kernel/sound/soc/codecs/nau8822.c
2024-07-22 17:22:30 +08:00

1159 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// nau8822.c -- NAU8822 ALSA Soc Audio driver
//
// Copyright 2017 Nuvoton Technology Crop.
//
// Author: David Lin <ctlin0@nuvoton.com>
// Co-author: John Hsu <kchsu0@nuvoton.com>
// Co-author: Seven Li <wtli@nuvoton.com>
//
// Based on WM8974.c
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <asm/div64.h>
#include "nau8822.h"
#define NAU_PLL_FREQ_MAX 100000000
#define NAU_PLL_FREQ_MIN 90000000
#define NAU_PLL_REF_MAX 33000000
#define NAU_PLL_REF_MIN 8000000
#define NAU_PLL_OPTOP_MIN 6
static const int nau8822_mclk_scaler[] = { 10, 15, 20, 30, 40, 60, 80, 120 };
static const struct reg_default nau8822_reg_defaults[] = {
{ NAU8822_REG_POWER_MANAGEMENT_1, 0x0000 },
{ NAU8822_REG_POWER_MANAGEMENT_2, 0x0000 },
{ NAU8822_REG_POWER_MANAGEMENT_3, 0x0000 },
{ NAU8822_REG_AUDIO_INTERFACE, 0x0050 },
{ NAU8822_REG_COMPANDING_CONTROL, 0x0000 },
{ NAU8822_REG_CLOCKING, 0x0140 },
{ NAU8822_REG_ADDITIONAL_CONTROL, 0x0000 },
{ NAU8822_REG_GPIO_CONTROL, 0x0000 },
{ NAU8822_REG_JACK_DETECT_CONTROL_1, 0x0000 },
{ NAU8822_REG_DAC_CONTROL, 0x0000 },
{ NAU8822_REG_LEFT_DAC_DIGITAL_VOLUME, 0x00ff },
{ NAU8822_REG_RIGHT_DAC_DIGITAL_VOLUME, 0x00ff },
{ NAU8822_REG_JACK_DETECT_CONTROL_2, 0x0000 },
{ NAU8822_REG_ADC_CONTROL, 0x0100 },
{ NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME, 0x00ff },
{ NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME, 0x00ff },
{ NAU8822_REG_EQ1, 0x012c },
{ NAU8822_REG_EQ2, 0x002c },
{ NAU8822_REG_EQ3, 0x002c },
{ NAU8822_REG_EQ4, 0x002c },
{ NAU8822_REG_EQ5, 0x002c },
{ NAU8822_REG_DAC_LIMITER_1, 0x0032 },
{ NAU8822_REG_DAC_LIMITER_2, 0x0000 },
{ NAU8822_REG_NOTCH_FILTER_1, 0x0000 },
{ NAU8822_REG_NOTCH_FILTER_2, 0x0000 },
{ NAU8822_REG_NOTCH_FILTER_3, 0x0000 },
{ NAU8822_REG_NOTCH_FILTER_4, 0x0000 },
{ NAU8822_REG_ALC_CONTROL_1, 0x0038 },
{ NAU8822_REG_ALC_CONTROL_2, 0x000b },
{ NAU8822_REG_ALC_CONTROL_3, 0x0032 },
{ NAU8822_REG_NOISE_GATE, 0x0010 },
{ NAU8822_REG_PLL_N, 0x0008 },
{ NAU8822_REG_PLL_K1, 0x000c },
{ NAU8822_REG_PLL_K2, 0x0093 },
{ NAU8822_REG_PLL_K3, 0x00e9 },
{ NAU8822_REG_3D_CONTROL, 0x0000 },
{ NAU8822_REG_RIGHT_SPEAKER_CONTROL, 0x0000 },
{ NAU8822_REG_INPUT_CONTROL, 0x0033 },
{ NAU8822_REG_LEFT_INP_PGA_CONTROL, 0x0010 },
{ NAU8822_REG_RIGHT_INP_PGA_CONTROL, 0x0010 },
{ NAU8822_REG_LEFT_ADC_BOOST_CONTROL, 0x0100 },
{ NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 0x0100 },
{ NAU8822_REG_OUTPUT_CONTROL, 0x0002 },
{ NAU8822_REG_LEFT_MIXER_CONTROL, 0x0001 },
{ NAU8822_REG_RIGHT_MIXER_CONTROL, 0x0001 },
{ NAU8822_REG_LHP_VOLUME, 0x0039 },
{ NAU8822_REG_RHP_VOLUME, 0x0039 },
{ NAU8822_REG_LSPKOUT_VOLUME, 0x0039 },
{ NAU8822_REG_RSPKOUT_VOLUME, 0x0039 },
{ NAU8822_REG_AUX2_MIXER, 0x0001 },
{ NAU8822_REG_AUX1_MIXER, 0x0001 },
{ NAU8822_REG_POWER_MANAGEMENT_4, 0x0000 },
{ NAU8822_REG_LEFT_TIME_SLOT, 0x0000 },
{ NAU8822_REG_MISC, 0x0020 },
{ NAU8822_REG_RIGHT_TIME_SLOT, 0x0000 },
{ NAU8822_REG_DEVICE_REVISION, 0x007f },
{ NAU8822_REG_DEVICE_ID, 0x001a },
{ NAU8822_REG_DAC_DITHER, 0x0114 },
{ NAU8822_REG_ALC_ENHANCE_1, 0x0000 },
{ NAU8822_REG_ALC_ENHANCE_2, 0x0000 },
{ NAU8822_REG_192KHZ_SAMPLING, 0x0008 },
{ NAU8822_REG_MISC_CONTROL, 0x0000 },
{ NAU8822_REG_INPUT_TIEOFF, 0x0000 },
{ NAU8822_REG_POWER_REDUCTION, 0x0000 },
{ NAU8822_REG_AGC_PEAK2PEAK, 0x0000 },
{ NAU8822_REG_AGC_PEAK_DETECT, 0x0000 },
{ NAU8822_REG_AUTOMUTE_CONTROL, 0x0000 },
{ NAU8822_REG_OUTPUT_TIEOFF, 0x0000 },
