write N/1000 100K values in random order in async mode
|
|
// fillseq100K -- write N/1000 100K values in sequential order in async mode
|
|
// readseq -- read N times sequentially
|
|
// readrandom -- read N times in random order
|
|
// readrand100K -- read N/1000 100K values in sequential order in async mode
|
|
static const char* FLAGS_benchmarks =
|
|
"fillseq,"
|
|
"fillseqsync,"
|
|
"fillseqbatch,"
|
|
"fillrandom,"
|
|
"fillrandsync,"
|
|
"fillrandbatch,"
|
|
"overwrite,"
|
|
"overwritebatch,"
|
|
"readrandom,"
|
|
"readseq,"
|
|
"fillrand100K,"
|
|
"fillseq100K,"
|
|
"readseq,"
|
|
"readrand100K,";
|
|
|
|
// Number of key/values to place in database
|
|
static int FLAGS_num = 1000000;
|
|
|
|
// Number of read operations to do. If negative, do FLAGS_num reads.
|
|
static int FLAGS_reads = -1;
|
|
|
|
// Size of each value
|
|
static int FLAGS_value_size = 100;
|
|
|
|
// Print histogram of operation timings
|
|
static bool FLAGS_histogram = false;
|
|
|
|
// Arrange to generate values that shrink to this fraction of
|
|
// their original size after compression
|
|
static double FLAGS_compression_ratio = 0.5;
|
|
|
|
// Page size. Default 1 KB.
|
|
static int FLAGS_page_size = 1024;
|
|
|
|
// Number of pages.
|
|
// Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB.
|
|
static int FLAGS_num_pages = 4096;
|
|
|
|
// If true, do not destroy the existing database. If you set this
|
|
// flag and also specify a benchmark that wants a fresh database, that
|
|
// benchmark will fail.
|
|
static bool FLAGS_use_existing_db = false;
|
|
|
|
// If true, we allow batch writes to occur
|
|
static bool FLAGS_transaction = true;
|
|
|
|
// If true, we enable Write-Ahead Logging
|
|
static bool FLAGS_WAL_enabled = true;
|
|
|
|
// Use the db with the following name.
|
|
static const char* FLAGS_db = nullptr;
|
|
|
|
inline static void ExecErrorCheck(int status, char* err_msg) {
|
|
if (status != SQLITE_OK) {
|
|
fprintf(stderr, "SQL error: %s\n", err_msg);
|
|
sqlite3_free(err_msg);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
inline static void StepErrorCheck(int status) {
|
|
if (status != SQLITE_DONE) {
|
|
fprintf(stderr, "SQL step error: status = %d\n", status);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
inline static void ErrorCheck(int status) {
|
|
if (status != SQLITE_OK) {
|
|
fprintf(stderr, "sqlite3 error: status = %d\n", status);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
inline static void WalCheckpoint(sqlite3* db_) {
|
|
// Flush all writes to disk
|
|
if (FLAGS_WAL_enabled) {
|
|
sqlite3_wal_checkpoint_v2(db_, nullptr, SQLITE_CHECKPOINT_FULL, nullptr,
|
|
nullptr);
|
|
}
|
|
}
|
|
|
|
namespace leveldb {
|
|
|
|
// Helper for quickly generating random data.
|
|
namespace {
|
|
class RandomGenerator {
|
|
private:
|
|
std::string data_;
|
|
int pos_;
|
|
|
|
public:
|
|
RandomGenerator() {
|
|
// We use a limited amount of data over and over again and ensure
|
|
// that it is larger than the compression window (32KB), and also
|
|
// large enough to serve all typical value sizes we want to write.
|
|
Random rnd(301);
|
|
std::string piece;
|
|
while (data_.size() < 1048576) {
|
|
// Add a short fragment that is as compressible as specified
|
|
// by FLAGS_compression_ratio.
