kernel/sound/firewire/fireface/ff-protocol-latter.c
2024-07-22 17:22:30 +08:00

543 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
// ff-protocol-latter - a part of driver for RME Fireface series
//
// Copyright (c) 2019 Takashi Sakamoto
//
// Licensed under the terms of the GNU General Public License, version 2.
#include <linux/delay.h>
#include "ff.h"
#define LATTER_STF 0xffff00000004ULL
#define LATTER_ISOC_CHANNELS 0xffff00000008ULL
#define LATTER_ISOC_START 0xffff0000000cULL
#define LATTER_FETCH_MODE 0xffff00000010ULL
#define LATTER_SYNC_STATUS 0x0000801c0000ULL
// The content of sync status register differs between models.
//
// Fireface UCX:
// 0xf0000000: (unidentified)
// 0x0f000000: effective rate of sampling clock
// 0x00f00000: detected rate of word clock on BNC interface
// 0x000f0000: detected rate of ADAT or S/PDIF on optical interface
// 0x0000f000: detected rate of S/PDIF on coaxial interface
// 0x00000e00: effective source of sampling clock
// 0x00000e00: Internal
// 0x00000800: (unidentified)
// 0x00000600: Word clock on BNC interface
// 0x00000400: ADAT on optical interface
// 0x00000200: S/PDIF on coaxial or optical interface
// 0x00000100: Optical interface is used for ADAT signal
// 0x00000080: (unidentified)
// 0x00000040: Synchronized to word clock on BNC interface
// 0x00000020: Synchronized to ADAT or S/PDIF on optical interface
// 0x00000010: Synchronized to S/PDIF on coaxial interface
// 0x00000008: (unidentified)
// 0x00000004: Lock word clock on BNC interface
// 0x00000002: Lock ADAT or S/PDIF on optical interface
// 0x00000001: Lock S/PDIF on coaxial interface
//
// Fireface 802 (and perhaps UFX):
// 0xf0000000: effective rate of sampling clock
// 0x0f000000: detected rate of ADAT-B on 2nd optical interface
// 0x00f00000: detected rate of ADAT-A on 1st optical interface
// 0x000f0000: detected rate of AES/EBU on XLR or coaxial interface
// 0x0000f000: detected rate of word clock on BNC interface
// 0x00000e00: effective source of sampling clock
// 0x00000e00: internal
// 0x00000800: ADAT-B
// 0x00000600: ADAT-A
// 0x00000400: AES/EBU
// 0x00000200: Word clock
// 0x00000080: Synchronized to ADAT-B on 2nd optical interface
// 0x00000040: Synchronized to ADAT-A on 1st optical interface
// 0x00000020: Synchronized to AES/EBU on XLR or 2nd optical interface
// 0x00000010: Synchronized to word clock on BNC interface
// 0x00000008: Lock ADAT-B on 2nd optical interface
// 0x00000004: Lock ADAT-A on 1st optical interface
// 0x00000002: Lock AES/EBU on XLR or 2nd optical interface
// 0x00000001: Lock word clock on BNC interface
//
// The pattern for rate bits:
// 0x00: 32.0 kHz
// 0x01: 44.1 kHz
// 0x02: 48.0 kHz
// 0x04: 64.0 kHz
// 0x05: 88.2 kHz
// 0x06: 96.0 kHz
// 0x08: 128.0 kHz
// 0x09: 176.4 kHz
// 0x0a: 192.0 kHz
static int parse_clock_bits(u32 data, unsigned int *rate,
enum snd_ff_clock_src *src,
enum snd_ff_unit_version unit_version)
{
static const struct {
unsigned int rate;
u32 flag;
} *rate_entry, rate_entries[] = {
{ 32000, 0x00, },
{ 44100, 0x01, },
{ 48000, 0x02, },
{ 64000, 0x04, },
{ 88200, 0x05, },
{ 96000, 0x06, },
{ 128000, 0x08, },
{ 176400, 0x09, },
{ 192000, 0x0a, },
};
static const struct {
enum snd_ff_clock_src src;
u32 flag;