};
static bool nau8822_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8822_REG_RESET ... NAU8822_REG_JACK_DETECT_CONTROL_1:
case NAU8822_REG_DAC_CONTROL ... NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME:
case NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME:
case NAU8822_REG_EQ1 ... NAU8822_REG_EQ5:
case NAU8822_REG_DAC_LIMITER_1 ... NAU8822_REG_DAC_LIMITER_2:
case NAU8822_REG_NOTCH_FILTER_1 ... NAU8822_REG_NOTCH_FILTER_4:
case NAU8822_REG_ALC_CONTROL_1 ...NAU8822_REG_PLL_K3:
case NAU8822_REG_3D_CONTROL:
case NAU8822_REG_RIGHT_SPEAKER_CONTROL:
case NAU8822_REG_INPUT_CONTROL ... NAU8822_REG_LEFT_ADC_BOOST_CONTROL:
case NAU8822_REG_RIGHT_ADC_BOOST_CONTROL ... NAU8822_REG_AUX1_MIXER:
case NAU8822_REG_POWER_MANAGEMENT_4 ... NAU8822_REG_DEVICE_ID:
case NAU8822_REG_DAC_DITHER:
case NAU8822_REG_ALC_ENHANCE_1 ... NAU8822_REG_MISC_CONTROL:
case NAU8822_REG_INPUT_TIEOFF ... NAU8822_REG_OUTPUT_TIEOFF:
return true;
default:
return false;
}
}
static bool nau8822_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8822_REG_RESET ... NAU8822_REG_JACK_DETECT_CONTROL_1:
case NAU8822_REG_DAC_CONTROL ... NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME:
case NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME:
case NAU8822_REG_EQ1 ... NAU8822_REG_EQ5:
case NAU8822_REG_DAC_LIMITER_1 ... NAU8822_REG_DAC_LIMITER_2:
case NAU8822_REG_NOTCH_FILTER_1 ... NAU8822_REG_NOTCH_FILTER_4:
case NAU8822_REG_ALC_CONTROL_1 ...NAU8822_REG_PLL_K3:
case NAU8822_REG_3D_CONTROL:
case NAU8822_REG_RIGHT_SPEAKER_CONTROL:
case NAU8822_REG_INPUT_CONTROL ... NAU8822_REG_LEFT_ADC_BOOST_CONTROL:
case NAU8822_REG_RIGHT_ADC_BOOST_CONTROL ... NAU8822_REG_AUX1_MIXER:
case NAU8822_REG_POWER_MANAGEMENT_4 ... NAU8822_REG_DEVICE_ID:
case NAU8822_REG_DAC_DITHER:
case NAU8822_REG_ALC_ENHANCE_1 ... NAU8822_REG_MISC_CONTROL:
case NAU8822_REG_INPUT_TIEOFF ... NAU8822_REG_OUTPUT_TIEOFF:
return true;
default:
return false;
}
}
static bool nau8822_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8822_REG_RESET:
case NAU8822_REG_DEVICE_REVISION:
case NAU8822_REG_DEVICE_ID:
case NAU8822_REG_AGC_PEAK2PEAK:
case NAU8822_REG_AGC_PEAK_DETECT:
case NAU8822_REG_AUTOMUTE_CONTROL:
return true;
default:
return false;
}
}
/* The EQ parameters get function is to get the 5 band equalizer control.
* The regmap raw read can't work here because regmap doesn't provide
* value format for value width of 9 bits. Therefore, the driver reads data
* from cache and makes value format according to the endianness of
* bytes type control element.
*/
static int nau8822_eq_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
int i, reg;
u16 reg_val, *val;
__be16 tmp;
val = (u16 *)ucontrol->value.bytes.data;
reg = NAU8822_REG_EQ1;
for (i = 0; i < params->max / sizeof(u16); i++) {
reg_val = snd_soc_component_read(component, reg + i);
/* conversion of 16-bit integers between native CPU format
* and big endian format
*/
tmp = cpu_to_be16(reg_val);
memcpy(val + i, &tmp, sizeof(tmp));
}
return 0;
}
/* The EQ parameters put function is to make configuration of 5 band equalizer
* control. These configuration includes central frequency, equalizer gain,
* cut-off frequency, bandwidth control, and equalizer path.
* The regmap raw write can't work here because regmap doesn't provide
* register and value format for register with address 7 bits and value 9 bits.
* Therefore, the driver makes value format according to the endianness of
* bytes type control element and writes data to codec.