|
|
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
|
|
data_.append(piece);
|
|
}
|
|
pos_ = 0;
|
|
}
|
|
|
|
Slice Generate(int len) {
|
|
if (pos_ + len > data_.size()) {
|
|
pos_ = 0;
|
|
assert(len < data_.size());
|
|
}
|
|
pos_ += len;
|
|
return Slice(data_.data() + pos_ - len, len);
|
|
}
|
|
};
|
|
|
|
static Slice TrimSpace(Slice s) {
|
|
int start = 0;
|
|
while (start < s.size() && isspace(s[start])) {
|
|
start++;
|
|
}
|
|
int limit = s.size();
|
|
while (limit > start && isspace(s[limit - 1])) {
|
|
limit--;
|
|
}
|
|
return Slice(s.data() + start, limit - start);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class Benchmark {
|
|
private:
|
|
sqlite3* db_;
|
|
int db_num_;
|
|
int num_;
|
|
int reads_;
|
|
double start_;
|
|
double last_op_finish_;
|
|
int64_t bytes_;
|
|
std::string message_;
|
|
Histogram hist_;
|
|
RandomGenerator gen_;
|
|
Random rand_;
|
|
|
|
// State kept for progress messages
|
|
int done_;
|
|
int next_report_; // When to report next
|
|
|
|
void PrintHeader() {
|
|
const int kKeySize = 16;
|
|
PrintEnvironment();
|
|
fprintf(stdout, "Keys: %d bytes each\n", kKeySize);
|
|
fprintf(stdout, "Values: %d bytes each\n", FLAGS_value_size);
|
|
fprintf(stdout, "Entries: %d\n", num_);
|
|
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
|
|
((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_) /
|
|
1048576.0));
|
|
PrintWarnings();
|
|
fprintf(stdout, "------------------------------------------------\n");
|
|
}
|
|
|
|
void PrintWarnings() {
|
|
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
|
|
fprintf(
|
|
stdout,
|
|
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
|
|
#endif
|
|
#ifndef NDEBUG
|
|
fprintf(stdout,
|
|
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
|
|
#endif
|
|
}
|
|
|
|
void PrintEnvironment() {
|
|
fprintf(stderr, "SQLite: version %s\n", SQLITE_VERSION);
|
|
|
|
#if defined(__linux)
|
|
time_t now = time(nullptr);
|
|
fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline
|
|
|
|
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
|
|
if (cpuinfo != nullptr) {
|
|
char line[1000];
|
|
int num_cpus = 0;
|
|
std::string cpu_type;
|
|
std::string cache_size;
|
|
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
|
|
const char* sep = strchr(line, ':');
|
|
if (sep == nullptr) {
|
|
continue;
|
|
}
|
|
Slice key = TrimSpace(Slice(line, sep - 1 - line));
|
|
Slice val = TrimSpace(Slice(sep + 1));
|
|
if (key == "model name") {
|
|
++num_cpus;
|
|
cpu_type = val.ToString();
|
|
} else if (key == "cache size") {
|
|
cache_size = val.ToString();
|
|
}
|
|
}
|
|
fclose(cpuinfo);
|
|
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
|
|
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Start() {
|
|
start_ = Env::Default()->NowMicros() * 1e-6;
|
|
bytes_ = 0;
|
|
message_.clear();
|
|
last_op_finish_ = start_;
|
|
hist_.Clear();
|
|
done_ = 0;
|
|
next_report_ = 100;
|
|
}
|
|
|
|
void FinishedSingleOp() {
|
|
if (FLAGS_histogram) {
|
|
double now = Env::Default()->NowMicros() * 1e-6;
|
|
double micros = (now - last_op_finish_) * 1e6;
|
|
hist_.Add(micros);
|
|
if (micros > 20000) {
|
|
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
|
|
fflush(stderr);
|
|
}
|
|
last_op_finish_ = now;
|
|
}
|
|
|
|
done_++;
|
|
if (done_ >= next_report_) {
|
|
if (next_report_ < 1000)
|
|
next_report_ += 100;
|
|
else if (next_report_ < 5000)
|
|
next_report_ += 500;
|
|
else if (next_report_ < 10000)
|
|
next_report_ += 1000;
|
|
else if (next_report_ < 50000)
|
|
next_report_ += 5000;
|
|
else if (next_report_ < 100000)
|
|
next_report_ += 10000;
|
|
else if (next_report_ < 500000)
|
|
next_report_ += 50000;
|
|
else
|
|
next_report_ += 100000;
|
|
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
|
|
fflush(stderr);
|
|
}
|
|
}
|
|
|
|
void Stop(const Slice& name) {
|
|
double finish = Env::Default()->NowMicros() * 1e-6;
|
|
|
|
// Pretend at least one op was done in case we are running a benchmark
|
|
// that does not call FinishedSingleOp().
