Bugfix for issue 33; reduce lock contention in Get(), parallel benchmarks.
- Fix for issue 33 (non-null-terminated result from leveldb_property_value()) - Support for running multiple instances of a benchmark in parallel. - Reduce lock contention on Get(): (1) Do not hold the lock while searching memtables. (2) Shard block and table caches 16-ways. Benchmark for evaluating this change: $ db_bench --benchmarks=fillseq1,readrandom --threads=$n (fillseq1 is a small hack to make sure fillseq runs once regardless of number of threads specified on the command line). git-svn-id: https://leveldb.googlecode.com/svn/trunk@49 62dab493-f737-651d-591e-8d6aee1b9529
This commit is contained in:
parent
ab323f7e1e
commit
e3584f9c28
3
db/c.cc
3
db/c.cc
@ -196,7 +196,8 @@ char* leveldb_property_value(
|
||||
const char* propname) {
|
||||
std::string tmp;
|
||||
if (db->rep->GetProperty(Slice(propname), &tmp)) {
|
||||
return CopyString(tmp);
|
||||
// We use strdup() since we expect human readable output.
|
||||
return strdup(tmp.c_str());
|
||||
} else {
|
||||
return NULL;
|
||||
}
|
||||
|
530
db/db_bench.cc
530
db/db_bench.cc
@ -14,6 +14,7 @@
|
||||
#include "port/port.h"
|
||||
#include "util/crc32c.h"
|
||||
#include "util/histogram.h"
|
||||
#include "util/mutexlock.h"
|
||||
#include "util/random.h"
|
||||
#include "util/testutil.h"
|
||||
|
||||
@ -60,6 +61,9 @@ static int FLAGS_num = 1000000;
|
||||
// Number of read operations to do. If negative, do FLAGS_num reads.
|
||||
static int FLAGS_reads = -1;
|
||||
|
||||
// Number of concurrent threads to run.
|
||||
static int FLAGS_threads = 1;
|
||||
|
||||
// Size of each value
|
||||
static int FLAGS_value_size = 100;
|
||||
|
||||
@ -91,8 +95,9 @@ static const char* FLAGS_db = "/tmp/dbbench";
|
||||
|
||||
namespace leveldb {
|
||||
|
||||
// Helper for quickly generating random data.
|
||||
namespace {
|
||||
|
||||
// Helper for quickly generating random data.
|
||||
class RandomGenerator {
|
||||
private:
|
||||
std::string data_;
|
||||
@ -136,6 +141,152 @@ static Slice TrimSpace(Slice s) {
|
||||
return Slice(s.data() + start, limit - start);
|
||||
}
|
||||
|
||||
static void AppendWithSpace(std::string* str, Slice msg) {
|
||||
if (msg.empty()) return;
|
||||
if (!str->empty()) {
|
||||
str->push_back(' ');
|
||||
}
|
||||
str->append(msg.data(), msg.size());
|
||||
}
|
||||
|
||||
class Stats {
|
||||
private:
|
||||
double start_;
|
||||
double finish_;
|
||||
double seconds_;
|
||||
int done_;
|
||||
int next_report_;
|
||||
int64_t bytes_;
|
||||
double last_op_finish_;
|
||||
Histogram hist_;
|
||||
std::string message_;
|
||||
|
||||
public:
|
||||
Stats() { Start(); }
|
||||
|
||||
void Start() {
|
||||
next_report_ = 100;
|
||||
last_op_finish_ = start_;
|
||||
hist_.Clear();
|
||||
done_ = 0;
|
||||
bytes_ = 0;
|
||||
seconds_ = 0;
|
||||
start_ = Env::Default()->NowMicros();
|
||||
finish_ = start_;
|
||||
message_.clear();
|
||||
}
|
||||
|
||||
void Merge(const Stats& other) {
|
||||
hist_.Merge(other.hist_);
|
||||
done_ += other.done_;
|
||||
bytes_ += other.bytes_;
|
||||
seconds_ += other.seconds_;
|
||||
if (other.start_ < start_) start_ = other.start_;
|
||||
if (other.finish_ > finish_) finish_ = other.finish_;
|
||||
|
||||
// Just keep the messages from one thread
|
||||
if (message_.empty()) message_ = other.message_;
|
||||
}
|
||||
|
||||
void Stop() {
|
||||
finish_ = Env::Default()->NowMicros();
|
||||
seconds_ = (finish_ - start_) * 1e-6;
|
||||
}
|
||||
|
||||
void AddMessage(Slice msg) {
|
||||
AppendWithSpace(&message_, msg);
|
||||
}
|
||||
|
||||
void FinishedSingleOp() {
|
||||
if (FLAGS_histogram) {
|
||||
double now = Env::Default()->NowMicros();
|
||||
double micros = now - last_op_finish_;
|
||||
hist_.Add(micros);
|
||||
if (micros > 20000) {
|
||||
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
|
||||
fflush(stderr);
|
||||
}
|
||||
last_op_finish_ = now;
|
||||
}
|
||||
|
||||
done_++;
|
||||
if (done_ >= next_report_) {
|
||||
if (next_report_ < 1000) next_report_ += 100;
|
||||
else if (next_report_ < 5000) next_report_ += 500;
|
||||
else if (next_report_ < 10000) next_report_ += 1000;
|
||||
else if (next_report_ < 50000) next_report_ += 5000;
|
||||
else if (next_report_ < 100000) next_report_ += 10000;
|
||||
else if (next_report_ < 500000) next_report_ += 50000;
|
||||
else next_report_ += 100000;
|
||||
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
|
||||
fflush(stderr);
|
||||
}
|
||||
}
|
||||
|
||||
void AddBytes(int64_t n) {
|
||||
bytes_ += n;
|
||||
}
|
||||
|
||||
void Report(const Slice& name) {
|
||||
// Pretend at least one op was done in case we are running a benchmark
|
||||
// that does not call FinishedSingleOp().
