// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include "db/db_impl.h" #include "db/version_set.h" #include "leveldb/cache.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "leveldb/write_batch.h" #include "port/port.h" #include "util/crc32c.h" #include "util/histogram.h" #include "util/random.h" #include "util/testutil.h" // Comma-separated list of operations to run in the specified order // Actual benchmarks: // fillseq -- write N values in sequential key order in async mode // fillrandom -- write N values in random key order in async mode // overwrite -- overwrite N values in random key order in async mode // fillsync -- write N/100 values in random key order in sync mode // fill100K -- write N/1000 100K values in random order in async mode // readseq -- read N values sequentially // readreverse -- read N values in reverse order // readrandom -- read N values in random order // crc32c -- repeated crc32c of 4K of data // Meta operations: // compact -- Compact the entire DB // stats -- Print DB stats // heapprofile -- Dump a heap profile (if supported by this port) static const char* FLAGS_benchmarks = "fillseq," "fillsync," "fillrandom," "overwrite," "readrandom," "readrandom," // Extra run to allow previous compactions to quiesce "readseq," "readreverse," "compact," "readrandom," "readseq," "readreverse," "fill100K," "crc32c," "snappycomp," "snappyuncomp," ; // Number of key/values to place in database static int FLAGS_num = 1000000; // Size of each value static int FLAGS_value_size = 100; // Arrange to generate values that shrink to this fraction of // their original size after compression static double FLAGS_compression_ratio = 0.5; // Print histogram of operation timings static bool FLAGS_histogram = false; // Number of bytes to buffer in memtable before compacting // (initialized to default value by "main") static int FLAGS_write_buffer_size = 0; // Number of bytes to use as a cache of uncompressed data. // Negative means use default settings. static int FLAGS_cache_size = -1; namespace leveldb { // Helper for quickly generating random data. namespace { class RandomGenerator { private: std::string data_; int pos_; public: RandomGenerator() { // We use a limited amount of data over and over again and ensure // that it is larger than the compression window (32KB), and also // large enough to serve all typical value sizes we want to write. Random rnd(301); std::string piece; while (data_.size() < 1048576) { // Add a short fragment that is as compressible as specified // by FLAGS_compression_ratio. test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece); data_.append(piece); } pos_ = 0; } Slice Generate(int len) { if (pos_ + len > data_.size()) { pos_ = 0; assert(len < data_.size()); } pos_ += len; return Slice(data_.data() + pos_ - len, len); } }; static Slice TrimSpace(Slice s) { int start = 0; while (start < s.size() && isspace(s[start])) { start++; } int limit = s.size(); while (limit > start && isspace(s[limit-1])) { limit--; } return Slice(s.data() + start, limit - start); } } class Benchmark { private: Cache* cache_; DB* db_; int num_; int heap_counter_; double start_; double last_op_finish_; int64_t bytes_; std::string message_; std::string post_message_; Histogram hist_; RandomGenerator gen_; Random rand_; // State kept for progress messages int done_; int next_report_; // When to report next void PrintHeader() { const int kKeySize = 16; PrintEnvironment(); fprintf(stdout, "Keys: %d bytes each\n", kKeySize); fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n", FLAGS_value_size, static_cast(FLAGS_value_size * FLAGS_compression_ratio + 0.5)); fprintf(stdout, "Entries: %d\n", num_); fprintf(stdout, "RawSize: %.1f MB (estimated)\n", ((static_cast(kKeySize + FLAGS_value_size) * num_) / 1048576.0)); fprintf(stdout, "FileSize: %.1f MB (estimated)\n", (((kKeySize + FLAGS_value_size * FLAGS_compression_ratio) * num_) / 1048576.0)); PrintWarnings(); fprintf(stdout, "------------------------------------------------\n"); } void PrintWarnings() { #if defined(__GNUC__) && !defined(__OPTIMIZE__) fprintf(stdout, "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n" ); #endif #ifndef NDEBUG fprintf(stdout, "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n"); #endif // See if snappy is working by attempting to compress a compressible string const char text[] = "yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy"; std::string compressed; if (!port::Snappy_Compress(text, sizeof(text), &compressed)) { fprintf(stdout, "WARNING: Snappy compression is not enabled\n"); } else if (compressed.size() >= sizeof(text)) { fprintf(stdout, "WARNING: Snappy compression is not effective\n"); } } void PrintEnvironment() { fprintf(stderr, "LevelDB: version %d.