*/
static int nau8822_eq_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
void *data;
u16 *val, value;
int i, reg, ret;
__be16 *tmp;
data = kmemdup(ucontrol->value.bytes.data,
params->max, GFP_KERNEL | GFP_DMA);
if (!data)
return -ENOMEM;
val = (u16 *)data;
reg = NAU8822_REG_EQ1;
for (i = 0; i < params->max / sizeof(u16); i++) {
/* conversion of 16-bit integers between native CPU format
* and big endian format
*/
tmp = (__be16 *)(val + i);
value = be16_to_cpup(tmp);
ret = snd_soc_component_write(component, reg + i, value);
if (ret) {
dev_err(component->dev,
"EQ configuration fail, register: %x ret: %d\n",
reg + i, ret);
kfree(data);
return ret;
}
}
kfree(data);
return 0;
}
static const char * const nau8822_companding[] = {
"Off", "NC", "u-law", "A-law"};
static const struct soc_enum nau8822_companding_adc_enum =
SOC_ENUM_SINGLE(NAU8822_REG_COMPANDING_CONTROL, NAU8822_ADCCM_SFT,
ARRAY_SIZE(nau8822_companding), nau8822_companding);
static const struct soc_enum nau8822_companding_dac_enum =
SOC_ENUM_SINGLE(NAU8822_REG_COMPANDING_CONTROL, NAU8822_DACCM_SFT,
ARRAY_SIZE(nau8822_companding), nau8822_companding);
static const char * const nau8822_eqmode[] = {"Capture", "Playback"};
static const struct soc_enum nau8822_eqmode_enum =
SOC_ENUM_SINGLE(NAU8822_REG_EQ1, NAU8822_EQM_SFT,
ARRAY_SIZE(nau8822_eqmode), nau8822_eqmode);
static const char * const nau8822_alc1[] = {"Off", "Right", "Left", "Both"};
static const char * const nau8822_alc3[] = {"Normal", "Limiter"};
static const struct soc_enum nau8822_alc_enable_enum =
SOC_ENUM_SINGLE(NAU8822_REG_ALC_CONTROL_1, NAU8822_ALCEN_SFT,
ARRAY_SIZE(nau8822_alc1), nau8822_alc1);
static const struct soc_enum nau8822_alc_mode_enum =
SOC_ENUM_SINGLE(NAU8822_REG_ALC_CONTROL_3, NAU8822_ALCM_SFT,
ARRAY_SIZE(nau8822_alc3), nau8822_alc3);
static const DECLARE_TLV_DB_SCALE(digital_tlv, -12750, 50, 1);
static const DECLARE_TLV_DB_SCALE(inpga_tlv, -1200, 75, 0);
static const DECLARE_TLV_DB_SCALE(spk_tlv, -5700, 100, 0);
static const DECLARE_TLV_DB_SCALE(pga_boost_tlv, 0, 2000, 0);
static const DECLARE_TLV_DB_SCALE(boost_tlv, -1500, 300, 1);
static const DECLARE_TLV_DB_SCALE(limiter_tlv, 0, 100, 0);
static const struct snd_kcontrol_new nau8822_snd_controls[] = {
SOC_ENUM("ADC Companding", nau8822_companding_adc_enum),
SOC_ENUM("DAC Companding", nau8822_companding_dac_enum),
SOC_ENUM("EQ Function", nau8822_eqmode_enum),
SND_SOC_BYTES_EXT("EQ Parameters", 10,
nau8822_eq_get, nau8822_eq_put),
SOC_DOUBLE("DAC Inversion Switch",
NAU8822_REG_DAC_CONTROL, 0, 1, 1, 0),
SOC_DOUBLE_R_TLV("PCM Volume",
NAU8822_REG_LEFT_DAC_DIGITAL_VOLUME,
NAU8822_REG_RIGHT_DAC_DIGITAL_VOLUME, 0, 255, 0, digital_tlv),
SOC_SINGLE("High Pass Filter Switch",
NAU8822_REG_ADC_CONTROL, 8, 1, 0),
SOC_SINGLE("High Pass Cut Off",
NAU8822_REG_ADC_CONTROL, 4, 7, 0),
SOC_DOUBLE("ADC Inversion Switch",
NAU8822_REG_ADC_CONTROL, 0, 1, 1, 0),
SOC_DOUBLE_R_TLV("ADC Volume",
NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME,
NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME, 0, 255, 0, digital_tlv),
SOC_SINGLE("DAC Limiter Switch",
NAU8822_REG_DAC_LIMITER_1, 8, 1, 0),
SOC_SINGLE("DAC Limiter Decay",
NAU8822_REG_DAC_LIMITER_1, 4, 15, 0),
SOC_SINGLE("DAC Limiter Attack",
NAU8822_REG_DAC_LIMITER_1, 0, 15, 0),
SOC_SINGLE("DAC Limiter Threshold",
NAU8822_REG_DAC_LIMITER_2, 4, 7, 0),
SOC_SINGLE_TLV("DAC Limiter Volume",
NAU8822_REG_DAC_LIMITER_2, 0, 12, 0, limiter_tlv),
SOC_ENUM("ALC Mode", nau8822_alc_mode_enum),
SOC_ENUM("ALC Enable Switch", nau8822_alc_enable_enum),
SOC_SINGLE("ALC Min Gain",
NAU8822_REG_ALC_CONTROL_1, 0, 7, 0),
SOC_SINGLE("ALC Max Gain",
NAU8822_REG_ALC_CONTROL_1, 3, 7, 0),
SOC_SINGLE("ALC Hold",
NAU8822_REG_ALC_CONTROL_2, 4, 10, 0),
SOC_SINGLE("ALC Target",
NAU8822_REG_ALC_CONTROL_2, 0, 15, 0),
SOC_SINGLE("ALC Decay",