|
||||
if (done_ < 1) done_ = 1;
|
||||
|
||||
std::string extra;
|
||||
if (bytes_ > 0) {
|
||||
// Rate is computed on actual elapsed time, not the sum of per-thread
|
||||
// elapsed times.
|
||||
double elapsed = (finish_ - start_) * 1e-6;
|
||||
char rate[100];
|
||||
snprintf(rate, sizeof(rate), "%6.1f MB/s",
|
||||
(bytes_ / 1048576.0) / elapsed);
|
||||
extra = rate;
|
||||
}
|
||||
AppendWithSpace(&extra, message_);
|
||||
|
||||
fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
|
||||
name.ToString().c_str(),
|
||||
seconds_ * 1e6 / done_,
|
||||
(extra.empty() ? "" : " "),
|
||||
extra.c_str());
|
||||
if (FLAGS_histogram) {
|
||||
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
};
|
||||
|
||||
// State shared by all concurrent executions of the same benchmark.
|
||||
struct SharedState {
|
||||
port::Mutex mu;
|
||||
port::CondVar cv;
|
||||
int total;
|
||||
|
||||
// Each thread goes through the following states:
|
||||
// (1) initializing
|
||||
// (2) waiting for others to be initialized
|
||||
// (3) running
|
||||
// (4) done
|
||||
|
||||
int num_initialized;
|
||||
int num_done;
|
||||
bool start;
|
||||
|
||||
SharedState() : cv(&mu) { }
|
||||
};
|
||||
|
||||
// Per-thread state for concurrent executions of the same benchmark.
|
||||
struct ThreadState {
|
||||
int tid; // 0..n-1 when running in n threads
|
||||
Random rand; // Has different seeds for different threads
|
||||
Stats stats;
|
||||
|
||||
ThreadState(int index)
|
||||
: tid(index),
|
||||
rand(1000 + index) {
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
class Benchmark {
|
||||
@ -143,20 +294,11 @@ class Benchmark {
|
||||
Cache* cache_;
|
||||
DB* db_;
|
||||
int num_;
|
||||
int value_size_;
|
||||
int entries_per_batch_;
|
||||
WriteOptions write_options_;
|
||||
int reads_;
|
||||
int heap_counter_;
|
||||
double start_;
|
||||
double last_op_finish_;
|
||||
int64_t bytes_;
|
||||
std::string message_;
|
||||
std::string post_message_;
|
||||
Histogram hist_;
|
||||
RandomGenerator gen_;
|
||||
Random rand_;
|
||||
|
||||
// State kept for progress messages
|
||||
int done_;
|
||||
int next_report_; // When to report next
|
||||
|
||||
void PrintHeader() {
|
||||
const int kKeySize = 16;
|
||||
@ -232,94 +374,15 @@ class Benchmark {
|
||||
#endif
|
||||
}
|
||||
|
||||
void Start() {
|
||||
start_ = Env::Default()->NowMicros() * 1e-6;
|
||||
bytes_ = 0;
|
||||
message_.clear();
|
||||
last_op_finish_ = start_;
|
||||
hist_.Clear();
|
||||
done_ = 0;
|
||||
next_report_ = 100;
|
||||
}
|
||||
|
||||
void FinishedSingleOp() {
|
||||
if (FLAGS_histogram) {
|
||||
double now = Env::Default()->NowMicros() * 1e-6;
|
||||
double micros = (now - last_op_finish_) * 1e6;
|
||||
hist_.Add(micros);
|
||||
if (micros > 20000) {
|
||||
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
|
||||
fflush(stderr);
|
||||
}
|
||||
last_op_finish_ = now;
|
||||
}
|
||||
|
||||
done_++;
|
||||
if (done_ >= next_report_) {
|
||||
if (next_report_ < 1000) next_report_ += 100;
|
||||
else if (next_report_ < 5000) next_report_ += 500;
|
||||
else if (next_report_ < 10000) next_report_ += 1000;
|
||||
else if (next_report_ < 50000) next_report_ += 5000;
|
||||
else if (next_report_ < 100000) next_report_ += 10000;
|
||||
else if (next_report_ < 500000) next_report_ += 50000;
|
||||
else next_report_ += 100000;
|
||||
fprintf(stderr, "... finished %d ops%30s\r", done_, "");
|
||||
fflush(stderr);
|
||||
}
|
||||
}
|
||||
|
||||
void Stop(const Slice& name) {
|
||||
double finish = Env::Default()->NowMicros() * 1e-6;
|
||||
|
||||
// Pretend at least one op was done in case we are running a benchmark
|
||||
// that does nto call FinishedSingleOp().