|
|
if (done_ < 1) done_ = 1;
|
|
|
|
if (bytes_ > 0) {
|
|
char rate[100];
|
|
snprintf(rate, sizeof(rate), "%6.1f MB/s",
|
|
(bytes_ / 1048576.0) / (finish - start_));
|
|
if (!message_.empty()) {
|
|
message_ = std::string(rate) + " " + message_;
|
|
} else {
|
|
message_ = rate;
|
|
}
|
|
}
|
|
|
|
fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n", name.ToString().c_str(),
|
|
(finish - start_) * 1e6 / done_, (message_.empty() ? "" : " "),
|
|
message_.c_str());
|
|
if (FLAGS_histogram) {
|
|
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
|
|
public:
|
|
enum Order { SEQUENTIAL, RANDOM };
|
|
enum DBState { FRESH, EXISTING };
|
|
|
|
Benchmark()
|
|
: db_(nullptr),
|
|
db_num_(0),
|
|
num_(FLAGS_num),
|
|
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
|
|
bytes_(0),
|
|
rand_(301) {
|
|
std::vector<std::string> files;
|
|
std::string test_dir;
|
|
Env::Default()->GetTestDirectory(&test_dir);
|
|
Env::Default()->GetChildren(test_dir, &files);
|
|
if (!FLAGS_use_existing_db) {
|
|
for (int i = 0; i < files.size(); i++) {
|
|
if (Slice(files[i]).starts_with("dbbench_sqlite3")) {
|
|
std::string file_name(test_dir);
|
|
file_name += "/";
|
|
file_name += files[i];
|
|
Env::Default()->DeleteFile(file_name.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
~Benchmark() {
|
|
int status = sqlite3_close(db_);
|
|
ErrorCheck(status);
|
|
}
|
|
|
|
void Run() {
|
|
PrintHeader();
|
|
Open();
|
|
|
|
const char* benchmarks = FLAGS_benchmarks;
|
|
while (benchmarks != nullptr) {
|
|
const char* sep = strchr(benchmarks, ',');
|
|
Slice name;
|
|
if (sep == nullptr) {
|
|
name = benchmarks;
|
|
benchmarks = nullptr;
|
|
} else {
|
|
name = Slice(benchmarks, sep - benchmarks);
|
|
benchmarks = sep + 1;
|
|
}
|
|
|
|
bytes_ = 0;
|
|
Start();
|
|
|
|
bool known = true;
|
|
bool write_sync = false;
|
|
if (name == Slice("fillseq")) {
|
|
Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillseqbatch")) {
|
|
Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillrandom")) {
|
|
Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillrandbatch")) {
|
|
Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("overwrite")) {
|
|
Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("overwritebatch")) {
|
|
Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillrandsync")) {
|
|
write_sync = true;
|
|
Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillseqsync")) {
|
|
write_sync = true;
|
|
Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillrand100K")) {
|
|
Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("fillseq100K")) {
|
|
Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1);
|
|
WalCheckpoint(db_);
|
|
} else if (name == Slice("readseq")) {
|
|
ReadSequential();
|
|
} else if (name == Slice("readrandom")) {
|
|
Read(RANDOM, 1);
|
|
} else if (name == Slice("readrand100K")) {
|
|
int n = reads_;
|
|
reads_ /= 1000;
|
|
Read(RANDOM, 1);
|
|
reads_ = n;
|
|
} else {
|
|
known = false;
|
|
if (name != Slice()) { // No error message for empty name
|
|
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
|
|
}
|
|
}
|
|
if (known) {
|
|
Stop(name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Open() {
|
|
assert(db_ == nullptr);
|
|
|
|