NAU8822_REG_ALC_CONTROL_3, 4, 10, 0),
SOC_SINGLE("ALC Attack",
NAU8822_REG_ALC_CONTROL_3, 0, 10, 0),
SOC_SINGLE("ALC Noise Gate Switch",
NAU8822_REG_NOISE_GATE, 3, 1, 0),
SOC_SINGLE("ALC Noise Gate Threshold",
NAU8822_REG_NOISE_GATE, 0, 7, 0),
SOC_DOUBLE_R("PGA ZC Switch",
NAU8822_REG_LEFT_INP_PGA_CONTROL,
NAU8822_REG_RIGHT_INP_PGA_CONTROL,
7, 1, 0),
SOC_DOUBLE_R_TLV("PGA Volume",
NAU8822_REG_LEFT_INP_PGA_CONTROL,
NAU8822_REG_RIGHT_INP_PGA_CONTROL, 0, 63, 0, inpga_tlv),
SOC_DOUBLE_R("Headphone ZC Switch",
NAU8822_REG_LHP_VOLUME,
NAU8822_REG_RHP_VOLUME, 7, 1, 0),
SOC_DOUBLE_R("Headphone Playback Switch",
NAU8822_REG_LHP_VOLUME,
NAU8822_REG_RHP_VOLUME, 6, 1, 1),
SOC_DOUBLE_R_TLV("Headphone Volume",
NAU8822_REG_LHP_VOLUME,
NAU8822_REG_RHP_VOLUME, 0, 63, 0, spk_tlv),
SOC_DOUBLE_R("Speaker ZC Switch",
NAU8822_REG_LSPKOUT_VOLUME,
NAU8822_REG_RSPKOUT_VOLUME, 7, 1, 0),
SOC_DOUBLE_R("Speaker Playback Switch",
NAU8822_REG_LSPKOUT_VOLUME,
NAU8822_REG_RSPKOUT_VOLUME, 6, 1, 1),
SOC_DOUBLE_R_TLV("Speaker Volume",
NAU8822_REG_LSPKOUT_VOLUME,
NAU8822_REG_RSPKOUT_VOLUME, 0, 63, 0, spk_tlv),
SOC_DOUBLE_R("AUXOUT Playback Switch",
NAU8822_REG_AUX2_MIXER,
NAU8822_REG_AUX1_MIXER, 6, 1, 1),
SOC_DOUBLE_R_TLV("PGA Boost Volume",
NAU8822_REG_LEFT_ADC_BOOST_CONTROL,
NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 8, 1, 0, pga_boost_tlv),
SOC_DOUBLE_R_TLV("L2/R2 Boost Volume",
NAU8822_REG_LEFT_ADC_BOOST_CONTROL,
NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 4, 7, 0, boost_tlv),
SOC_DOUBLE_R_TLV("Aux Boost Volume",
NAU8822_REG_LEFT_ADC_BOOST_CONTROL,
NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 0, 7, 0, boost_tlv),
SOC_SINGLE("DAC 128x Oversampling Switch",
NAU8822_REG_DAC_CONTROL, 5, 1, 0),
SOC_SINGLE("ADC 128x Oversampling Switch",
NAU8822_REG_ADC_CONTROL, 5, 1, 0),
};
/* LMAIN and RMAIN Mixer */
static const struct snd_kcontrol_new nau8822_left_out_mixer[] = {
SOC_DAPM_SINGLE("LINMIX Switch",
NAU8822_REG_LEFT_MIXER_CONTROL, 1, 1, 0),
SOC_DAPM_SINGLE("LAUX Switch",
NAU8822_REG_LEFT_MIXER_CONTROL, 5, 1, 0),
SOC_DAPM_SINGLE("LDAC Switch",
NAU8822_REG_LEFT_MIXER_CONTROL, 0, 1, 0),
SOC_DAPM_SINGLE("RDAC Switch",
NAU8822_REG_OUTPUT_CONTROL, 5, 1, 0),
};
static const struct snd_kcontrol_new nau8822_right_out_mixer[] = {
SOC_DAPM_SINGLE("RINMIX Switch",
NAU8822_REG_RIGHT_MIXER_CONTROL, 1, 1, 0),
SOC_DAPM_SINGLE("RAUX Switch",
NAU8822_REG_RIGHT_MIXER_CONTROL, 5, 1, 0),
SOC_DAPM_SINGLE("RDAC Switch",
NAU8822_REG_RIGHT_MIXER_CONTROL, 0, 1, 0),
SOC_DAPM_SINGLE("LDAC Switch",
NAU8822_REG_OUTPUT_CONTROL, 6, 1, 0),
};
/* AUX1 and AUX2 Mixer */
static const struct snd_kcontrol_new nau8822_auxout1_mixer[] = {
SOC_DAPM_SINGLE("RDAC Switch", NAU8822_REG_AUX1_MIXER, 0, 1, 0),
SOC_DAPM_SINGLE("RMIX Switch", NAU8822_REG_AUX1_MIXER, 1, 1, 0),
SOC_DAPM_SINGLE("RINMIX Switch", NAU8822_REG_AUX1_MIXER, 2, 1, 0),
SOC_DAPM_SINGLE("LDAC Switch", NAU8822_REG_AUX1_MIXER, 3, 1, 0),
SOC_DAPM_SINGLE("LMIX Switch", NAU8822_REG_AUX1_MIXER, 4, 1, 0),
};
static const struct snd_kcontrol_new nau8822_auxout2_mixer[] = {
SOC_DAPM_SINGLE("LDAC Switch", NAU8822_REG_AUX2_MIXER, 0, 1, 0),
SOC_DAPM_SINGLE("LMIX Switch", NAU8822_REG_AUX2_MIXER, 1, 1, 0),
SOC_DAPM_SINGLE("LINMIX Switch", NAU8822_REG_AUX2_MIXER, 2, 1, 0),
SOC_DAPM_SINGLE("AUX1MIX Output Switch",
NAU8822_REG_AUX2_MIXER, 3, 1, 0),
};
/* Input PGA */
static const struct snd_kcontrol_new nau8822_left_input_mixer[] = {
SOC_DAPM_SINGLE("L2 Switch", NAU8822_REG_INPUT_CONTROL, 2, 1, 0),
SOC_DAPM_SINGLE("MicN Switch", NAU8822_REG_INPUT_CONTROL, 1, 1, 0),
SOC_DAPM_SINGLE("MicP Switch", NAU8822_REG_INPUT_CONTROL, 0, 1, 0),
};
static const struct snd_kcontrol_new nau8822_right_input_mixer[] = {
SOC_DAPM_SINGLE("R2 Switch", NAU8822_REG_INPUT_CONTROL, 6, 1, 0),
SOC_DAPM_SINGLE("MicN Switch", NAU8822_REG_INPUT_CONTROL, 5, 1, 0),