|
||||
if (done_ < 1) done_ = 1;
|
||||
|
||||
if (bytes_ > 0) {
|
||||
char rate[100];
|
||||
snprintf(rate, sizeof(rate), "%6.1f MB/s",
|
||||
(bytes_ / 1048576.0) / (finish - start_));
|
||||
if (!message_.empty()) {
|
||||
message_ = std::string(rate) + " " + message_;
|
||||
} else {
|
||||
message_ = rate;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n",
|
||||
name.ToString().c_str(),
|
||||
(finish - start_) * 1e6 / done_,
|
||||
(message_.empty() ? "" : " "),
|
||||
message_.c_str());
|
||||
if (FLAGS_histogram) {
|
||||
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
if (!post_message_.empty()) {
|
||||
fprintf(stdout, "\n%s\n", post_message_.c_str());
|
||||
post_message_.clear();
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
enum Order {
|
||||
SEQUENTIAL,
|
||||
RANDOM
|
||||
};
|
||||
enum DBState {
|
||||
FRESH,
|
||||
EXISTING
|
||||
};
|
||||
|
||||
Benchmark()
|
||||
: cache_(FLAGS_cache_size >= 0 ? NewLRUCache(FLAGS_cache_size) : NULL),
|
||||
db_(NULL),
|
||||
num_(FLAGS_num),
|
||||
value_size_(FLAGS_value_size),
|
||||
entries_per_batch_(1),
|
||||
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
|
||||
heap_counter_(0),
|
||||
bytes_(0),
|
||||
rand_(301) {
|
||||
heap_counter_(0) {
|
||||
std::vector<std::string> files;
|
||||
Env::Default()->GetChildren(FLAGS_db, &files);
|
||||
for (int i = 0; i < files.size(); i++) {
|
||||
@ -353,98 +416,203 @@ class Benchmark {
|
||||
benchmarks = sep + 1;
|
||||
}
|
||||
|
||||
Start();
|
||||
// Reset parameters that may be overriddden bwlow
|
||||
num_ = FLAGS_num;
|
||||
reads_ = num_;
|
||||
value_size_ = FLAGS_value_size;
|
||||
entries_per_batch_ = 1;
|
||||
write_options_ = WriteOptions();
|
||||
|
||||
void (Benchmark::*method)(ThreadState*) = NULL;
|
||||
bool fresh_db = false;
|
||||
|
||||
WriteOptions write_options;
|
||||
bool known = true;
|
||||
if (name == Slice("fillseq")) {
|
||||
Write(write_options, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
|
||||
fresh_db = true;
|
||||
method = &Benchmark::WriteSeq;
|
||||
} else if (name == Slice("fillbatch")) {
|
||||
Write(write_options, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
|
||||
fresh_db = true;
|
||||
entries_per_batch_ = 1000;
|
||||
method = &Benchmark::WriteSeq;
|
||||
} else if (name == Slice("fillrandom")) {
|
||||
Write(write_options, RANDOM, FRESH, num_, FLAGS_value_size, 1);
|
||||
fresh_db = true;
|
||||
method = &Benchmark::WriteRandom;
|
||||
} else if (name == Slice("overwrite")) {
|
||||
Write(write_options, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
|
||||
fresh_db = false;
|
||||
method = &Benchmark::WriteRandom;
|
||||
} else if (name == Slice("fillsync")) {
|
||||
write_options.sync = true;
|
||||
Write(write_options, RANDOM, FRESH, num_ / 1000, FLAGS_value_size, 1);
|
||||
fresh_db = true;
|
||||
num_ /= 1000;
|
||||
write_options_.sync = true;
|
||||
method = &Benchmark::WriteRandom;
|
||||
} else if (name == Slice("fill100K")) {
|
||||
Write(write_options, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
|
||||
fresh_db = true;
|
||||
num_ /= 1000;
|
||||
value_size_ = 100 * 1000;
|
||||
method = &Benchmark::WriteRandom;
|
||||
} else if (name == Slice("readseq")) {
|
||||
ReadSequential();
|
||||
method = &Benchmark::ReadSequential;
|
||||
} else if (name == Slice("readreverse")) {
|
||||
ReadReverse();
|
||||
method = &Benchmark::ReadReverse;
|
||||
} else if (name == Slice("readrandom")) {
|
||||
ReadRandom();
|
||||
method = &Benchmark::ReadRandom;
|
||||
} else if (name == Slice("readhot")) {
|
||||
ReadHot();
|
||||
method = &Benchmark::ReadHot;
|
||||
} else if (name == Slice("readrandomsmall")) {
|
||||
int n = reads_;
|
||||
reads_ /= 1000;
|
||||
ReadRandom();
|
||||
reads_ = n;
|
||||
method = &Benchmark::ReadRandom;
|
||||
} else if (name == Slice("compact")) {
|
||||
Compact();
|
||||
method = &Benchmark::Compact;
|
||||
} else if (name == Slice("crc32c")) {
|
||||
Crc32c(4096, "(4K per op)");
|
||||
method = &Benchmark::Crc32c;
|
||||
} else if (name == Slice("acquireload")) {
|
||||
AcquireLoad();
|
||||
method = &Benchmark::AcquireLoad;
|
||||
} else if (name == Slice("snappycomp")) {
|
||||
SnappyCompress();
|
||||
method = &Benchmark::SnappyCompress;
|
||||
} else if (name == Slice("snappyuncomp")) {
|
||||
SnappyUncompress();
|
||||
method = &Benchmark::SnappyUncompress;
|
||||
} else if (name == Slice("heapprofile")) {
|
||||
HeapProfile();
|
||||
} else if (name == Slice("stats")) {
|
||||
PrintStats();
|
||||
} else {
|
||||
known = false;
|
||||
if (name != Slice()) { // No error message for empty name
|
||||
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
|
||||
}
|
||||
}
|
||||
if (known) {
|
||||
Stop(name);
|
||||
|
||||
if (fresh_db) {
|
||||
if (FLAGS_use_existing_db) {
|
||||
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
|
||||
name.ToString().c_str());
|
||||
method = NULL;
|
||||
} else {
|
||||
delete db_;
|
||||
db_ = NULL;
|
||||
DestroyDB(FLAGS_db, Options());
|
||||
Open();
|
||||
}
|
||||
}
|
||||
|
||||
if (method != NULL) {
|
||||
RunBenchmark(name, method);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void Crc32c(int size, const char* label) {
|
||||
struct ThreadArg {
|
||||
Benchmark* bm;
|
||||
SharedState* shared;
|
||||
ThreadState* thread;
|
||||
void (Benchmark::*method)(ThreadState*);
|
||||
};
|
||||
|
||||
static void ThreadBody(void* v) {