} *clk_entry, *clk_entries, ucx_clk_entries[] = {
{ SND_FF_CLOCK_SRC_SPDIF, 0x00000200, },
{ SND_FF_CLOCK_SRC_ADAT1, 0x00000400, },
{ SND_FF_CLOCK_SRC_WORD, 0x00000600, },
{ SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, },
}, ufx_ff802_clk_entries[] = {
{ SND_FF_CLOCK_SRC_WORD, 0x00000200, },
{ SND_FF_CLOCK_SRC_SPDIF, 0x00000400, },
{ SND_FF_CLOCK_SRC_ADAT1, 0x00000600, },
{ SND_FF_CLOCK_SRC_ADAT2, 0x00000800, },
{ SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, },
};
u32 rate_bits;
unsigned int clk_entry_count;
int i;
if (unit_version == SND_FF_UNIT_VERSION_UCX) {
rate_bits = (data & 0x0f000000) >> 24;
clk_entries = ucx_clk_entries;
clk_entry_count = ARRAY_SIZE(ucx_clk_entries);
} else {
rate_bits = (data & 0xf0000000) >> 28;
clk_entries = ufx_ff802_clk_entries;
clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries);
}
for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
rate_entry = rate_entries + i;
if (rate_bits == rate_entry->flag) {
*rate = rate_entry->rate;
break;
}
}
if (i == ARRAY_SIZE(rate_entries))
return -EIO;
for (i = 0; i < clk_entry_count; ++i) {
clk_entry = clk_entries + i;
if ((data & 0x000e00) == clk_entry->flag) {
*src = clk_entry->src;
break;
}
}
if (i == clk_entry_count)
return -EIO;
return 0;
}
static int latter_get_clock(struct snd_ff *ff, unsigned int *rate,
enum snd_ff_clock_src *src)
{
__le32 reg;
u32 data;
int err;
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
LATTER_SYNC_STATUS, &reg, sizeof(reg), 0);
if (err < 0)
return err;
data = le32_to_cpu(reg);
return parse_clock_bits(data, rate, src, ff->unit_version);
}
static int latter_switch_fetching_mode(struct snd_ff *ff, bool enable)
{
u32 data;
__le32 reg;
if (enable)
data = 0x00000000;
else
data = 0xffffffff;
reg = cpu_to_le32(data);
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
LATTER_FETCH_MODE, &reg, sizeof(reg), 0);
}
static int latter_allocate_resources(struct snd_ff *ff, unsigned int rate)
{
enum snd_ff_stream_mode mode;
unsigned int code;
__le32 reg;
unsigned int count;
int i;
int err;
// Set the number of data blocks transferred in a second.
if (rate % 48000 == 0)
code = 0x04;
else if (rate % 44100 == 0)
code = 0x02;
else if (rate % 32000 == 0)
code = 0x00;
else
return -EINVAL;
if (rate >= 64000 && rate < 128000)
code |= 0x08;
else if (rate >= 128000)
code |= 0x10;
reg = cpu_to_le32(code);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
LATTER_STF, &reg, sizeof(reg), 0);
if (err < 0)
return err;
// Confirm to shift transmission clock.
count = 0;
while (count++ < 10) {
unsigned int curr_rate;
enum snd_ff_clock_src src;
err = latter_get_clock(ff, &curr_rate, &src);
if (err < 0)
return err;
if (curr_rate == rate)
break;
}
if (count > 10)
return -ETIMEDOUT;
for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); ++i) {
if (rate == amdtp_rate_table[i])
break;
}
if (i == ARRAY_SIZE(amdtp_rate_table))
return -EINVAL;
err = snd_ff_stream_get_multiplier_mode(i, &mode);
if (err < 0)
return err;
// Keep resources for in-stream.
ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
err = fw_iso_resources_allocate(&ff->tx_resources,
amdtp_stream_get_max_payload(&ff->tx_stream),
fw_parent_device(ff->unit)->max_speed);
if (err < 0)
return err;
// Keep resources for out-stream.
ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
err = fw_iso_resources_allocate(&ff->rx_resources,
amdtp_stream_get_max_payload(&ff->rx_stream),
fw_parent_device(ff->unit)->max_speed);
if (err < 0)
fw_iso_resources_free(&ff->tx_resources);
return err;
}
static int latter_begin_session(struct snd_ff *ff, unsigned int rate)
{
unsigned int generation = ff->rx_resources.generation;
unsigned int flag;
u32 data;
__le32 reg;
int err;
if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) {
// For Fireface UCX. Always use the maximum number of data
// channels in data block of packet.
if (rate >= 32000 && rate <= 48000)
flag = 0x92;
else if (rate >= 64000 && rate <= 96000)
flag = 0x8e;
else if (rate >= 128000 && rate <= 192000)
flag = 0x8c;
else
return -EINVAL;
} else {
// For Fireface UFX and 802. Due to bandwidth limitation on
// IEEE 1394a (400 Mbps), Analog 1-12 and AES are available
// without any ADAT at quadruple speed.
if (rate >= 32000 && rate <= 48000)
flag = 0x9e;
else if (rate >= 64000 && rate <= 96000)
flag = 0x96;
else if (rate >= 128000 && rate <= 192000)
flag = 0x8e;
else
return -EINVAL;
}
if (generation != fw_parent_device(ff->unit)->card->generation) {
err = fw_iso_resources_update(&ff->tx_resources);
if (err < 0)
return err;
err = fw_iso_resources_update(&ff->rx_resources);
if (err < 0)
return err;
}
data = (ff->tx_resources.channel << 8) | ff->rx_resources.channel;
reg = cpu_to_le32(data);
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
LATTER_ISOC_CHANNELS, &reg, sizeof(reg), 0);
if (err < 0)
return err;
reg = cpu_to_le32(flag);
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
LATTER_ISOC_START, &reg, sizeof(reg), 0);
}
static void latter_finish_session(struct snd_ff *ff)
{
__le32 reg;
reg = cpu_to_le32(0x00000000);
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
LATTER_ISOC_START, &reg, sizeof(reg), 0);
}
static void latter_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
{
static const struct {
char *const label;
u32 locked_mask;
u32 synced_mask;
} *clk_entry, *clk_entries, ucx_clk_entries[] = {
{ "S/PDIF", 0x00000001, 0x00000010, },
{ "ADAT", 0x00000002, 0x00000020, },
{ "WDClk", 0x00000004, 0x00000040, },
}, ufx_ff802_clk_entries[] = {
{ "WDClk", 0x00000001, 0x00000010, },
{ "AES/EBU", 0x00000002, 0x00000020, },
{ "ADAT-A", 0x00000004, 0x00000040, },
{ "ADAT-B", 0x00000008, 0x00000080, },
};
__le32 reg;
u32 data;
unsigned int rate;
enum snd_ff_clock_src src;
const char *label;
unsigned int clk_entry_count;
int i;
int err;
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
LATTER_SYNC_STATUS, &reg, sizeof(reg), 0);
if (err < 0)
return;
data = le32_to_cpu(reg);
snd_iprintf(buffer, "External source detection:\n");
if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) {
clk_entries = ucx_clk_entries;
clk_entry_count = ARRAY_SIZE(ucx_clk_entries);
} else {
clk_entries = ufx_ff802_clk_entries;
clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries);
}
for (i = 0; i < clk_entry_count; ++i) {
clk_entry = clk_entries + i;
snd_iprintf(buffer, "%s: ", clk_entry->label);
if (data & clk_entry->locked_mask) {
if (data & clk_entry->synced_mask)
snd_iprintf(buffer, "sync\n");
else
snd_iprintf(buffer, "lock\n");
} else {
snd_iprintf(buffer, "none\n");
}
}
err = parse_clock_bits(data, &rate, &src, ff->unit_version);
if (err < 0)
return;
label = snd_ff_proc_get_clk_label(src);
if (!label)
return;
snd_iprintf(buffer, "Referred clock: %s %d\n", label, rate);
}
// NOTE: transactions are transferred within 0x00-0x7f in allocated range of
// address. This seems to be for check of discontinuity in receiver side.
//
// Like Fireface 400, drivers can select one of 4 options for lower 4 bytes of
// destination address by bit flags in quadlet register (little endian) at
// 0x'ffff'0000'0014:
//
// bit flags: offset of destination address
// - 0x00002000: 0x'....'....'0000'0000
// - 0x00004000: 0x'....'....'0000'0080
// - 0x00008000: 0x'....'....'0000'0100
// - 0x00010000: 0x'....'....'0000'0180
//
// Drivers can suppress the device to transfer asynchronous transactions by
// clear these bit flags.