SOC_DAPM_SINGLE("MicP Switch", NAU8822_REG_INPUT_CONTROL, 4, 1, 0),
};
/* Loopback Switch */
static const struct snd_kcontrol_new nau8822_loopback =
SOC_DAPM_SINGLE("Switch", NAU8822_REG_COMPANDING_CONTROL,
NAU8822_ADDAP_SFT, 1, 0);
static int check_mclk_select_pll(struct snd_soc_dapm_widget *source,
struct snd_soc_dapm_widget *sink)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(source->dapm);
unsigned int value;
value = snd_soc_component_read(component, NAU8822_REG_CLOCKING);
return (value & NAU8822_CLKM_MASK);
}
static const struct snd_soc_dapm_widget nau8822_dapm_widgets[] = {
SND_SOC_DAPM_DAC("Left DAC", "Left HiFi Playback",
NAU8822_REG_POWER_MANAGEMENT_3, 0, 0),
SND_SOC_DAPM_DAC("Right DAC", "Right HiFi Playback",
NAU8822_REG_POWER_MANAGEMENT_3, 1, 0),
SND_SOC_DAPM_ADC("Left ADC", "Left HiFi Capture",
NAU8822_REG_POWER_MANAGEMENT_2, 0, 0),
SND_SOC_DAPM_ADC("Right ADC", "Right HiFi Capture",
NAU8822_REG_POWER_MANAGEMENT_2, 1, 0),
SOC_MIXER_ARRAY("Left Output Mixer",
NAU8822_REG_POWER_MANAGEMENT_3, 2, 0, nau8822_left_out_mixer),
SOC_MIXER_ARRAY("Right Output Mixer",
NAU8822_REG_POWER_MANAGEMENT_3, 3, 0, nau8822_right_out_mixer),
SOC_MIXER_ARRAY("AUX1 Output Mixer",
NAU8822_REG_POWER_MANAGEMENT_1, 7, 0, nau8822_auxout1_mixer),
SOC_MIXER_ARRAY("AUX2 Output Mixer",
NAU8822_REG_POWER_MANAGEMENT_1, 6, 0, nau8822_auxout2_mixer),
SOC_MIXER_ARRAY("Left Input Mixer",
NAU8822_REG_POWER_MANAGEMENT_2,
2, 0, nau8822_left_input_mixer),
SOC_MIXER_ARRAY("Right Input Mixer",
NAU8822_REG_POWER_MANAGEMENT_2,
3, 0, nau8822_right_input_mixer),
SND_SOC_DAPM_PGA("Left Boost Mixer",
NAU8822_REG_POWER_MANAGEMENT_2, 4, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Boost Mixer",
NAU8822_REG_POWER_MANAGEMENT_2, 5, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left Capture PGA",
NAU8822_REG_LEFT_INP_PGA_CONTROL, 6, 1, NULL, 0),
SND_SOC_DAPM_PGA("Right Capture PGA",
NAU8822_REG_RIGHT_INP_PGA_CONTROL, 6, 1, NULL, 0),
SND_SOC_DAPM_PGA("Left Headphone Out",
NAU8822_REG_POWER_MANAGEMENT_2, 7, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Headphone Out",
NAU8822_REG_POWER_MANAGEMENT_2, 8, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left Speaker Out",
NAU8822_REG_POWER_MANAGEMENT_3, 6, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Speaker Out",
NAU8822_REG_POWER_MANAGEMENT_3, 5, 0, NULL, 0),
SND_SOC_DAPM_PGA("AUX1 Out",
NAU8822_REG_POWER_MANAGEMENT_3, 8, 0, NULL, 0),
SND_SOC_DAPM_PGA("AUX2 Out",
NAU8822_REG_POWER_MANAGEMENT_3, 7, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias",
NAU8822_REG_POWER_MANAGEMENT_1, 4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("PLL",
NAU8822_REG_POWER_MANAGEMENT_1, 5, 0, NULL, 0),
SND_SOC_DAPM_SWITCH("Digital Loopback", SND_SOC_NOPM, 0, 0,
&nau8822_loopback),
SND_SOC_DAPM_INPUT("LMICN"),
SND_SOC_DAPM_INPUT("LMICP"),
SND_SOC_DAPM_INPUT("RMICN"),
SND_SOC_DAPM_INPUT("RMICP"),
SND_SOC_DAPM_INPUT("LAUX"),
SND_SOC_DAPM_INPUT("RAUX"),
SND_SOC_DAPM_INPUT("L2"),
SND_SOC_DAPM_INPUT("R2"),
SND_SOC_DAPM_OUTPUT("LHP"),
SND_SOC_DAPM_OUTPUT("RHP"),
SND_SOC_DAPM_OUTPUT("LSPK"),
SND_SOC_DAPM_OUTPUT("RSPK"),
SND_SOC_DAPM_OUTPUT("AUXOUT1"),
SND_SOC_DAPM_OUTPUT("AUXOUT2"),
};
static const struct snd_soc_dapm_route nau8822_dapm_routes[] = {
{"Right DAC", NULL, "PLL", check_mclk_select_pll},
{"Left DAC", NULL, "PLL", check_mclk_select_pll},
/* LMAIN and RMAIN Mixer */
{"Right Output Mixer", "LDAC Switch", "Left DAC"},
{"Right Output Mixer", "RDAC Switch", "Right DAC"},
{"Right Output Mixer", "RAUX Switch", "RAUX"},
{"Right Output Mixer", "RINMIX Switch", "Right Boost Mixer"},
{"Left Output Mixer", "LDAC Switch", "Left DAC"},
{"Left Output Mixer", "RDAC Switch", "Right DAC"},
{"Left Output Mixer", "LAUX Switch", "LAUX"},
{"Left Output Mixer", "LINMIX Switch", "Left Boost Mixer"},
/* AUX1 and AUX2 Mixer */