|
||||
ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
|
||||
SharedState* shared = arg->shared;
|
||||
ThreadState* thread = arg->thread;
|
||||
{
|
||||
MutexLock l(&shared->mu);
|
||||
shared->num_initialized++;
|
||||
if (shared->num_initialized >= shared->total) {
|
||||
shared->cv.SignalAll();
|
||||
}
|
||||
while (!shared->start) {
|
||||
shared->cv.Wait();
|
||||
}
|
||||
}
|
||||
|
||||
thread->stats.Start();
|
||||
(arg->bm->*(arg->method))(thread);
|
||||
thread->stats.Stop();
|
||||
|
||||
{
|
||||
MutexLock l(&shared->mu);
|
||||
shared->num_done++;
|
||||
if (shared->num_done >= shared->total) {
|
||||
shared->cv.SignalAll();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RunBenchmark(Slice name, void (Benchmark::*method)(ThreadState*)) {
|
||||
const int n = FLAGS_threads;
|
||||
SharedState shared;
|
||||
shared.total = n;
|
||||
shared.num_initialized = 0;
|
||||
shared.num_done = 0;
|
||||
shared.start = false;
|
||||
|
||||
ThreadArg* arg = new ThreadArg[n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
arg[i].bm = this;
|
||||
arg[i].method = method;
|
||||
arg[i].shared = &shared;
|
||||
arg[i].thread = new ThreadState(i);
|
||||
Env::Default()->StartThread(ThreadBody, &arg[i]);
|
||||
}
|
||||
|
||||
shared.mu.Lock();
|
||||
while (shared.num_initialized < n) {
|
||||
shared.cv.Wait();
|
||||
}
|
||||
|
||||
shared.start = true;
|
||||
shared.cv.SignalAll();
|
||||
while (shared.num_done < n) {
|
||||
shared.cv.Wait();
|
||||
}
|
||||
shared.mu.Unlock();
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
arg[0].thread->stats.Merge(arg[i].thread->stats);
|
||||
}
|
||||
arg[0].thread->stats.Report(name);
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
delete arg[i].thread;
|
||||
}
|
||||
delete[] arg;
|
||||
}
|
||||
|
||||
void Crc32c(ThreadState* thread) {
|
||||
// Checksum about 500MB of data total
|
||||
const int size = 4096;
|
||||
const char* label = "(4K per op)";
|
||||
std::string data(size, 'x');
|
||||
int64_t bytes = 0;
|
||||
uint32_t crc = 0;
|
||||
while (bytes < 500 * 1048576) {
|
||||
crc = crc32c::Value(data.data(), size);
|
||||
FinishedSingleOp();
|
||||
thread->stats.FinishedSingleOp();
|
||||
bytes += size;
|
||||
}
|
||||
// Print so result is not dead
|
||||
fprintf(stderr, "... crc=0x%x\r", static_cast<unsigned int>(crc));
|
||||
|
||||
bytes_ = bytes;
|
||||
message_ = label;
|
||||
thread->stats.AddBytes(bytes);
|
||||
thread->stats.AddMessage(label);
|
||||
}
|
||||
|
||||
void AcquireLoad() {
|
||||
void AcquireLoad(ThreadState* thread) {
|
||||
int dummy;
|
||||
port::AtomicPointer ap(&dummy);
|
||||
int count = 0;
|
||||
void *ptr = NULL;
|
||||
message_ = "(each op is 1000 loads)";
|
||||
thread->stats.AddMessage("(each op is 1000 loads)");
|
||||
while (count < 100000) {
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
ptr = ap.Acquire_Load();
|
||||
}
|
||||
count++;
|
||||
FinishedSingleOp();
|
||||
thread->stats.FinishedSingleOp();
|
||||
}
|
||||
if (ptr == NULL) exit(1); // Disable unused variable warning.
|
||||
}
|
||||
|
||||
void SnappyCompress() {
|
||||
Slice input = gen_.Generate(Options().block_size);
|
||||
void SnappyCompress(ThreadState* thread) {
|
||||
RandomGenerator gen;
|
||||
Slice input = gen.Generate(Options().block_size);
|
||||
int64_t bytes = 0;
|
||||
int64_t produced = 0;
|
||||
bool ok = true;
|
||||
@ -453,22 +621,23 @@ class Benchmark {
|
||||
ok = port::Snappy_Compress(input.data(), input.size(), &compressed);
|
||||
produced += compressed.size();
|
||||
bytes += input.size();
|
||||
FinishedSingleOp();
|
||||
thread->stats.FinishedSingleOp();
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
message_ = "(snappy failure)";
|
||||
thread->stats.AddMessage("(snappy failure)");
|
||||
} else {
|
||||
char buf[100];
|
||||
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
|
||||
(produced * 100.0) / bytes);
|
||||
message_ = buf;
|
||||
bytes_ = bytes;
|
||||
thread->stats.AddMessage(buf);
|
||||
thread->stats.AddBytes(bytes);
|
||||
}
|
||||
}
|
||||
|
||||
void SnappyUncompress() {
|
||||
Slice input = gen_.Generate(Options().block_size);
|
||||
void SnappyUncompress(ThreadState* thread) {
|
||||
RandomGenerator gen;
|
||||
Slice input = gen.Generate(Options().block_size);
|
||||
std::string compressed;
|
||||
bool ok = port::Snappy_Compress(input.data(), input.size(), &compressed);
|
||||
int64_t bytes = 0;
|
||||
@ -477,14 +646,14 @@ class Benchmark {
|
||||
ok = port::Snappy_Uncompress(compressed.data(), compressed.size(),
|
||||
uncompressed);
|
||||
bytes += input.size();
|
||||
FinishedSingleOp();
|
||||
thread->stats.FinishedSingleOp();
|
||||
}
|
||||
delete[] uncompressed;
|
||||
|
||||
if (!ok) {
|
||||
message_ = "(snappy failure)";
|
||||
thread->stats.AddMessage("(snappy failure)");
|
||||
} else {
|
||||
bytes_ = bytes;
|
||||
thread->stats.AddBytes(bytes);
|
||||
}
|
||||
}
|
||||
|
||||
@ -501,95 +670,97 @@ class Benchmark {
|
||||
}
|
||||
}
|
||||
|
||||
void Write(const WriteOptions& options, Order order, DBState state,
|
||||
int num_entries, int value_size, int entries_per_batch) {
|
||||
if (state == FRESH) {
|
||||
if (FLAGS_use_existing_db) {
|
||||
message_ = "skipping (--use_existing_db is true)";
|
||||
return;
|
||||
}
|
||||
delete db_;
|
||||
db_ = NULL;
|
||||
DestroyDB(FLAGS_db, Options());
|
||||
Open();
|
||||