%d\n", kMajorVersion, kMinorVersion); #if defined(__linux) time_t now = time(NULL); fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline FILE* cpuinfo = fopen("/proc/cpuinfo", "r"); if (cpuinfo != NULL) { char line[1000]; int num_cpus = 0; std::string cpu_type; std::string cache_size; while (fgets(line, sizeof(line), cpuinfo) != NULL) { const char* sep = strchr(line, ':'); if (sep == NULL) { continue; } Slice key = TrimSpace(Slice(line, sep - 1 - line)); Slice val = TrimSpace(Slice(sep + 1)); if (key == "model name") { ++num_cpus; cpu_type = val.ToString(); } else if (key == "cache size") { cache_size = val.ToString(); } } fclose(cpuinfo); fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str()); fprintf(stderr, "CPUCache: %s\n", cache_size.c_str()); } #endif } void Start() { start_ = Env::Default()->NowMicros() * 1e-6; bytes_ = 0; message_.clear(); last_op_finish_ = start_; hist_.Clear(); done_ = 0; next_report_ = 100; } void FinishedSingleOp() { if (FLAGS_histogram) { double now = Env::Default()->NowMicros() * 1e-6; double micros = (now - last_op_finish_) * 1e6; hist_.Add(micros); if (micros > 20000) { fprintf(stderr, "long op: %.1f micros%30s\r", micros, ""); fflush(stderr); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stderr, "... finished %d ops%30s\r", done_, ""); fflush(stderr); } } void Stop(const Slice& name) { double finish = Env::Default()->NowMicros() * 1e-6; // Pretend at least one op was done in case we are running a benchmark // that does nto call FinishedSingleOp(). if (done_ < 1) done_ = 1; if (bytes_ > 0) { char rate[100]; snprintf(rate, sizeof(rate), "%6.1f MB/s", (bytes_ / 1048576.0) / (finish - start_)); if (!message_.empty()) { message_ = std::string(rate) + " " + message_; } else { message_ = rate; } } fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n", name.ToString().c_str(), (finish - start_) * 1e6 / done_, (message_.empty() ? "" : " "), message_.c_str()); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); if (!post_message_.empty()) { fprintf(stdout, "\n%s\n", post_message_.c_str()); post_message_.clear(); } } public: enum Order { SEQUENTIAL, RANDOM }; enum DBState { FRESH, EXISTING }; Benchmark() : cache_(FLAGS_cache_size >= 0 ? NewLRUCache(FLAGS_cache_size) : NULL), db_(NULL), num_(FLAGS_num), heap_counter_(0), bytes_(0), rand_(301) { std::vector files; Env::Default()->GetChildren("/tmp/dbbench", &files); for (int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { Env::Default()->DeleteFile("/tmp/dbbench/" + files[i]); } } DestroyDB("/tmp/dbbench", Options()); } ~Benchmark() { delete db_; delete cache_; } void Run() { PrintHeader(); Open(); const char* benchmarks = FLAGS_benchmarks; while (benchmarks != NULL) { const char* sep = strchr(benchmarks, ','); Slice name; if (sep == NULL) { name = benchmarks; benchmarks = NULL; } else { name = Slice(benchmarks, sep - benchmarks); benchmarks = sep + 1; } Start(); WriteOptions write_options; bool known = true; if (name == Slice("fillseq")) { Write(write_options, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1); } else if (name == Slice("fillbatch")) { Write(write_options, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000); } else if (name == Slice("fillrandom")) { Write(write_options, RANDOM, FRESH, num_, FLAGS_value_size, 1); } else if (name == Slice("overwrite")) { Write(write_options, RANDOM, EXISTING, num_, FLAGS_value_size, 1); } else if (name == Slice("fillsync")) { write_options.sync = true; Write(write_options, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1); } else if (name == Slice("fill100K")) { Write(write_options, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1); } else if (name == Slice("readseq")) { ReadSequential(); } else if (name == Slice("readreverse")) { ReadReverse(); } else if (name == Slice("readrandom")) { ReadRandom(); } else if (name == Slice("readrandomsmall")) { int n = num_; num_ /= 1000; ReadRandom(); num_ = n; } else if (name == Slice("compact")) { Compact(); } else if (name == Slice("crc32c")) { Crc32c(4096, "(4K per op)"); } else if (name == Slice("snappycomp")) { SnappyCompress(); } else if (name == Slice("snappyuncomp")) { SnappyUncompress(); } else if (name == Slice("heapprofile")) { HeapProfile(); } else if (name == Slice("stats")) { PrintStats(); } else { known = false; if (name != Slice()) { // No error message for empty name fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str()); } } if (known) { Stop(name); } } } private: void Crc32c(int size, const char* label) { // Checksum about 500MB of data total std::string data(size, 'x'); int64_t bytes = 0; uint32_t crc = 0; while (bytes < 500 * 1048576) { crc = crc32c::Value(data.data(), size); FinishedSingleOp(); bytes += size; } // Print so result is not dead fprintf(stderr, "... crc=0x%x\r", static_cast(crc)); bytes_ = bytes; message_ = label; } void SnappyCompress() { Slice input = gen_.Generate(Options().block_size); int64_t bytes = 0; int64_t produced = 0; bool