{"AUX1 Output Mixer", "RDAC Switch", "Right DAC"},
{"AUX1 Output Mixer", "RMIX Switch", "Right Output Mixer"},
{"AUX1 Output Mixer", "RINMIX Switch", "Right Boost Mixer"},
{"AUX1 Output Mixer", "LDAC Switch", "Left DAC"},
{"AUX1 Output Mixer", "LMIX Switch", "Left Output Mixer"},
{"AUX2 Output Mixer", "LDAC Switch", "Left DAC"},
{"AUX2 Output Mixer", "LMIX Switch", "Left Output Mixer"},
{"AUX2 Output Mixer", "LINMIX Switch", "Left Boost Mixer"},
{"AUX2 Output Mixer", "AUX1MIX Output Switch", "AUX1 Output Mixer"},
/* Outputs */
{"Right Headphone Out", NULL, "Right Output Mixer"},
{"RHP", NULL, "Right Headphone Out"},
{"Left Headphone Out", NULL, "Left Output Mixer"},
{"LHP", NULL, "Left Headphone Out"},
{"Right Speaker Out", NULL, "Right Output Mixer"},
{"RSPK", NULL, "Right Speaker Out"},
{"Left Speaker Out", NULL, "Left Output Mixer"},
{"LSPK", NULL, "Left Speaker Out"},
{"AUX1 Out", NULL, "AUX1 Output Mixer"},
{"AUX2 Out", NULL, "AUX2 Output Mixer"},
{"AUXOUT1", NULL, "AUX1 Out"},
{"AUXOUT2", NULL, "AUX2 Out"},
/* Boost Mixer */
{"Right ADC", NULL, "PLL", check_mclk_select_pll},
{"Left ADC", NULL, "PLL", check_mclk_select_pll},
{"Right ADC", NULL, "Right Boost Mixer"},
{"Right Boost Mixer", NULL, "RAUX"},
{"Right Boost Mixer", NULL, "Right Capture PGA"},
{"Right Boost Mixer", NULL, "R2"},
{"Left ADC", NULL, "Left Boost Mixer"},
{"Left Boost Mixer", NULL, "LAUX"},
{"Left Boost Mixer", NULL, "Left Capture PGA"},
{"Left Boost Mixer", NULL, "L2"},
/* Input PGA */
{"Right Capture PGA", NULL, "Right Input Mixer"},
{"Left Capture PGA", NULL, "Left Input Mixer"},
/* Enable Microphone Power */
{"Right Capture PGA", NULL, "Mic Bias"},
{"Left Capture PGA", NULL, "Mic Bias"},
{"Right Input Mixer", "R2 Switch", "R2"},
{"Right Input Mixer", "MicN Switch", "RMICN"},
{"Right Input Mixer", "MicP Switch", "RMICP"},
{"Left Input Mixer", "L2 Switch", "L2"},
{"Left Input Mixer", "MicN Switch", "LMICN"},
{"Left Input Mixer", "MicP Switch", "LMICP"},
/* Digital Loopback */
{"Digital Loopback", "Switch", "Left ADC"},
{"Digital Loopback", "Switch", "Right ADC"},
{"Left DAC", NULL, "Digital Loopback"},
{"Right DAC", NULL, "Digital Loopback"},
};
static int nau8822_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component);
nau8822->div_id = clk_id;
nau8822->sysclk = freq;
dev_dbg(component->dev, "master sysclk %dHz, source %s\n", freq,
clk_id == NAU8822_CLK_PLL ? "PLL" : "MCLK");
return 0;
}
static int nau8822_calc_pll(unsigned int pll_in, unsigned int fs,
struct nau8822_pll *pll_param)
{
u64 f2, f2_max, pll_ratio;
int i, scal_sel;
if (pll_in > NAU_PLL_REF_MAX || pll_in < NAU_PLL_REF_MIN)
return -EINVAL;
f2_max = 0;
scal_sel = ARRAY_SIZE(nau8822_mclk_scaler);
for (i = 0; i < scal_sel; i++) {
f2 = 256 * fs * 4 * nau8822_mclk_scaler[i] / 10;
if (f2 > NAU_PLL_FREQ_MIN && f2 < NAU_PLL_FREQ_MAX &&
f2_max < f2) {
f2_max = f2;
scal_sel = i;
}
}
if (ARRAY_SIZE(nau8822_mclk_scaler) == scal_sel)
return -EINVAL;
pll_param->mclk_scaler = scal_sel;
f2 = f2_max;
/* Calculate the PLL 4-bit integer input and the PLL 24-bit fractional
* input; round up the 24+4bit.
*/
pll_ratio = div_u64(f2 << 28, pll_in);
pll_param->pre_factor = 0;
if (((pll_ratio >> 28) & 0xF) < NAU_PLL_OPTOP_MIN) {
pll_ratio <<= 1;
pll_param->pre_factor = 1;
}
pll_param->pll_int = (pll_ratio >> 28) & 0xF;
pll_param->pll_frac = ((pll_ratio & 0xFFFFFFF) >> 4);
return 0;
}
static int nau8822_config_clkdiv(struct snd_soc_dai *dai, int div, int rate)
{
struct snd_soc_component *component = dai->component;
struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component);
struct nau8822_pll *pll = &nau8822->pll;
int i, sclk, imclk;
switch (nau8822->div_id) {
case NAU8822_CLK_MCLK:
/* Configure the master clock prescaler div to make system
* clock to approximate the internal master clock (IMCLK);
* and large or equal to IMCLK.