int status;
|
|
char file_name[100];
|
|
char* err_msg = nullptr;
|
|
db_num_++;
|
|
|
|
// Open database
|
|
std::string tmp_dir;
|
|
Env::Default()->GetTestDirectory(&tmp_dir);
|
|
snprintf(file_name, sizeof(file_name), "%s/dbbench_sqlite3-%d.db",
|
|
tmp_dir.c_str(), db_num_);
|
|
status = sqlite3_open(file_name, &db_);
|
|
if (status) {
|
|
fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_));
|
|
exit(1);
|
|
}
|
|
|
|
// Change SQLite cache size
|
|
char cache_size[100];
|
|
snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d",
|
|
FLAGS_num_pages);
|
|
status = sqlite3_exec(db_, cache_size, nullptr, nullptr, &err_msg);
|
|
ExecErrorCheck(status, err_msg);
|
|
|
|
// FLAGS_page_size is defaulted to 1024
|
|
if (FLAGS_page_size != 1024) {
|
|
char page_size[100];
|
|
snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d",
|
|
FLAGS_page_size);
|
|
status = sqlite3_exec(db_, page_size, nullptr, nullptr, &err_msg);
|
|
ExecErrorCheck(status, err_msg);
|
|
}
|
|
|
|
// Change journal mode to WAL if WAL enabled flag is on
|
|
if (FLAGS_WAL_enabled) {
|
|
std::string WAL_stmt = "PRAGMA journal_mode = WAL";
|
|
|
|
// LevelDB's default cache size is a combined 4 MB
|
|
std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096";
|
|
status = sqlite3_exec(db_, WAL_stmt.c_str(), nullptr, nullptr, &err_msg);
|
|
ExecErrorCheck(status, err_msg);
|
|
status =
|
|
sqlite3_exec(db_, WAL_checkpoint.c_str(), nullptr, nullptr, &err_msg);
|
|
ExecErrorCheck(status, err_msg);
|
|
}
|
|
|
|
// Change locking mode to exclusive and create tables/index for database
|
|
std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE";
|
|
std::string create_stmt =
|
|
"CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))";
|
|
std::string stmt_array[] = {locking_stmt, create_stmt};
|
|
int stmt_array_length = sizeof(stmt_array) / sizeof(std::string);
|
|
for (int i = 0; i < stmt_array_length; i++) {
|
|
status =
|
|
sqlite3_exec(db_, stmt_array[i].c_str(), nullptr, nullptr, &err_msg);
|
|
ExecErrorCheck(status, err_msg);
|
|
}
|
|
}
|
|
|
|
void Write(bool write_sync, Order order, DBState state, int num_entries,
|
|
int value_size, int entries_per_batch) {
|
|
// Create new database if state == FRESH
|
|
if (state == FRESH) {
|
|
if (FLAGS_use_existing_db) {
|
|
message_ = "skipping (--use_existing_db is true)";
|
|
return;
|
|
}
|
|
sqlite3_close(db_);
|
|
db_ = nullptr;
|
|
Open();
|
|
Start();
|
|
}
|
|
|
|
if (num_entries != num_) {
|
|
char msg[100];
|
|
snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
|
|
message_ = msg;
|
|
}
|
|
|
|
char* err_msg = nullptr;
|
|
int status;
|
|
|
|
sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt;
|
|
std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)";
|
|
std::string begin_trans_str = "BEGIN TRANSACTION;";
|
|
std::string end_trans_str = "END TRANSACTION;";
|
|
|
|
// Check for synchronous flag in options
|
|
std::string sync_stmt =
|
|
(write_sync) ? "PRAGMA synchronous = FULL" : "PRAGMA synchronous = OFF";
|
|
status = sqlite3_exec(db_, sync_stmt.c_str(), nullptr, nullptr, &err_msg);
|
|
ExecErrorCheck(status, err_msg);
|
|
|
|
// Preparing sqlite3 statements
|
|
status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1, &replace_stmt,