Start(); // Do not count time taken to destroy/open
|
||||
}
|
||||
void WriteSeq(ThreadState* thread) {
|
||||
DoWrite(thread, true);
|
||||
}
|
||||
|
||||
if (num_entries != num_) {
|
||||
void WriteRandom(ThreadState* thread) {
|
||||
DoWrite(thread, false);
|
||||
}
|
||||
|
||||
void DoWrite(ThreadState* thread, bool seq) {
|
||||
if (num_ != FLAGS_num) {
|
||||
char msg[100];
|
||||
snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
|
||||
message_ = msg;
|
||||
snprintf(msg, sizeof(msg), "(%d ops)", num_);
|
||||
thread->stats.AddMessage(msg);
|
||||
}
|
||||
|
||||
RandomGenerator gen;
|
||||
WriteBatch batch;
|
||||
Status s;
|
||||
std::string val;
|
||||
for (int i = 0; i < num_entries; i += entries_per_batch) {
|
||||
int64_t bytes = 0;
|
||||
for (int i = 0; i < num_; i += entries_per_batch_) {
|
||||
batch.Clear();
|
||||
for (int j = 0; j < entries_per_batch; j++) {
|
||||
const int k = (order == SEQUENTIAL) ? i+j : (rand_.Next() % FLAGS_num);
|
||||
for (int j = 0; j < entries_per_batch_; j++) {
|
||||
const int k = seq ? i+j : (thread->rand.Next() % FLAGS_num);
|
||||
char key[100];
|
||||
snprintf(key, sizeof(key), "%016d", k);
|
||||
batch.Put(key, gen_.Generate(value_size));
|
||||
bytes_ += value_size + strlen(key);
|
||||
FinishedSingleOp();
|
||||
batch.Put(key, gen.Generate(value_size_));
|
||||
bytes += value_size_ + strlen(key);
|
||||
thread->stats.FinishedSingleOp();
|
||||
}
|
||||
s = db_->Write(options, &batch);
|
||||
s = db_->Write(write_options_, &batch);
|
||||
if (!s.ok()) {
|
||||
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
thread->stats.AddBytes(bytes);
|
||||
}
|
||||
|
||||
void ReadSequential() {
|
||||
void ReadSequential(ThreadState* thread) {
|
||||
Iterator* iter = db_->NewIterator(ReadOptions());
|
||||
int i = 0;
|
||||
int64_t bytes = 0;
|
||||
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
|
||||
bytes_ += iter->key().size() + iter->value().size();
|
||||
FinishedSingleOp();
|
||||
bytes += iter->key().size() + iter->value().size();
|
||||
thread->stats.FinishedSingleOp();
|
||||
++i;
|
||||
}
|
||||
delete iter;
|
||||
thread->stats.AddBytes(bytes);
|
||||
}
|
||||
|
||||
void ReadReverse() {
|
||||
void ReadReverse(ThreadState* thread) {
|
||||
Iterator* iter = db_->NewIterator(ReadOptions());
|
||||
int i = 0;
|
||||
int64_t bytes = 0;
|
||||
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
|
||||
bytes_ += iter->key().size() + iter->value().size();
|
||||
FinishedSingleOp();
|
||||
bytes += iter->key().size() + iter->value().size();
|
||||
thread->stats.FinishedSingleOp();
|
||||
++i;
|
||||
}
|
||||
delete iter;
|
||||
thread->stats.AddBytes(bytes);
|
||||
}
|
||||
|
||||
void ReadRandom() {
|
||||
void ReadRandom(ThreadState* thread) {
|
||||
ReadOptions options;
|
||||
std::string value;
|
||||
for (int i = 0; i < reads_; i++) {
|
||||
char key[100];
|
||||
const int k = rand_.Next() % FLAGS_num;
|
||||
const int k = thread->rand.Next() % FLAGS_num;
|
||||
snprintf(key, sizeof(key), "%016d", k);
|
||||
db_->Get(options, key, &value);
|
||||
FinishedSingleOp();
|
||||
thread->stats.FinishedSingleOp();
|
||||
}
|
||||
}
|
||||
|
||||
void ReadHot() {
|
||||
void ReadHot(ThreadState* thread) {
|
||||
ReadOptions options;
|
||||
std::string value;
|
||||
const int range = (FLAGS_num + 99) / 100;
|
||||
for (int i = 0; i < reads_; i++) {
|
||||
char key[100];
|
||||
const int k = rand_.Next() % range;
|
||||
const int k = thread->rand.Next() % range;
|
||||
snprintf(key, sizeof(key), "%016d", k);
|
||||
db_->Get(options, key, &value);
|
||||
FinishedSingleOp();
|
||||
thread->stats.FinishedSingleOp();
|
||||
}
|
||||
}
|
||||
|
||||
void Compact() {
|
||||
void Compact(ThreadState* thread) {
|
||||
DBImpl* dbi = reinterpret_cast<DBImpl*>(db_);
|
||||
dbi->TEST_CompactMemTable();
|
||||
int max_level_with_files = 1;
|
||||
@ -609,10 +780,9 @@ class Benchmark {
|
||||
void PrintStats() {
|
||||
std::string stats;
|
||||
if (!db_->GetProperty("leveldb.stats", &stats)) {
|
||||
message_ = "(failed)";
|
||||
} else {
|
||||
post_message_ = stats;
|
||||
stats = "(failed)";
|
||||
}
|
||||
fprintf(stdout, "\n%s\n", stats.c_str());
|
||||
}
|
||||
|
||||
static void WriteToFile(void* arg, const char* buf, int n) {
|
||||
@ -625,13 +795,13 @@ class Benchmark {
|
||||
WritableFile* file;
|
||||
Status s = Env::Default()->NewWritableFile(fname, &file);
|
||||
if (!s.ok()) {
|
||||
message_ = s.ToString();
|
||||
fprintf(stderr, "%s\n", s.ToString().c_str());
|
||||
return;
|
||||
}
|
||||
bool ok = port::GetHeapProfile(WriteToFile, file);
|
||||
delete file;
|
||||
if (!ok) {
|
||||
message_ = "not supported";
|
||||
fprintf(stderr, "heap profiling not supported\n");
|
||||
Env::Default()->DeleteFile(fname);
|
||||
}
|
||||
}
|
||||
@ -661,6 +831,8 @@ int main(int argc, char** argv) {
|
||||
FLAGS_num = n;
|
||||
} else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
|
||||
FLAGS_reads = n;
|
||||
} else if (sscanf(argv[i], "--threads=%d%c", &n, &junk) == 1) {
|
||||
FLAGS_threads = n;
|
||||
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
|
||||
FLAGS_value_size = n;
|
||||
} else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) {
|
||||
|
@ -989,27 +989,37 @@ Status DBImpl::Get(const ReadOptions& options,
|
||||
snapshot = versions_->LastSequence();
|
||||
}
|
||||
|
||||
// First look in the memtable, then in the immutable memtable (if any).