//
// Actually, the register is write-only and includes the other settings such as
// input attenuation. This driver allocates for the first option
// (0x'....'....'0000'0000) and expects userspace application to configure the
// register for it.
static void latter_handle_midi_msg(struct snd_ff *ff, unsigned int offset,
__le32 *buf, size_t length)
{
u32 data = le32_to_cpu(*buf);
unsigned int index = (data & 0x000000f0) >> 4;
u8 byte[3];
struct snd_rawmidi_substream *substream;
unsigned int len;
if (index >= ff->spec->midi_in_ports)
return;
switch (data & 0x0000000f) {
case 0x00000008:
case 0x00000009:
case 0x0000000a:
case 0x0000000b:
case 0x0000000e:
len = 3;
break;
case 0x0000000c:
case 0x0000000d:
len = 2;
break;
default:
len = data & 0x00000003;
if (len == 0)
len = 3;
break;
}
byte[0] = (data & 0x0000ff00) >> 8;
byte[1] = (data & 0x00ff0000) >> 16;
byte[2] = (data & 0xff000000) >> 24;
substream = READ_ONCE(ff->tx_midi_substreams[index]);
if (substream)
snd_rawmidi_receive(substream, byte, len);
}
/*
* When return minus value, given argument is not MIDI status.
* When return 0, given argument is a beginning of system exclusive.
* When return the others, given argument is MIDI data.
*/
static inline int calculate_message_bytes(u8 status)
{
switch (status) {
case 0xf6: /* Tune request. */
case 0xf8: /* Timing clock. */
case 0xfa: /* Start. */
case 0xfb: /* Continue. */
case 0xfc: /* Stop. */
case 0xfe: /* Active sensing. */
case 0xff: /* System reset. */
return 1;
case 0xf1: /* MIDI time code quarter frame. */
case 0xf3: /* Song select. */
return 2;
case 0xf2: /* Song position pointer. */
return 3;
case 0xf0: /* Exclusive. */
return 0;
case 0xf7: /* End of exclusive. */
break;
case 0xf4: /* Undefined. */
case 0xf5: /* Undefined. */
case 0xf9: /* Undefined. */
case 0xfd: /* Undefined. */
break;
default:
switch (status & 0xf0) {
case 0x80: /* Note on. */
case 0x90: /* Note off. */
case 0xa0: /* Polyphonic key pressure. */
case 0xb0: /* Control change and Mode change. */
case 0xe0: /* Pitch bend change. */
return 3;
case 0xc0: /* Program change. */
case 0xd0: /* Channel pressure. */
return 2;
default:
break;
}
break;
}
return -EINVAL;
}
static int latter_fill_midi_msg(struct snd_ff *ff,
struct snd_rawmidi_substream *substream,
unsigned int port)
{
u32 data = {0};
u8 *buf = (u8 *)&data;
int consumed;
buf[0] = port << 4;
consumed = snd_rawmidi_transmit_peek(substream, buf + 1, 3);
if (consumed <= 0)
return consumed;
if (!ff->on_sysex[port]) {
if (buf[1] != 0xf0) {
if (consumed < calculate_message_bytes(buf[1]))
return 0;
} else {
// The beginning of exclusives.
ff->on_sysex[port] = true;
}
buf[0] |= consumed;
} else {
if (buf[1] != 0xf7) {
if (buf[2] == 0xf7 || buf[3] == 0xf7) {
// Transfer end code at next time.
consumed -= 1;
}
buf[0] |= consumed;
} else {
// The end of exclusives.
ff->on_sysex[port] = false;
consumed = 1;
buf[0] |= 0x0f;
}
}
ff->msg_buf[port][0] = cpu_to_le32(data);
ff->rx_bytes[port] = consumed;
return 1;
}
const struct snd_ff_protocol snd_ff_protocol_latter = {
.handle_midi_msg = latter_handle_midi_msg,
.fill_midi_msg = latter_fill_midi_msg,
.get_clock = latter_get_clock,
.switch_fetching_mode = latter_switch_fetching_mode,
.allocate_resources = latter_allocate_resources,
.begin_session = latter_begin_session,
.finish_session = latter_finish_session,
.dump_status = latter_dump_status,
};