|
|
nullptr);
|
|
ErrorCheck(status);
|
|
status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
|
|
&begin_trans_stmt, nullptr);
|
|
ErrorCheck(status);
|
|
status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
|
|
nullptr);
|
|
ErrorCheck(status);
|
|
|
|
bool transaction = (entries_per_batch > 1);
|
|
for (int i = 0; i < num_entries; i += entries_per_batch) {
|
|
// Begin write transaction
|
|
if (FLAGS_transaction && transaction) {
|
|
status = sqlite3_step(begin_trans_stmt);
|
|
StepErrorCheck(status);
|
|
status = sqlite3_reset(begin_trans_stmt);
|
|
ErrorCheck(status);
|
|
}
|
|
|
|
// Create and execute SQL statements
|
|
for (int j = 0; j < entries_per_batch; j++) {
|
|
const char* value = gen_.Generate(value_size).data();
|
|
|
|
// Create values for key-value pair
|
|
const int k =
|
|
(order == SEQUENTIAL) ? i + j : (rand_.Next() % num_entries);
|
|
char key[100];
|
|
snprintf(key, sizeof(key), "%016d", k);
|
|
|
|
// Bind KV values into replace_stmt
|
|
status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC);
|
|
ErrorCheck(status);
|
|
status = sqlite3_bind_blob(replace_stmt, 2, value, value_size,
|
|
SQLITE_STATIC);
|
|
ErrorCheck(status);
|
|
|
|
// Execute replace_stmt
|
|
bytes_ += value_size + strlen(key);
|
|
status = sqlite3_step(replace_stmt);
|
|
StepErrorCheck(status);
|
|
|
|
// Reset SQLite statement for another use
|
|
status = sqlite3_clear_bindings(replace_stmt);
|
|
ErrorCheck(status);
|
|
status = sqlite3_reset(replace_stmt);
|
|
ErrorCheck(status);
|
|
|
|
FinishedSingleOp();
|
|
}
|
|
|
|
// End write transaction
|
|
if (FLAGS_transaction && transaction) {
|
|
status = sqlite3_step(end_trans_stmt);
|
|
StepErrorCheck(status);
|
|
status = sqlite3_reset(end_trans_stmt);
|
|
ErrorCheck(status);
|
|
}
|
|
}
|
|
|
|
status = sqlite3_finalize(replace_stmt);
|
|
ErrorCheck(status);
|
|
status = sqlite3_finalize(begin_trans_stmt);
|
|
ErrorCheck(status);
|
|
status = sqlite3_finalize(end_trans_stmt);
|
|
ErrorCheck(status);
|
|
}
|
|
|
|
void Read(Order order, int entries_per_batch) {
|
|
int status;
|
|
sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt;
|
|
|
|
std::string read_str = "SELECT * FROM test WHERE key = ?";
|
|
std::string begin_trans_str = "BEGIN TRANSACTION;";
|
|
std::string end_trans_str = "END TRANSACTION;";
|
|
|
|
// Preparing sqlite3 statements
|
|
status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
|
|
&begin_trans_stmt, nullptr);
|
|
ErrorCheck(status);
|
|
status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
|
|
nullptr);
|
|
ErrorCheck(status);
|
|
status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, nullptr);
|
|
ErrorCheck(status);
|
|
|
|
bool transaction = (entries_per_batch > 1);
|
|
for (int i = 0; i < reads_; i += entries_per_batch) {
|
|
// Begin read transaction
|
|
if (FLAGS_transaction && transaction) {
|
|
status = sqlite3_step(begin_trans_stmt);
|
|
StepErrorCheck(status);
|
|
status = sqlite3_reset(begin_trans_stmt);
|
|
ErrorCheck(status);
|
|
}
|
|
|
|
// Create and execute SQL statements
|
|
for (int j = 0; j < entries_per_batch; j++) {
|
|
// Create key value
|
|
char key[100];
|
|
int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_);