|
||||
LookupKey lkey(key, snapshot);
|
||||
if (mem_->Get(lkey, value, &s)) {
|
||||
return s;
|
||||
}
|
||||
if (imm_ != NULL && imm_->Get(lkey, value, &s)) {
|
||||
return s;
|
||||
}
|
||||
|
||||
// Not in memtable(s); try live files in level order
|
||||
MemTable* mem = mem_;
|
||||
MemTable* imm = imm_;
|
||||
Version* current = versions_->current();
|
||||
mem->Ref();
|
||||
if (imm != NULL) imm->Ref();
|
||||
current->Ref();
|
||||
|
||||
bool have_stat_update = false;
|
||||
Version::GetStats stats;
|
||||
{ // Unlock while reading from files
|
||||
|
||||
// Unlock while reading from files and memtables
|
||||
{
|
||||
mutex_.Unlock();
|
||||
s = current->Get(options, lkey, value, &stats);
|
||||
// First look in the memtable, then in the immutable memtable (if any).
|
||||
LookupKey lkey(key, snapshot);
|
||||
if (mem_->Get(lkey, value, &s)) {
|
||||
// Done
|
||||
} else if (imm_ != NULL && imm_->Get(lkey, value, &s)) {
|
||||
// Done
|
||||
} else {
|
||||
s = current->Get(options, lkey, value, &stats);
|
||||
have_stat_update = true;
|
||||
}
|
||||
mutex_.Lock();
|
||||
}
|
||||
if (current->UpdateStats(stats)) {
|
||||
|
||||
if (have_stat_update && current->UpdateStats(stats)) {
|
||||
MaybeScheduleCompaction();
|
||||
}
|
||||
mem->Unref();
|
||||
if (imm != NULL) imm->Unref();
|
||||
current->Unref();
|
||||
return s;
|
||||
}
|
||||
|
149
util/cache.cc
149
util/cache.cc
@ -30,7 +30,8 @@ struct LRUHandle {
|
||||
LRUHandle* prev;
|
||||
size_t charge; // TODO(opt): Only allow uint32_t?
|
||||
size_t key_length;
|
||||
size_t refs; // TODO(opt): Pack with "key_length"?
|
||||
uint32_t refs;
|
||||
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
|
||||
char key_data[1]; // Beginning of key
|
||||
|
||||
Slice key() const {
|
||||
@ -54,12 +55,12 @@ class HandleTable {
|
||||
HandleTable() : length_(0), elems_(0), list_(NULL) { Resize(); }
|
||||
~HandleTable() { delete[] list_; }
|
||||
|
||||
LRUHandle* Lookup(LRUHandle* h) {
|
||||
return *FindPointer(h);
|
||||
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
|
||||
return *FindPointer(key, hash);
|
||||
}
|
||||
|
||||
LRUHandle* Insert(LRUHandle* h) {
|
||||
LRUHandle** ptr = FindPointer(h);
|
||||
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
||||
LRUHandle* old = *ptr;
|
||||
h->next_hash = (old == NULL ? NULL : old->next_hash);
|
||||
*ptr = h;
|
||||
@ -74,8 +75,8 @@ class HandleTable {
|
||||
return old;
|
||||
}
|
||||
|
||||
LRUHandle* Remove(LRUHandle* h) {
|
||||
LRUHandle** ptr = FindPointer(h);
|
||||
LRUHandle* Remove(const Slice& key, uint32_t hash) {
|
||||
LRUHandle** ptr = FindPointer(key, hash);
|
||||
LRUHandle* result = *ptr;
|
||||
if (result != NULL) {
|
||||
*ptr = result->next_hash;
|
||||
@ -92,13 +93,12 @@ class HandleTable {
|
||||
LRUHandle** list_;
|
||||
|
||||
// Return a pointer to slot that points to a cache entry that
|
||||
// matches *h. If there is no such cache entry, return a pointer to
|
||||
// the trailing slot in the corresponding linked list.
|
||||
LRUHandle** FindPointer(LRUHandle* h) {
|
||||
Slice key = h->key();
|
||||
uint32_t hash = Hash(key.data(), key.size(), 0);
|
||||
// matches key/hash. If there is no such cache entry, return a
|
||||
// pointer to the trailing slot in the corresponding linked list.
|
||||
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
|
||||
LRUHandle** ptr = &list_[hash & (length_ - 1)];
|
||||
while (*ptr != NULL && key != (*ptr)->key()) {
|
||||
while (*ptr != NULL &&
|
||||
((*ptr)->hash != hash || key != (*ptr)->key())) {
|
||||
ptr = &(*ptr)->next_hash;
|
||||
}
|
||||
return ptr;
|
||||
@ -117,7 +117,7 @@ class HandleTable {
|
||||
while (h != NULL) {
|
||||
LRUHandle* next = h->next_hash;
|
||||
Slice key = h->key();
|
||||
uint32_t hash = Hash(key.data(), key.size(), 0);
|
||||
uint32_t hash = h->hash;
|
||||
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
|
||||
h->next_hash = *ptr;
|
||||
*ptr = h;
|
||||
@ -132,26 +132,30 @@ class HandleTable {
|
||||
}
|
||||
};
|
||||
|
||||
class LRUCache : public Cache {
|
||||
// A single shard of sharded cache.