ok = true; std::string compressed; while (ok && bytes < 1024 * 1048576) { // Compress 1G ok = port::Snappy_Compress(input.data(), input.size(), &compressed); produced += compressed.size(); bytes += input.size(); FinishedSingleOp(); } if (!ok) { message_ = "(snappy failure)"; } else { char buf[100]; snprintf(buf, sizeof(buf), "(output: %.1f%%)", (produced * 100.0) / bytes); message_ = buf; bytes_ = bytes; } } void SnappyUncompress() { Slice input = gen_.Generate(Options().block_size); std::string compressed; bool ok = port::Snappy_Compress(input.data(), input.size(), &compressed); int64_t bytes = 0; std::string uncompressed; while (ok && bytes < 1024 * 1048576) { // Compress 1G ok = port::Snappy_Uncompress(compressed.data(), compressed.size(), &uncompressed); bytes += uncompressed.size(); FinishedSingleOp(); } if (!ok) { message_ = "(snappy failure)"; } else { bytes_ = bytes; } } void Open() { assert(db_ == NULL); Options options; options.create_if_missing = true; options.block_cache = cache_; options.write_buffer_size = FLAGS_write_buffer_size; Status s = DB::Open(options, "/tmp/dbbench", &db_); if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } void Write(const WriteOptions& options, Order order, DBState state, int num_entries, int value_size, int entries_per_batch) { if (state == FRESH) { delete db_; db_ = NULL; DestroyDB("/tmp/dbbench", Options()); Open(); Start(); // Do not count time taken to destroy/open } if (num_entries != num_) { char msg[100]; snprintf(msg, sizeof(msg), "(%d ops)", num_entries); message_ = msg; } WriteBatch batch; Status s; std::string val; for (int i = 0; i < num_entries; i += entries_per_batch) { batch.Clear(); for (int j = 0; j < entries_per_batch; j++) { const int k = (order == SEQUENTIAL) ? i+j : (rand_.Next() % FLAGS_num); char key[100]; snprintf(key, sizeof(key), "%016d", k); batch.Put(key, gen_.Generate(value_size)); bytes_ += value_size + strlen(key); FinishedSingleOp(); } s = db_->Write(options, &batch); if (!s.ok()) { fprintf(stderr, "put error: %s\n", s.ToString().c_str()); exit(1); } } } void ReadSequential() { Iterator* iter = db_->NewIterator(ReadOptions()); int i = 0; for (iter->SeekToFirst(); i < num_ && iter->Valid(); iter->Next()) { bytes_ += iter->key().size() + iter->value().size(); FinishedSingleOp(); ++i; } delete iter; } void ReadReverse() { Iterator* iter = db_->NewIterator(ReadOptions()); int i = 0; for (iter->SeekToLast(); i < num_ && iter->Valid(); iter->Prev()) { bytes_ += iter->key().size() + iter->value().size(); FinishedSingleOp(); ++i; } delete iter; } void ReadRandom() { ReadOptions options; std::string value; for (int i = 0; i < num_; i++) { char key[100]; const int k = rand_.Next() % FLAGS_num; snprintf(key, sizeof(key), "%016d", k); db_->Get(options, key, &value); FinishedSingleOp(); } } void Compact() { DBImpl* dbi = reinterpret_cast(db_); dbi->TEST_CompactMemTable(); int max_level_with_files = 1; for (int level = 1; level < config::kNumLevels; level++) { std::string property; char name[100]; snprintf(name, sizeof(name), "leveldb.num-files-at-level%d", level); if (db_->GetProperty(name, &property) && atoi(property.c_str()) > 0) { max_level_with_files = level; } } for (int level = 0; level < max_level_with_files; level++) { dbi->TEST_CompactRange(level, "", "~"); } } void PrintStats() { std::string stats; if (!db_->GetProperty("leveldb.stats", &stats)) { message_ = "(failed)"; } else { post_message_ = stats; } } static void WriteToFile(void* arg, const char* buf, int n) { reinterpret_cast(arg)->Append(Slice(buf, n)); } void HeapProfile() { char fname[100]; snprintf(fname, sizeof(fname), "/tmp/dbbench/heap-%04d", ++heap_counter_); WritableFile* file; Status s = Env::Default()->NewWritableFile(fname, &file); if (!s.ok()) { message_ = s.ToString(); return; } bool ok = port::GetHeapProfile(WriteToFile, file); delete file; if (!ok) { message_ = "not supported"; Env::Default()->DeleteFile(fname); } } }; } int main(int argc, char** argv) { FLAGS_write_buffer_size = leveldb::Options().write_buffer_size; for (int i = 1; i < argc; i++) { double d; int n; char junk; if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) { FLAGS_benchmarks = argv[i] + strlen("--benchmarks="); } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) { FLAGS_compression_ratio = d; } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 && (n == 0 || n == 1)) { FLAGS_histogram = n; } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) { FLAGS_num = n; } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) { FLAGS_value_size = n; } else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) { FLAGS_write_buffer_size = n; } else if (sscanf(argv[i], "--cache_size=%d%c", &n, &junk) == 1) { FLAGS_cache_size = n; } else { fprintf(stderr, "Invalid flag '%s'\n", argv[i]); exit(1); } } leveldb::Benchmark benchmark; benchmark.Run(); return 0; }