kernel/tools/perf/util/env.c
2024-07-22 17:22:30 +08:00

540 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "cpumap.h"
#include "debug.h"
#include "env.h"
#include "util/header.h"
#include <linux/ctype.h>
#include <linux/zalloc.h>
#include "cgroup.h"
#include <errno.h>
#include <sys/utsname.h>
#include <stdlib.h>
#include <string.h>
#include "strbuf.h"
struct perf_env perf_env;
#ifdef HAVE_LIBBPF_SUPPORT
#include "bpf-event.h"
#include <bpf/libbpf.h>
void perf_env__insert_bpf_prog_info(struct perf_env *env,
struct bpf_prog_info_node *info_node)
{
down_write(&env->bpf_progs.lock);
__perf_env__insert_bpf_prog_info(env, info_node);
up_write(&env->bpf_progs.lock);
}
void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node)
{
__u32 prog_id = info_node->info_linear->info.id;
struct bpf_prog_info_node *node;
struct rb_node *parent = NULL;
struct rb_node **p;
p = &env->bpf_progs.infos.rb_node;
while (*p != NULL) {
parent = *p;
node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
if (prog_id < node->info_linear->info.id) {
p = &(*p)->rb_left;
} else if (prog_id > node->info_linear->info.id) {
p = &(*p)->rb_right;
} else {
pr_debug("duplicated bpf prog info %u\n", prog_id);
return;
}
}
rb_link_node(&info_node->rb_node, parent, p);
rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
env->bpf_progs.infos_cnt++;
}
struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
__u32 prog_id)
{
struct bpf_prog_info_node *node = NULL;
struct rb_node *n;
down_read(&env->bpf_progs.lock);
n = env->bpf_progs.infos.rb_node;
while (n) {
node = rb_entry(n, struct bpf_prog_info_node, rb_node);
if (prog_id < node->info_linear->info.id)
n = n->rb_left;
else if (prog_id > node->info_linear->info.id)
n = n->rb_right;
else
goto out;
}
node = NULL;
out:
up_read(&env->bpf_progs.lock);
return node;
}
bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
{
bool ret;
down_write(&env->bpf_progs.lock);
ret = __perf_env__insert_btf(env, btf_node);
up_write(&env->bpf_progs.lock);
return ret;
}
bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
{
struct rb_node *parent = NULL;
__u32 btf_id = btf_node->id;
struct btf_node *node;
struct rb_node **p;
p = &env->bpf_progs.btfs.rb_node;
while (*p != NULL) {
parent = *p;
node = rb_entry(parent, struct btf_node, rb_node);
if (btf_id < node->id) {
p = &(*p)->rb_left;
} else if (btf_id > node->id) {
p = &(*p)->rb_right;
} else {
pr_debug("duplicated btf %u\n", btf_id);
return false;
}
}
rb_link_node(&btf_node->rb_node, parent, p);
rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
env->bpf_progs.btfs_cnt++;
return true;
}
struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
{
struct btf_node *res;
down_read(&env->bpf_progs.lock);
res = __perf_env__find_btf(env, btf_id);
up_read(&env->bpf_progs.lock);
return res;
}
struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id)
{
struct btf_node *node = NULL;
struct rb_node *n;
n = env->bpf_progs.btfs.rb_node;
while (n) {
node = rb_entry(n, struct btf_node, rb_node);
if (btf_id < node->id)
n = n->rb_left;
else if (btf_id > node->id)
n = n->rb_right;
else
return node;
}
return NULL;
}
/* purge data in bpf_progs.infos tree */
static void perf_env__purge_bpf(struct perf_env *env)
{
struct rb_root *root;
struct rb_node *next;
down_write(&env->bpf_progs.lock);
root = &env->bpf_progs.infos;
next = rb_first(root);
while (next) {
struct bpf_prog_info_node *node;
node = rb_entry(next, struct bpf_prog_info_node, rb_node);
next = rb_next(&node->rb_node);
rb_erase(&node->rb_node, root);
free(node->info_linear);
free(node);
}
env->bpf_progs.infos_cnt = 0;
root = &env->bpf_progs.btfs;
next = rb_first(root);