|
||||
class LRUCache {
|
||||
public:
|
||||
explicit LRUCache(size_t capacity);
|
||||
virtual ~LRUCache();
|
||||
LRUCache();
|
||||
~LRUCache();
|
||||
|
||||
virtual Handle* Insert(const Slice& key, void* value, size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value));
|
||||
virtual Handle* Lookup(const Slice& key);
|
||||
virtual void Release(Handle* handle);
|
||||
virtual void* Value(Handle* handle);
|
||||
virtual void Erase(const Slice& key);
|
||||
virtual uint64_t NewId();
|
||||
// Separate from constructor so caller can easily make an array of LRUCache
|
||||
void SetCapacity(size_t capacity) { capacity_ = capacity; }
|
||||
|
||||
// Like Cache methods, but with an extra "hash" parameter.
|
||||
Cache::Handle* Insert(const Slice& key, uint32_t hash,
|
||||
void* value, size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value));
|
||||
Cache::Handle* Lookup(const Slice& key, uint32_t hash);
|
||||
void Release(Cache::Handle* handle);
|
||||
void Erase(const Slice& key, uint32_t hash);
|
||||
|
||||
private:
|
||||
void LRU_Remove(LRUHandle* e);
|
||||
void LRU_Append(LRUHandle* e);
|
||||
void Unref(LRUHandle* e);
|
||||
|
||||
// Constructor parameters
|
||||
const size_t capacity_;
|
||||
// Initialized before use.
|
||||
size_t capacity_;
|
||||
|
||||
// mutex_ protects the following state.
|
||||
port::Mutex mutex_;
|
||||
@ -165,9 +169,8 @@ class LRUCache : public Cache {
|
||||
HandleTable table_;
|
||||
};
|
||||
|
||||
LRUCache::LRUCache(size_t capacity)
|
||||
: capacity_(capacity),
|
||||
usage_(0),
|
||||
LRUCache::LRUCache()
|
||||
: usage_(0),
|
||||
last_id_(0) {
|
||||
// Make empty circular linked list
|
||||
lru_.next = &lru_;
|
||||
@ -206,32 +209,25 @@ void LRUCache::LRU_Append(LRUHandle* e) {
|
||||
e->next->prev = e;
|
||||
}
|
||||
|
||||
Cache::Handle* LRUCache::Lookup(const Slice& key) {
|
||||
Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
|
||||
MutexLock l(&mutex_);
|
||||
|
||||
LRUHandle dummy;
|
||||
dummy.next = &dummy;
|
||||
dummy.value = const_cast<Slice*>(&key);
|
||||
LRUHandle* e = table_.Lookup(&dummy);
|
||||
LRUHandle* e = table_.Lookup(key, hash);
|
||||
if (e != NULL) {
|
||||
e->refs++;
|
||||
LRU_Remove(e);
|
||||
LRU_Append(e);
|
||||
}
|
||||
return reinterpret_cast<Handle*>(e);
|
||||
return reinterpret_cast<Cache::Handle*>(e);
|
||||
}
|
||||
|
||||
void* LRUCache::Value(Handle* handle) {
|
||||
return reinterpret_cast<LRUHandle*>(handle)->value;
|
||||
}
|
||||
|
||||
void LRUCache::Release(Handle* handle) {
|
||||
void LRUCache::Release(Cache::Handle* handle) {
|
||||
MutexLock l(&mutex_);
|
||||
Unref(reinterpret_cast<LRUHandle*>(handle));
|
||||
}
|
||||
|
||||
Cache::Handle* LRUCache::Insert(const Slice& key, void* value, size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value)) {
|
||||
Cache::Handle* LRUCache::Insert(
|
||||
const Slice& key, uint32_t hash, void* value, size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value)) {
|
||||
MutexLock l(&mutex_);
|
||||
|
||||
LRUHandle* e = reinterpret_cast<LRUHandle*>(
|
||||
@ -240,6 +236,7 @@ Cache::Handle* LRUCache::Insert(const Slice& key, void* value, size_t charge,
|
||||
e->deleter = deleter;
|
||||
e->charge = charge;
|
||||
e->key_length = key.size();
|
||||
e->hash = hash;
|
||||
e->refs = 2; // One from LRUCache, one for the returned handle
|
||||
memcpy(e->key_data, key.data(), key.size());
|
||||
LRU_Append(e);
|
||||
@ -254,35 +251,77 @@ Cache::Handle* LRUCache::Insert(const Slice& key, void* value, size_t charge,
|
||||
while (usage_ > capacity_ && lru_.next != &lru_) {
|
||||
LRUHandle* old = lru_.next;
|
||||
LRU_Remove(old);
|
||||
table_.Remove(old);
|
||||
table_.Remove(old->key(), old->hash);
|
||||
Unref(old);
|
||||
}
|
||||
|
||||
return reinterpret_cast<Handle*>(e);
|
||||
return reinterpret_cast<Cache::Handle*>(e);
|
||||
}
|
||||
|
||||
void LRUCache::Erase(const Slice& key) {
|
||||
void LRUCache::Erase(const Slice& key, uint32_t hash) {
|
||||
MutexLock l(&mutex_);
|
||||
|
||||
LRUHandle dummy;
|
||||
dummy.next = &dummy;
|
||||
dummy.value = const_cast<Slice*>(&key);
|
||||
LRUHandle* e = table_.Remove(&dummy);
|
||||
LRUHandle* e = table_.Remove(key, hash);
|
||||
if (e != NULL) {
|
||||
LRU_Remove(e);
|
||||
Unref(e);
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t LRUCache::NewId() {
|
||||
MutexLock l(&mutex_);
|
||||
return ++(last_id_);
|
||||
}
|
||||
static const int kNumShardBits = 4;
|
||||
static const int kNumShards = 1 << kNumShardBits;
|
||||
|
||||
class ShardedLRUCache : public Cache {
|