*/
div = 0;
imclk = rate * 256;
for (i = 1; i < ARRAY_SIZE(nau8822_mclk_scaler); i++) {
sclk = (nau8822->sysclk * 10) / nau8822_mclk_scaler[i];
if (sclk < imclk)
break;
div = i;
}
dev_dbg(component->dev, "master clock prescaler %x for fs %d\n",
div, rate);
/* master clock from MCLK and disable PLL */
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_MCLKSEL_MASK,
(div << NAU8822_MCLKSEL_SFT));
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_CLKM_MASK,
NAU8822_CLKM_MCLK);
break;
case NAU8822_CLK_PLL:
/* master clock from PLL and enable PLL */
if (pll->mclk_scaler != div) {
dev_err(component->dev,
"master clock prescaler not meet PLL parameters\n");
return -EINVAL;
}
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_MCLKSEL_MASK,
(div << NAU8822_MCLKSEL_SFT));
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_CLKM_MASK,
NAU8822_CLKM_PLL);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8822_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct snd_soc_component *component = dai->component;
struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component);
struct nau8822_pll *pll_param = &nau8822->pll;
int ret, fs;
fs = freq_out / 256;
ret = nau8822_calc_pll(freq_in, fs, pll_param);
if (ret < 0) {
dev_err(component->dev, "Unsupported input clock %d\n",
freq_in);
return ret;
}
dev_info(component->dev,
"pll_int=%x pll_frac=%x mclk_scaler=%x pre_factor=%x\n",
pll_param->pll_int, pll_param->pll_frac,
pll_param->mclk_scaler, pll_param->pre_factor);
snd_soc_component_update_bits(component,
NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_PLL_EN_MASK, NAU8822_PLL_OFF);
snd_soc_component_update_bits(component,
NAU8822_REG_PLL_N, NAU8822_PLLMCLK_DIV2 | NAU8822_PLLN_MASK,
(pll_param->pre_factor ? NAU8822_PLLMCLK_DIV2 : 0) |
pll_param->pll_int);
snd_soc_component_write(component,
NAU8822_REG_PLL_K1, (pll_param->pll_frac >> NAU8822_PLLK1_SFT) &
NAU8822_PLLK1_MASK);
snd_soc_component_write(component,
NAU8822_REG_PLL_K2, (pll_param->pll_frac >> NAU8822_PLLK2_SFT) &
NAU8822_PLLK2_MASK);
snd_soc_component_write(component,
NAU8822_REG_PLL_K3, pll_param->pll_frac & NAU8822_PLLK3_MASK);
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_MCLKSEL_MASK,
pll_param->mclk_scaler << NAU8822_MCLKSEL_SFT);
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_CLKM_MASK, NAU8822_CLKM_PLL);
snd_soc_component_update_bits(component,
NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_PLL_EN_MASK, NAU8822_PLL_ON);
return 0;
}
static int nau8822_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
u16 ctrl1_val = 0, ctrl2_val = 0;
dev_dbg(component->dev, "%s\n", __func__);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ctrl2_val |= 1;
break;
case SND_SOC_DAIFMT_CBS_CFS:
ctrl2_val &= ~1;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= 0x10;
break;
case SND_SOC_DAIFMT_RIGHT_J:
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= 0x8;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= 0x18;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
ctrl1_val |= 0x180;
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= 0x100;
break;
case SND_SOC_DAIFMT_NB_IF:
ctrl1_val |= 0x80;
break;
default:
return -EINVAL;
}
snd_soc_component_update_bits(component,
NAU8822_REG_AUDIO_INTERFACE,
NAU8822_AIFMT_MASK | NAU8822_LRP_MASK | NAU8822_BCLKP_MASK,
ctrl1_val);
snd_soc_component_update_bits(component,
NAU8822_REG_CLOCKING, NAU8822_CLKIOEN_MASK, ctrl2_val);
return 0;
}
static int nau8822_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component);
int val_len = 0, val_rate = 0;
unsigned int ctrl_val, bclk_fs, bclk_div;
/* make BCLK and LRC divide configuration if the codec as master. */
ctrl_val = snd_soc_component_read(component, NAU8822_REG_CLOCKING);
if (ctrl_val & NAU8822_CLK_MASTER) {
/* get the bclk and fs ratio */
bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
if (bclk_fs <= 32)
bclk_div = NAU8822_BCLKDIV_8;
else if (bclk_fs <= 64)
bclk_div = NAU8822_BCLKDIV_4;
else if (bclk_fs <= 128)
bclk_div = NAU8822_BCLKDIV_2;
else
return -EINVAL;
snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING,
NAU8822_BCLKSEL_MASK, bclk_div);
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
break;
case SNDRV_PCM_FORMAT_S20_3LE:
val_len |= NAU8822_WLEN_20;
break;
case SNDRV_PCM_FORMAT_S24_LE:
val_len |= NAU8822_WLEN_24;
break;
case SNDRV_PCM_FORMAT_S32_LE:
val_len |= NAU8822_WLEN_32;
break;
default:
return -EINVAL;
}
switch (params_rate(params)) {
case 8000:
val_rate |= NAU8822_SMPLR_8K;
break;
case 11025:
val_rate |= NAU8822_SMPLR_12K;
break;
case 16000:
val_rate |= NAU8822_SMPLR_16K;
break;
case 22050:
val_rate |= NAU8822_SMPLR_24K;
break;
case 32000:
val_rate |= NAU8822_SMPLR_32K;
break;
case 44100:
case 48000:
break;
default:
return -EINVAL;
}
snd_soc_component_update_bits(component,
NAU8822_REG_AUDIO_INTERFACE, NAU8822_WLEN_MASK, val_len);
snd_soc_component_update_bits(component,
NAU8822_REG_ADDITIONAL_CONTROL, NAU8822_SMPLR_MASK, val_rate);
/* If the master clock is from MCLK, provide the runtime FS for driver
* to get the master clock prescaler configuration.