while (next) {
struct btf_node *node;
node = rb_entry(next, struct btf_node, rb_node);
next = rb_next(&node->rb_node);
rb_erase(&node->rb_node, root);
free(node);
}
env->bpf_progs.btfs_cnt = 0;
up_write(&env->bpf_progs.lock);
}
#else // HAVE_LIBBPF_SUPPORT
static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
{
}
#endif // HAVE_LIBBPF_SUPPORT
void perf_env__exit(struct perf_env *env)
{
int i;
perf_env__purge_bpf(env);
perf_env__purge_cgroups(env);
zfree(&env->hostname);
zfree(&env->os_release);
zfree(&env->version);
zfree(&env->arch);
zfree(&env->cpu_desc);
zfree(&env->cpuid);
zfree(&env->cmdline);
zfree(&env->cmdline_argv);
zfree(&env->sibling_dies);
zfree(&env->sibling_cores);
zfree(&env->sibling_threads);
zfree(&env->pmu_mappings);
zfree(&env->cpu);
zfree(&env->cpu_pmu_caps);
zfree(&env->numa_map);
for (i = 0; i < env->nr_numa_nodes; i++)
perf_cpu_map__put(env->numa_nodes[i].map);
zfree(&env->numa_nodes);
for (i = 0; i < env->caches_cnt; i++)
cpu_cache_level__free(&env->caches[i]);
zfree(&env->caches);
for (i = 0; i < env->nr_memory_nodes; i++)
zfree(&env->memory_nodes[i].set);
zfree(&env->memory_nodes);
for (i = 0; i < env->nr_hybrid_nodes; i++) {
zfree(&env->hybrid_nodes[i].pmu_name);
zfree(&env->hybrid_nodes[i].cpus);
}
zfree(&env->hybrid_nodes);
for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
zfree(&env->hybrid_cpc_nodes[i].pmu_name);
}
zfree(&env->hybrid_cpc_nodes);
}
void perf_env__init(struct perf_env *env)
{
#ifdef HAVE_LIBBPF_SUPPORT
env->bpf_progs.infos = RB_ROOT;
env->bpf_progs.btfs = RB_ROOT;
init_rwsem(&env->bpf_progs.lock);
#endif
env->kernel_is_64_bit = -1;
}
static void perf_env__init_kernel_mode(struct perf_env *env)
{
const char *arch = perf_env__raw_arch(env);
if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
!strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
!strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
!strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
env->kernel_is_64_bit = 1;
else
env->kernel_is_64_bit = 0;
}
int perf_env__kernel_is_64_bit(struct perf_env *env)
{
if (env->kernel_is_64_bit == -1)
perf_env__init_kernel_mode(env);
return env->kernel_is_64_bit;
}
int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
{
int i;
/* do not include NULL termination */
env->cmdline_argv = calloc(argc, sizeof(char *));
if (env->cmdline_argv == NULL)
goto out_enomem;
/*
* Must copy argv contents because it gets moved around during option
* parsing:
*/
for (i = 0; i < argc ; i++) {
env->cmdline_argv[i] = argv[i];
if (env->cmdline_argv[i] == NULL)
goto out_free;
}
env->nr_cmdline = argc;
return 0;
out_free:
zfree(&env->cmdline_argv);
out_enomem:
return -ENOMEM;
}
int perf_env__read_cpu_topology_map(struct perf_env *env)
{
int cpu, nr_cpus;
if (env->cpu != NULL)
return 0;
if (env->nr_cpus_avail == 0)
env->nr_cpus_avail = cpu__max_present_cpu();
nr_cpus = env->nr_cpus_avail;
if (nr_cpus == -1)
return -EINVAL;
env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
if (env->cpu == NULL)
return -ENOMEM;
for (cpu = 0; cpu < nr_cpus; ++cpu) {
env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
}
env->nr_cpus_avail = nr_cpus;
return 0;
}
int perf_env__read_pmu_mappings(struct perf_env *env)
{
struct perf_pmu *pmu = NULL;
u32 pmu_num = 0;
struct strbuf sb;
while ((pmu = perf_pmu__scan(pmu))) {
if (!pmu->name)
continue;
pmu_num++;
}
if (!pmu_num) {
pr_debug("pmu mappings not available\n");
return -ENOENT;
}
env->nr_pmu_mappings = pmu_num;
if (strbuf_init(&sb, 128 * pmu_num) < 0)
return -ENOMEM;
while ((pmu = perf_pmu__scan(pmu))) {
if (!pmu->name)
continue;
if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