||||
private:
|
||||
LRUCache shard_[kNumShards];
|
||||
port::Mutex id_mutex_;
|
||||
uint64_t last_id_;
|
||||
|
||||
static inline uint32_t HashSlice(const Slice& s) {
|
||||
return Hash(s.data(), s.size(), 0);
|
||||
}
|
||||
|
||||
static uint32_t Shard(uint32_t hash) {
|
||||
return hash >> (32 - kNumShardBits);
|
||||
}
|
||||
|
||||
public:
|
||||
explicit ShardedLRUCache(size_t capacity) {
|
||||
const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards;
|
||||
for (int s = 0; s < kNumShards; s++) {
|
||||
shard_[s].SetCapacity(per_shard);
|
||||
}
|
||||
}
|
||||
virtual ~ShardedLRUCache() { }
|
||||
virtual Handle* Insert(const Slice& key, void* value, size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value)) {
|
||||
const uint32_t hash = HashSlice(key);
|
||||
return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter);
|
||||
}
|
||||
virtual Handle* Lookup(const Slice& key) {
|
||||
const uint32_t hash = HashSlice(key);
|
||||
return shard_[Shard(hash)].Lookup(key, hash);
|
||||
}
|
||||
virtual void Release(Handle* handle) {
|
||||
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
|
||||
shard_[Shard(h->hash)].Release(handle);
|
||||
}
|
||||
virtual void Erase(const Slice& key) {
|
||||
const uint32_t hash = HashSlice(key);
|
||||
shard_[Shard(hash)].Erase(key, hash);
|
||||
}
|
||||
virtual void* Value(Handle* handle) {
|
||||
return reinterpret_cast<LRUHandle*>(handle)->value;
|
||||
}
|
||||
virtual uint64_t NewId() {
|
||||
MutexLock l(&id_mutex_);
|
||||
return ++(last_id_);
|
||||
}
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
Cache* NewLRUCache(size_t capacity) {
|
||||
return new LRUCache(capacity);
|
||||
return new ShardedLRUCache(capacity);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -32,7 +32,7 @@ class CacheTest {
|
||||
current_->deleted_values_.push_back(DecodeValue(v));
|
||||
}
|
||||
|
||||
static const int kCacheSize = 100;
|
||||
static const int kCacheSize = 1000;
|
||||
std::vector<int> deleted_keys_;
|
||||
std::vector<int> deleted_values_;
|
||||
Cache* cache_;
|
||||
@ -137,23 +137,40 @@ TEST(CacheTest, EvictionPolicy) {
|
||||
Insert(200, 201);
|
||||
|
||||
// Frequently used entry must be kept around
|
||||
for (int i = 0; i < kCacheSize; i++) {
|
||||
for (int i = 0; i < kCacheSize + 100; i++) {
|
||||
Insert(1000+i, 2000+i);
|
||||
ASSERT_EQ(2000+i, Lookup(1000+i));
|
||||
ASSERT_EQ(101, Lookup(100));
|
||||
}
|
||||
ASSERT_EQ(101, Lookup(100));
|
||||
ASSERT_EQ(2, deleted_keys_.size());
|
||||
ASSERT_EQ(200, deleted_keys_[0]);
|
||||
ASSERT_EQ(201, deleted_values_[0]);
|
||||
ASSERT_EQ(-1, Lookup(200));
|
||||
}
|
||||
|
||||
TEST(CacheTest, HeavyEntry) {
|
||||
Insert(100, 101);
|
||||
Insert(200, 201, kCacheSize);
|
||||
ASSERT_EQ(1, deleted_keys_.size());
|
||||
ASSERT_EQ(100, deleted_keys_[0]);
|
||||
ASSERT_EQ(101, deleted_values_[0]);
|
||||
TEST(CacheTest, HeavyEntries) {
|
||||
// Add a bunch of light and heavy entries and then count the combined
|
||||
// size of items still in the cache, which must be approximately the
|
||||
// same as the total capacity.
|
||||
const int kLight = 1;
|
||||
const int kHeavy = 10;
|
||||
int added = 0;
|
||||
int index = 0;
|
||||
while (added < 2*kCacheSize) {
|
||||
const int weight = (index & 1) ? kLight : kHeavy;
|
||||
Insert(index, 1000+index, weight);
|
||||
added += weight;
|
||||
index++;
|
||||
}
|
||||
|
||||
int cached_weight = 0;
|
||||
for (int i = 0; i < index; i++) {
|
||||
const int weight = (i & 1 ? kLight : kHeavy);
|
||||
int r = Lookup(i);
|
||||
if (r >= 0) {
|
||||
cached_weight += weight;
|
||||
ASSERT_EQ(1000+i, r);
|
||||
}
|
||||
}
|
||||
ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10);
|
||||
}
|
||||
|
||||
TEST(CacheTest, NewId) {
|
||||
|
@ -55,6 +55,17 @@ void Histogram::Add(double value) {
|
||||
sum_squares_ += (value * value);
|
||||
}
|
||||
|
||||
void Histogram::Merge(const Histogram& other) {
|
||||
if (other.min_ < min_) min_ = other.min_;
|
||||
if (other.max_ > max_) max_ = other.max_;
|
||||
num_ += other.num_;
|
||||
sum_ += other.sum_;
|
||||
sum_squares_ += other.sum_squares_;
|
||||
for (int b = 0; b < kNumBuckets; b++) {
|
||||
buckets_[b] += other.buckets_[b];
|
||||
}
|
||||
}
|
||||
|
||||
double Histogram::Median() const {
|
||||
return Percentile(50.0);
|
||||
}
|
||||
|
@ -16,6 +16,7 @@ class Histogram {
|
||||
|
||||
void Clear();
|
||||
void Add(double value);
|
||||
void Merge(const Histogram& other);
|
||||
|
||||
std::string ToString() const;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user