*/
if (nau8822->div_id == NAU8822_CLK_MCLK)
nau8822_config_clkdiv(dai, 0, params_rate(params));
return 0;
}
static int nau8822_mute(struct snd_soc_dai *dai, int mute, int direction)
{
struct snd_soc_component *component = dai->component;
dev_dbg(component->dev, "%s: %d\n", __func__, mute);
if (mute)
snd_soc_component_update_bits(component,
NAU8822_REG_DAC_CONTROL, 0x40, 0x40);
else
snd_soc_component_update_bits(component,
NAU8822_REG_DAC_CONTROL, 0x40, 0);
return 0;
}
static int nau8822_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
switch (level) {
case SND_SOC_BIAS_ON:
case SND_SOC_BIAS_PREPARE:
snd_soc_component_update_bits(component,
NAU8822_REG_POWER_MANAGEMENT_1,
NAU8822_REFIMP_MASK, NAU8822_REFIMP_80K);
break;
case SND_SOC_BIAS_STANDBY:
snd_soc_component_update_bits(component,
NAU8822_REG_POWER_MANAGEMENT_1,
NAU8822_IOBUF_EN | NAU8822_ABIAS_EN,
NAU8822_IOBUF_EN | NAU8822_ABIAS_EN);
if (snd_soc_component_get_bias_level(component) ==
SND_SOC_BIAS_OFF) {
snd_soc_component_update_bits(component,
NAU8822_REG_POWER_MANAGEMENT_1,
NAU8822_REFIMP_MASK, NAU8822_REFIMP_3K);
mdelay(100);
}
snd_soc_component_update_bits(component,
NAU8822_REG_POWER_MANAGEMENT_1,
NAU8822_REFIMP_MASK, NAU8822_REFIMP_300K);
break;
case SND_SOC_BIAS_OFF:
snd_soc_component_write(component,
NAU8822_REG_POWER_MANAGEMENT_1, 0);
snd_soc_component_write(component,
NAU8822_REG_POWER_MANAGEMENT_2, 0);
snd_soc_component_write(component,
NAU8822_REG_POWER_MANAGEMENT_3, 0);
break;
}
dev_dbg(component->dev, "%s: %d\n", __func__, level);
return 0;
}
#define NAU8822_RATES (SNDRV_PCM_RATE_8000_48000)
#define NAU8822_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops nau8822_dai_ops = {
.hw_params = nau8822_hw_params,
.mute_stream = nau8822_mute,
.set_fmt = nau8822_set_dai_fmt,
.set_sysclk = nau8822_set_dai_sysclk,
.set_pll = nau8822_set_pll,
.no_capture_mute = 1,
};
static struct snd_soc_dai_driver nau8822_dai = {
.name = "nau8822-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8822_RATES,
.formats = NAU8822_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8822_RATES,
.formats = NAU8822_FORMATS,
},
.ops = &nau8822_dai_ops,
.symmetric_rate = 1,
};
static int nau8822_suspend(struct snd_soc_component *component)
{
struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
regcache_mark_dirty(nau8822->regmap);
return 0;
}
static int nau8822_resume(struct snd_soc_component *component)
{
struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component);
regcache_sync(nau8822->regmap);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
return 0;
}
/*
* These registers contain an "update" bit - bit 8. This means, for example,
* that one can write new DAC digital volume for both channels, but only when
* the update bit is set, will also the volume be updated - simultaneously for
* both channels.
*/
static const int update_reg[] = {
NAU8822_REG_LEFT_DAC_DIGITAL_VOLUME,
NAU8822_REG_RIGHT_DAC_DIGITAL_VOLUME,
NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME,
NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME,
NAU8822_REG_LEFT_INP_PGA_CONTROL,
NAU8822_REG_RIGHT_INP_PGA_CONTROL,
NAU8822_REG_LHP_VOLUME,
NAU8822_REG_RHP_VOLUME,
NAU8822_REG_LSPKOUT_VOLUME,
NAU8822_REG_RSPKOUT_VOLUME,
};
static int nau8822_probe(struct snd_soc_component *component)
{
int i;
/*
* Set the update bit in all registers, that have one. This way all
* writes to those registers will also cause the update bit to be
* written.
*/
for (i = 0; i < ARRAY_SIZE(update_reg); i++)
snd_soc_component_update_bits(component,
update_reg[i], 0x100, 0x100);
return 0;
}
static const struct snd_soc_component_driver soc_component_dev_nau8822 = {
.probe = nau8822_probe,
.suspend = nau8822_suspend,
.resume = nau8822_resume,
.set_bias_level = nau8822_set_bias_level,
.controls = nau8822_snd_controls,
.num_controls = ARRAY_SIZE(nau8822_snd_controls),
.dapm_widgets = nau8822_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8822_dapm_widgets),
.dapm_routes = nau8822_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8822_dapm_routes),
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config nau8822_regmap_config = {
.reg_bits = 7,
.val_bits = 9,
.max_register = NAU8822_REG_MAX_REGISTER,
.volatile_reg = nau8822_volatile,
.readable_reg = nau8822_readable_reg,
.writeable_reg = nau8822_writeable_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8822_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8822_reg_defaults),
};
static int nau8822_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct nau8822 *nau8822 = dev_get_platdata(dev);
int ret;
if (!nau8822) {
nau8822 = devm_kzalloc(dev, sizeof(*nau8822), GFP_KERNEL);
if (nau8822 == NULL)
return -ENOMEM;
}
i2c_set_clientdata(i2c, nau8822);
nau8822->regmap = devm_regmap_init_i2c(i2c, &nau8822_regmap_config);
if (IS_ERR(nau8822->regmap)) {
ret = PTR_ERR(nau8822->regmap);
dev_err(&i2c->dev, "Failed to allocate regmap: %d\n", ret);
return ret;
}
nau8822->dev = dev;
/* Reset the codec */
ret = regmap_write(nau8822->regmap, NAU8822_REG_RESET, 0x00);
if (ret != 0) {
dev_err(&i2c->dev, "Failed to issue reset: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(dev, &soc_component_dev_nau8822,
&nau8822_dai, 1);
if (ret != 0) {
dev_err(&i2c->dev, "Failed to register CODEC: %d\n", ret);
return ret;
}
return 0;
}
static const struct i2c_device_id nau8822_i2c_id[] = {
{ "nau8822", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8822_i2c_id);
#ifdef CONFIG_OF
static const struct of_device_id nau8822_of_match[] = {
{ .compatible = "nuvoton,nau8822", },
{ }
};
MODULE_DEVICE_TABLE(of, nau8822_of_match);
#endif
static struct i2c_driver nau8822_i2c_driver = {
.driver = {
.name = "nau8822",
.of_match_table = of_match_ptr(nau8822_of_match),
},
.probe = nau8822_i2c_probe,
.id_table = nau8822_i2c_id,
};
module_i2c_driver(nau8822_i2c_driver);
MODULE_DESCRIPTION("ASoC NAU8822 codec driver");
MODULE_AUTHOR("David Lin <ctlin0@nuvoton.com>");
MODULE_LICENSE("GPL v2");