goto error;
/* include a NULL character at the end */
if (strbuf_add(&sb, "", 1) < 0)
goto error;
}
env->pmu_mappings = strbuf_detach(&sb, NULL);
return 0;
error:
strbuf_release(&sb);
return -1;
}
int perf_env__read_cpuid(struct perf_env *env)
{
char cpuid[128];
int err = get_cpuid(cpuid, sizeof(cpuid));
if (err)
return err;
free(env->cpuid);
env->cpuid = strdup(cpuid);
if (env->cpuid == NULL)
return ENOMEM;
return 0;
}
static int perf_env__read_arch(struct perf_env *env)
{
struct utsname uts;
if (env->arch)
return 0;
if (!uname(&uts))
env->arch = strdup(uts.machine);
return env->arch ? 0 : -ENOMEM;
}
static int perf_env__read_nr_cpus_avail(struct perf_env *env)
{
if (env->nr_cpus_avail == 0)
env->nr_cpus_avail = cpu__max_present_cpu();
return env->nr_cpus_avail ? 0 : -ENOENT;
}
const char *perf_env__raw_arch(struct perf_env *env)
{
return env && !perf_env__read_arch(env) ? env->arch : "unknown";
}
int perf_env__nr_cpus_avail(struct perf_env *env)
{
return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
}
void cpu_cache_level__free(struct cpu_cache_level *cache)
{
zfree(&cache->type);
zfree(&cache->map);
zfree(&cache->size);
}
/*
* Return architecture name in a normalized form.
* The conversion logic comes from the Makefile.
*/
static const char *normalize_arch(char *arch)
{
if (!strcmp(arch, "x86_64"))
return "x86";
if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
return "x86";
if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
return "sparc";
if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
return "arm64";
if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
return "arm";
if (!strncmp(arch, "s390", 4))
return "s390";
if (!strncmp(arch, "parisc", 6))
return "parisc";
if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
return "powerpc";
if (!strncmp(arch, "mips", 4))
return "mips";
if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
return "sh";
return arch;
}
const char *perf_env__arch(struct perf_env *env)
{
char *arch_name;
if (!env || !env->arch) { /* Assume local operation */
static struct utsname uts = { .machine[0] = '\0', };
if (uts.machine[0] == '\0' && uname(&uts) < 0)
return NULL;
arch_name = uts.machine;
} else
arch_name = env->arch;
return normalize_arch(arch_name);
}
const char *perf_env__cpuid(struct perf_env *env)
{
int status;
if (!env || !env->cpuid) { /* Assume local operation */
status = perf_env__read_cpuid(env);
if (status)
return NULL;
}
return env->cpuid;
}
int perf_env__nr_pmu_mappings(struct perf_env *env)
{
int status;
if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
status = perf_env__read_pmu_mappings(env);
if (status)
return 0;
}
return env->nr_pmu_mappings;
}
const char *perf_env__pmu_mappings(struct perf_env *env)
{
int status;
if (!env || !env->pmu_mappings) { /* Assume local operation */
status = perf_env__read_pmu_mappings(env);
if (status)
return NULL;
}
return env->pmu_mappings;
}
int perf_env__numa_node(struct perf_env *env, int cpu)
{
if (!env->nr_numa_map) {
struct numa_node *nn;
int i, nr = 0;
for (i = 0; i < env->nr_numa_nodes; i++) {
nn = &env->numa_nodes[i];
nr = max(nr, perf_cpu_map__max(nn->map));
}
nr++;
/*
* We initialize the numa_map array to prepare
* it for missing cpus, which return node -1
*/
env->numa_map = malloc(nr * sizeof(int));
if (!env->numa_map)
return -1;
for (i = 0; i < nr; i++)
env->numa_map[i] = -1;
env->nr_numa_map = nr;
for (i = 0; i < env->nr_numa_nodes; i++) {
int tmp, j;
nn = &env->numa_nodes[i];
perf_cpu_map__for_each_cpu(j, tmp, nn->map)
env->numa_map[j] = i;
}
}
return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
}