|
|
snprintf(key, sizeof(key), "%016d", k);
|
|
|
|
// Bind key value into read_stmt
|
|
status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC);
|
|
ErrorCheck(status);
|
|
|
|
// Execute read statement
|
|
while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW) {
|
|
}
|
|
StepErrorCheck(status);
|
|
|
|
// Reset SQLite statement for another use
|
|
status = sqlite3_clear_bindings(read_stmt);
|
|
ErrorCheck(status);
|
|
status = sqlite3_reset(read_stmt);
|
|
ErrorCheck(status);
|
|
FinishedSingleOp();
|
|
}
|
|
|
|
// End read transaction
|
|
if (FLAGS_transaction && transaction) {
|
|
status = sqlite3_step(end_trans_stmt);
|
|
StepErrorCheck(status);
|
|
status = sqlite3_reset(end_trans_stmt);
|
|
ErrorCheck(status);
|
|
}
|
|
}
|
|
|
|
status = sqlite3_finalize(read_stmt);
|
|
ErrorCheck(status);
|
|
status = sqlite3_finalize(begin_trans_stmt);
|
|
ErrorCheck(status);
|
|
status = sqlite3_finalize(end_trans_stmt);
|
|
ErrorCheck(status);
|
|
}
|
|
|
|
void ReadSequential() {
|
|
int status;
|
|
sqlite3_stmt* pStmt;
|
|
std::string read_str = "SELECT * FROM test ORDER BY key";
|
|
|
|
status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, nullptr);
|
|
ErrorCheck(status);
|
|
for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) {
|
|
bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2);
|
|
FinishedSingleOp();
|
|
}
|
|
|
|
status = sqlite3_finalize(pStmt);
|
|
ErrorCheck(status);
|
|
}
|
|
};
|
|
|
|
} // namespace leveldb
|
|
|
|
int main(int argc, char** argv) {
|
|
std::string default_db_path;
|
|
for (int i = 1; i < argc; i++) {
|
|
double d;
|
|
int n;
|
|
char junk;
|
|
if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
|
|
FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
|
|
} else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
|
|
(n == 0 || n == 1)) {
|
|
FLAGS_histogram = n;
|
|
} else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
|
|
FLAGS_compression_ratio = d;
|
|
} else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
|
|
(n == 0 || n == 1)) {
|
|
FLAGS_use_existing_db = n;
|
|
} else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
|
|
FLAGS_num = n;
|
|
} else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
|
|
FLAGS_reads = n;
|
|
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
|
|
FLAGS_value_size = n;
|
|
} else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) {
|
|
FLAGS_transaction = false;
|
|
} else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) {
|
|
FLAGS_page_size = n;
|
|
} else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) {
|
|
FLAGS_num_pages = n;
|
|
} else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 &&
|
|
(n == 0 || n == 1)) {
|
|
FLAGS_WAL_enabled = n;
|
|
} else if (strncmp(argv[i], "--db=", 5) == 0) {
|
|
FLAGS_db = argv[i] + 5;
|
|
} else {
|
|
fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
// Choose a location for the test database if none given with --db=<path>
|
|
if (FLAGS_db == nullptr) {
|
|
leveldb::Env::Default()->GetTestDirectory(&default_db_path);
|
|
default_db_path += "/dbbench";
|
|
FLAGS_db = default_db_path.c_str();
|
|
}
|
|
|
|
leveldb::Benchmark benchmark;
|
|
benchmark.Run();
|
|
return 0;
|
|
}
|