// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "include/table.h" #include #include "db/dbformat.h" #include "db/memtable.h" #include "db/write_batch_internal.h" #include "include/db.h" #include "include/env.h" #include "include/iterator.h" #include "include/table_builder.h" #include "table/block.h" #include "table/block_builder.h" #include "table/format.h" #include "util/random.h" #include "util/testharness.h" #include "util/testutil.h" namespace leveldb { // Return reverse of "key". // Used to test non-lexicographic comparators. static std::string Reverse(const Slice& key) { std::string str(key.ToString()); std::string rev(str.rbegin(), str.rend()); return rev; } namespace { class ReverseKeyComparator : public Comparator { public: virtual const char* Name() const { return "leveldb.ReverseBytewiseComparator"; } virtual int Compare(const Slice& a, const Slice& b) const { return BytewiseComparator()->Compare(Reverse(a), Reverse(b)); } virtual void FindShortestSeparator( std::string* start, const Slice& limit) const { std::string s = Reverse(*start); std::string l = Reverse(limit); BytewiseComparator()->FindShortestSeparator(&s, l); *start = Reverse(s); } virtual void FindShortSuccessor(std::string* key) const { std::string s = Reverse(*key); BytewiseComparator()->FindShortSuccessor(&s); *key = Reverse(s); } }; } static ReverseKeyComparator reverse_key_comparator; static void Increment(const Comparator* cmp, std::string* key) { if (cmp == BytewiseComparator()) { key->push_back('\0'); } else { assert(cmp == &reverse_key_comparator); std::string rev = Reverse(*key); rev.push_back('\0'); *key = Reverse(rev); } } // An STL comparator that uses a Comparator namespace { struct STLLessThan { const Comparator* cmp; STLLessThan() : cmp(BytewiseComparator()) { } STLLessThan(const Comparator* c) : cmp(c) { } bool operator()(const std::string& a, const std::string& b) const { return cmp->Compare(Slice(a), Slice(b)) < 0; } }; } class StringSink: public WritableFile { public: ~StringSink() { } const std::string& contents() const { return contents_; } virtual Status Close() { return Status::OK(); } virtual Status Flush() { return Status::OK(); } virtual Status Sync() { return Status::OK(); } virtual Status Append(const Slice& data) { contents_.append(data.data(), data.size()); return Status::OK(); } private: std::string contents_; }; class StringSource: public RandomAccessFile { public: StringSource(const Slice& contents) : contents_(contents.data(), contents.size()) { } virtual ~StringSource() { } virtual uint64_t Size() const { return contents_.size(); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { if (offset > contents_.size()) { return Status::InvalidArgument("invalid Read offset"); } if (offset + n > contents_.size()) { n = contents_.size() - offset; } memcpy(scratch, &contents_[offset], n); *result = Slice(scratch, n); return Status::OK(); } private: std::string contents_; }; typedef std::map KVMap; // Helper class for tests to unify the interface between // BlockBuilder/TableBuilder and Block/Table. class Constructor { public: explicit Constructor(const Comparator* cmp) : data_(STLLessThan(cmp)) { } virtual ~Constructor() { } void Add(const std::string& key, const Slice& value) { data_[key] = value.ToString(); } // Finish constructing the data structure with all the keys that have // been added so far. Returns the keys in sorted order in "*keys" // and stores the key/value pairs in "*kvmap" void Finish(const Options& options, std::vector* keys, KVMap* kvmap) { *kvmap = data_; keys->clear(); for (KVMap::const_iterator it = data_.begin(); it != data_.end(); ++it) { keys->push_back(it->first); } data_.clear(); Status s = FinishImpl(options, *kvmap); ASSERT_TRUE(s.ok()) << s.ToString(); } // Construct the data structure from the data in "data" virtual Status FinishImpl(const Options& options, const KVMap& data) = 0; virtual size_t NumBytes() const = 0; virtual Iterator* NewIterator() const = 0; virtual const KVMap& data() { return data_; } private: KVMap data_; }; class BlockConstructor: public Constructor { public: explicit BlockConstructor(const Comparator* cmp) : Constructor(cmp), comparator_(cmp), block_size_(-1), block_(NULL) { } ~BlockConstructor() { delete block_; } virtual Status FinishImpl(const Options& options, const KVMap& data) { delete block_; block_ = NULL; BlockBuilder builder(&options); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { builder.Add(it->first, it->second); } // Open the block Slice block_data = builder.Finish(); block_size_ = block_data.size(); char* block_data_copy = new char[block_size_]; memcpy(block_data_copy, block_data.data(), block_size_); block_ = new Block(block_data_copy, block_size_); return Status::OK(); } virtual size_t NumBytes() const { return block_size_; } virtual Iterator* NewIterator() const { return block_->NewIterator(comparator_); } private: const Comparator* comparator_; int block_size_; Block* block_; BlockConstructor(); }; class TableConstructor: public Constructor { public: TableConstructor(const Comparator* cmp) : Constructor(cmp), source_(NULL), table_(NULL) { } ~TableConstructor() { Reset(); } virtual Status FinishImpl(const Options& options, const KVMap& data) { Reset(); StringSink sink; TableBuilder builder(options, &sink); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { builder.Add(it->first, it->second); ASSERT_TRUE(builder.status().ok()); } Status s = builder.Finish(); ASSERT_TRUE(s.ok()) << s.ToString(); ASSERT_EQ(sink.contents().size(), builder.FileSize()); // Open the table source_ = new StringSource(sink.contents()); Options table_options; table_options.comparator = options.comparator; return Table::Open(table_options, source_, &table_); } virtual size_t NumBytes() const { return source_->Size(); } virtual Iterator* NewIterator() const { return table_->NewIterator(ReadOptions()); } uint64_t ApproximateOffsetOf(const Slice& key) const { return table_->ApproximateOffsetOf(key); } private: void Reset() { delete table_; delete source_; table_ = NULL; source_ = NULL; } StringSource* source_; Table* table_; TableConstructor(); }; // A helper class that converts internal format keys into user keys class KeyConvertingIterator: public Iterator { public: explicit KeyConvertingIterator(Iterator* iter) : iter_(iter) { } virtual ~KeyConvertingIterator() { delete iter_; } virtual bool Valid() const { return iter_->Valid(); } virtual void Seek(const Slice& target) { ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue); std::string encoded; AppendInternalKey(&encoded, ikey); iter_->Seek(encoded); } virtual void SeekToFirst() { iter_->SeekToFirst(); } virtual void SeekToLast() { iter_->SeekToLast(); } virtual void Next() { iter_->Next(); } virtual void Prev() { iter_->Prev(); } virtual Slice key() const { assert(Valid()); ParsedInternalKey key; if (!ParseInternalKey(iter_->key(), &key)) { status_ = Status::Corruption("malformed internal key"); return Slice("corrupted key"); } return key.user_key; } virtual Slice value() const { return iter_->value(); } virtual Status status() const { return status_.ok() ? iter_->status() : status_; } private: mutable Status status_; Iterator* iter_; // No copying allowed KeyConvertingIterator(const KeyConvertingIterator&); void operator=(const KeyConvertingIterator&); }; class MemTableConstructor: public Constructor { public: explicit MemTableConstructor(const Comparator* cmp) : Constructor(cmp), internal_comparator_(cmp) { memtable_ = new MemTable(internal_comparator_); } ~MemTableConstructor() { delete memtable_; } virtual Status FinishImpl(const Options& options, const KVMap& data) { delete memtable_; memtable_ = new MemTable(internal_comparator_); int seq = 1; for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { memtable_->Add(seq, kTypeValue, it->first, it->second); seq++; } return Status::OK(); } virtual size_t NumBytes() const { return memtable_->ApproximateMemoryUsage(); } virtual Iterator* NewIterator() const { return new KeyConvertingIterator(memtable_->NewIterator()); } private: InternalKeyComparator internal_comparator_; MemTable* memtable_; }; class DBConstructor: public Constructor { public: explicit DBConstructor(const Comparator* cmp) : Constructor(cmp), comparator_(cmp) { db_ = NULL; NewDB(); } ~DBConstructor() { delete db_; } virtual Status FinishImpl(const Options& options, const KVMap& data) { delete db_; db_ = NULL; NewDB(); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { WriteBatch batch; batch.Put(it->first, it->second); ASSERT_TRUE(db_->Write(WriteOptions(), &batch).ok()); } return Status::OK(); } virtual size_t NumBytes() const { Range r("", "\xff\xff"); uint64_t size; db_->GetApproximateSizes(&r, 1, &size); return size; } virtual Iterator* NewIterator() const { return db_->NewIterator(ReadOptions()); } private: void NewDB() { std::string name = test::TmpDir() + "/table_testdb"; Options options; options.comparator = comparator_; Status status = DestroyDB(name, options); ASSERT_TRUE(status.ok()) << status.ToString(); options.create_if_missing = true; options.error_if_exists = true; status = DB::Open(options, name, &db_); ASSERT_TRUE(status.ok()) << status.ToString(); } const Comparator* comparator_; DB* db_; }; enum TestType { TABLE_TEST, BLOCK_TEST, MEMTABLE_TEST, DB_TEST, }; struct TestArgs { TestType type; bool reverse_compare; int restart_interval; }; static const TestArgs kTestArgList[] = { { TABLE_TEST, false, 16 }, { TABLE_TEST, false, 1 }, { TABLE_TEST, false, 1024 }, { TABLE_TEST, true, 16 }, { TABLE_TEST, true, 1 }, { TABLE_TEST, true, 1024 }, { BLOCK_TEST, false, 16 }, { BLOCK_TEST, false, 1 }, { BLOCK_TEST, false, 1024 }, { BLOCK_TEST, true, 16 }, { BLOCK_TEST, true, 1 }, { BLOCK_TEST, true, 1024 }, // Restart interval does not matter for memtables { MEMTABLE_TEST, false, 16 }, { MEMTABLE_TEST, true, 16 }, // Do not bother with restart interval variations for DB { DB_TEST, false, 16 }, { DB_TEST, true, 16 }, }; static const int kNumTestArgs = sizeof(kTestArgList) / sizeof(kTestArgList[0]); class Harness { public: Harness() : constructor_(NULL) { } void Init(const TestArgs& args) { delete constructor_; constructor_ = NULL; options_ = Options(); options_.block_restart_interval = args.restart_interval; // Use shorter block size for tests to exercise block boundary // conditions more. options_.block_size = 256; if (args.reverse_compare) { options_.comparator = &reverse_key_comparator; } switch (args.type) { case TABLE_TEST: constructor_ = new TableConstructor(options_.comparator); break; case BLOCK_TEST: constructor_ = new BlockConstructor(options_.comparator); break; case MEMTABLE_TEST: constructor_ = new MemTableConstructor(options_.comparator); break; case DB_TEST: constructor_ = new DBConstructor(options_.comparator); break; } } ~Harness() { delete constructor_; } void Add(const std::string& key, const std::string& value) { constructor_->Add(key, value); } void Test(Random* rnd) { std::vector keys; KVMap data; constructor_->Finish(options_, &keys, &data); TestForwardScan(keys, data); TestBackwardScan(keys, data); TestRandomAccess(rnd, keys, data); } void TestForwardScan(const std::vector& keys, const KVMap& data) { Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToFirst(); for (KVMap::const_iterator model_iter = data.begin(); model_iter != data.end(); ++model_iter) { ASSERT_EQ(ToString(data, model_iter), ToString(iter)); iter->Next(); } ASSERT_TRUE(!iter->Valid()); delete iter; } void TestBackwardScan(const std::vector& keys, const KVMap& data) { Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToLast(); for (KVMap::const_reverse_iterator model_iter = data.rbegin(); model_iter != data.rend(); ++model_iter) { ASSERT_EQ(ToString(data, model_iter), ToString(iter)); iter->Prev(); } ASSERT_TRUE(!iter->Valid()); delete iter; } void TestRandomAccess(Random* rnd, const std::vector& keys, const KVMap& data) { static const bool kVerbose = false; Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); KVMap::const_iterator model_iter = data.begin(); if (kVerbose) fprintf(stderr, "---\n"); for (int i = 0; i < 200; i++) { const int toss = rnd->Uniform(5); switch (toss) { case 0: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Next\n"); iter->Next(); ++model_iter; ASSERT_EQ(ToString(data, model_iter), ToString(iter)); } break; } case 1: { if (kVerbose) fprintf(stderr, "SeekToFirst\n"); iter->SeekToFirst(); model_iter = data.begin(); ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } case 2: { std::string key = PickRandomKey(rnd, keys); model_iter = data.lower_bound(key); if (kVerbose) fprintf(stderr, "Seek '%s'\n", EscapeString(key).c_str()); iter->Seek(Slice(key)); ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } case 3: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Prev\n"); iter->Prev(); if (model_iter == data.begin()) { model_iter = data.end(); // Wrap around to invalid value } else { --model_iter; } ASSERT_EQ(ToString(data, model_iter), ToString(iter)); } break; } case 4: { if (kVerbose) fprintf(stderr, "SeekToLast\n"); iter->SeekToLast(); if (keys.empty()) { model_iter = data.end(); } else { std::string last = data.rbegin()->first; model_iter = data.lower_bound(last); } ASSERT_EQ(ToString(data, model_iter), ToString(iter)); break; } } } delete iter; } std::string ToString(const KVMap& data, const KVMap::const_iterator& it) { if (it == data.end()) { return "END"; } else { return "'" + it->first + "->" + it->second + "'"; } } std::string ToString(const KVMap& data, const KVMap::const_reverse_iterator& it) { if (it == data.rend()) { return "END"; } else { return "'" + it->first + "->" + it->second + "'"; } } std::string ToString(const Iterator* it) { if (!it->Valid()) { return "END"; } else { return "'" + it->key().ToString() + "->" + it->value().ToString() + "'"; } } std::string PickRandomKey(Random* rnd, const std::vector& keys) { if (keys.empty()) { return "foo"; } else { const int index = rnd->Uniform(keys.size()); std::string result = keys[index]; switch (rnd->Uniform(3)) { case 0: // Return an existing key break; case 1: { // Attempt to return something smaller than an existing key if (result.size() > 0 && result[result.size()-1] > '\0') { result[result.size()-1]--; } break; } case 2: { // Return something larger than an existing key Increment(options_.comparator, &result); break; } } return result; } } private: Options options_; Constructor* constructor_; }; // Test the empty key TEST(Harness, SimpleEmptyKey) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); Random rnd(test::RandomSeed() + 1); Add("", "v"); Test(&rnd); } } TEST(Harness, SimpleSingle) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); Random rnd(test::RandomSeed() + 2); Add("abc", "v"); Test(&rnd); } } TEST(Harness, SimpleMulti) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); Random rnd(test::RandomSeed() + 3); Add("abc", "v"); Add("abcd", "v"); Add("ac", "v2"); Test(&rnd); } } TEST(Harness, SimpleSpecialKey) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); Random rnd(test::RandomSeed() + 4); Add("\xff\xff", "v3"); Test(&rnd); } } TEST(Harness, Randomized) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); Random rnd(test::RandomSeed() + 5); for (int num_entries = 0; num_entries < 2000; num_entries += (num_entries < 50 ? 1 : 200)) { if ((num_entries % 10) == 0) { fprintf(stderr, "case %d of %d: num_entries = %d\n", (i + 1), int(kNumTestArgs), num_entries); } for (int e = 0; e < num_entries; e++) { std::string v; Add(test::RandomKey(&rnd, rnd.Skewed(4)), test::RandomString(&rnd, rnd.Skewed(5), &v).ToString()); } Test(&rnd); } } } class MemTableTest { }; TEST(MemTableTest, Simple) { InternalKeyComparator cmp(BytewiseComparator()); MemTable memtable(cmp); WriteBatch batch; WriteBatchInternal::SetSequence(&batch, 100); batch.Put(std::string("k1"), std::string("v1")); batch.Put(std::string("k2"), std::string("v2")); batch.Put(std::string("k3"), std::string("v3")); batch.Put(std::string("largekey"), std::string("vlarge")); ASSERT_TRUE(WriteBatchInternal::InsertInto(&batch, &memtable).ok()); Iterator* iter = memtable.NewIterator(); iter->SeekToFirst(); while (iter->Valid()) { fprintf(stderr, "key: '%s' -> '%s'\n", iter->key().ToString().c_str(), iter->value().ToString().c_str()); iter->Next(); } delete iter; } static bool Between(uint64_t val, uint64_t low, uint64_t high) { bool result = (val >= low) && (val <= high); if (!result) { fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n", (unsigned long long)(val), (unsigned long long)(low), (unsigned long long)(high)); } return result; } class TableTest { }; TEST(TableTest, ApproximateOffsetOfPlain) { TableConstructor c(BytewiseComparator()); c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", std::string(10000, 'x')); c.Add("k04", std::string(200000, 'x')); c.Add("k05", std::string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", std::string(100000, 'x')); std::vector keys; KVMap kvmap; Options options; options.block_size = 1024; options.compression = kNoCompression; c.Finish(options, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 611000)); } TEST(TableTest, ApproximateOffsetOfCompressed) { #if defined(LEVELDB_PLATFORM_POSIX) || defined(LEVELDB_PLATFORM_CHROMIUM) // Compression not supported yet, so skip this test. // TODO(sanjay) Reenable after compression support is added return; #endif Random rnd(301); TableConstructor c(BytewiseComparator()); std::string tmp; c.Add("k01", "hello"); c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); c.Add("k03", "hello3"); c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); std::vector keys; KVMap kvmap; Options options; options.block_size = 1024; options.compression = kLightweightCompression; c.Finish(options, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 6000)); } } int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }