5142 lines
138 KiB
C
5142 lines
138 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright (C) 2005 Mike Isely <isely@pobox.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/videodev2.h>
|
|
#include <media/v4l2-common.h>
|
|
#include <media/tuner.h>
|
|
#include "pvrusb2.h"
|
|
#include "pvrusb2-std.h"
|
|
#include "pvrusb2-util.h"
|
|
#include "pvrusb2-hdw.h"
|
|
#include "pvrusb2-i2c-core.h"
|
|
#include "pvrusb2-eeprom.h"
|
|
#include "pvrusb2-hdw-internal.h"
|
|
#include "pvrusb2-encoder.h"
|
|
#include "pvrusb2-debug.h"
|
|
#include "pvrusb2-fx2-cmd.h"
|
|
#include "pvrusb2-wm8775.h"
|
|
#include "pvrusb2-video-v4l.h"
|
|
#include "pvrusb2-cx2584x-v4l.h"
|
|
#include "pvrusb2-cs53l32a.h"
|
|
#include "pvrusb2-audio.h"
|
|
|
|
#define TV_MIN_FREQ 55250000L
|
|
#define TV_MAX_FREQ 850000000L
|
|
|
|
/* This defines a minimum interval that the decoder must remain quiet
|
|
before we are allowed to start it running. */
|
|
#define TIME_MSEC_DECODER_WAIT 50
|
|
|
|
/* This defines a minimum interval that the decoder must be allowed to run
|
|
before we can safely begin using its streaming output. */
|
|
#define TIME_MSEC_DECODER_STABILIZATION_WAIT 300
|
|
|
|
/* This defines a minimum interval that the encoder must remain quiet
|
|
before we are allowed to configure it. */
|
|
#define TIME_MSEC_ENCODER_WAIT 50
|
|
|
|
/* This defines the minimum interval that the encoder must successfully run
|
|
before we consider that the encoder has run at least once since its
|
|
firmware has been loaded. This measurement is in important for cases
|
|
where we can't do something until we know that the encoder has been run
|
|
at least once. */
|
|
#define TIME_MSEC_ENCODER_OK 250
|
|
|
|
static struct pvr2_hdw *unit_pointers[PVR_NUM] = {[ 0 ... PVR_NUM-1 ] = NULL};
|
|
static DEFINE_MUTEX(pvr2_unit_mtx);
|
|
|
|
static int ctlchg;
|
|
static int procreload;
|
|
static int tuner[PVR_NUM] = { [0 ... PVR_NUM-1] = -1 };
|
|
static int tolerance[PVR_NUM] = { [0 ... PVR_NUM-1] = 0 };
|
|
static int video_std[PVR_NUM] = { [0 ... PVR_NUM-1] = 0 };
|
|
static int init_pause_msec;
|
|
|
|
module_param(ctlchg, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(ctlchg, "0=optimize ctl change 1=always accept new ctl value");
|
|
module_param(init_pause_msec, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(init_pause_msec, "hardware initialization settling delay");
|
|
module_param(procreload, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(procreload,
|
|
"Attempt init failure recovery with firmware reload");
|
|
module_param_array(tuner, int, NULL, 0444);
|
|
MODULE_PARM_DESC(tuner,"specify installed tuner type");
|
|
module_param_array(video_std, int, NULL, 0444);
|
|
MODULE_PARM_DESC(video_std,"specify initial video standard");
|
|
module_param_array(tolerance, int, NULL, 0444);
|
|
MODULE_PARM_DESC(tolerance,"specify stream error tolerance");
|
|
|
|
/* US Broadcast channel 3 (61.25 MHz), to help with testing */
|
|
static int default_tv_freq = 61250000L;
|
|
/* 104.3 MHz, a usable FM station for my area */
|
|
static int default_radio_freq = 104300000L;
|
|
|
|
module_param_named(tv_freq, default_tv_freq, int, 0444);
|
|
MODULE_PARM_DESC(tv_freq, "specify initial television frequency");
|
|
module_param_named(radio_freq, default_radio_freq, int, 0444);
|
|
MODULE_PARM_DESC(radio_freq, "specify initial radio frequency");
|
|
|
|
#define PVR2_CTL_WRITE_ENDPOINT 0x01
|
|
#define PVR2_CTL_READ_ENDPOINT 0x81
|
|
|
|
#define PVR2_GPIO_IN 0x9008
|
|
#define PVR2_GPIO_OUT 0x900c
|
|
#define PVR2_GPIO_DIR 0x9020
|
|
|
|
#define trace_firmware(...) pvr2_trace(PVR2_TRACE_FIRMWARE,__VA_ARGS__)
|
|
|
|
#define PVR2_FIRMWARE_ENDPOINT 0x02
|
|
|
|
/* size of a firmware chunk */
|
|
#define FIRMWARE_CHUNK_SIZE 0x2000
|
|
|
|
typedef void (*pvr2_subdev_update_func)(struct pvr2_hdw *,
|
|
struct v4l2_subdev *);
|
|
|
|
static const pvr2_subdev_update_func pvr2_module_update_functions[] = {
|
|
[PVR2_CLIENT_ID_WM8775] = pvr2_wm8775_subdev_update,
|
|
[PVR2_CLIENT_ID_SAA7115] = pvr2_saa7115_subdev_update,
|
|
[PVR2_CLIENT_ID_MSP3400] = pvr2_msp3400_subdev_update,
|
|
[PVR2_CLIENT_ID_CX25840] = pvr2_cx25840_subdev_update,
|
|
[PVR2_CLIENT_ID_CS53L32A] = pvr2_cs53l32a_subdev_update,
|
|
};
|
|
|
|
static const char *module_names[] = {
|
|
[PVR2_CLIENT_ID_MSP3400] = "msp3400",
|
|
[PVR2_CLIENT_ID_CX25840] = "cx25840",
|
|
[PVR2_CLIENT_ID_SAA7115] = "saa7115",
|
|
[PVR2_CLIENT_ID_TUNER] = "tuner",
|
|
[PVR2_CLIENT_ID_DEMOD] = "tuner",
|
|
[PVR2_CLIENT_ID_CS53L32A] = "cs53l32a",
|
|
[PVR2_CLIENT_ID_WM8775] = "wm8775",
|
|
};
|
|
|
|
|
|
static const unsigned char *module_i2c_addresses[] = {
|
|
[PVR2_CLIENT_ID_TUNER] = "\x60\x61\x62\x63",
|
|
[PVR2_CLIENT_ID_DEMOD] = "\x43",
|
|
[PVR2_CLIENT_ID_MSP3400] = "\x40",
|
|
[PVR2_CLIENT_ID_SAA7115] = "\x21",
|
|
[PVR2_CLIENT_ID_WM8775] = "\x1b",
|
|
[PVR2_CLIENT_ID_CX25840] = "\x44",
|
|
[PVR2_CLIENT_ID_CS53L32A] = "\x11",
|
|
};
|
|
|
|
|
|
static const char *ir_scheme_names[] = {
|
|
[PVR2_IR_SCHEME_NONE] = "none",
|
|
[PVR2_IR_SCHEME_29XXX] = "29xxx",
|
|
[PVR2_IR_SCHEME_24XXX] = "24xxx (29xxx emulation)",
|
|
[PVR2_IR_SCHEME_24XXX_MCE] = "24xxx (MCE device)",
|
|
[PVR2_IR_SCHEME_ZILOG] = "Zilog",
|
|
};
|
|
|
|
|
|
/* Define the list of additional controls we'll dynamically construct based
|
|
on query of the cx2341x module. */
|
|
struct pvr2_mpeg_ids {
|
|
const char *strid;
|
|
int id;
|
|
};
|
|
static const struct pvr2_mpeg_ids mpeg_ids[] = {
|
|
{
|
|
.strid = "audio_layer",
|
|
.id = V4L2_CID_MPEG_AUDIO_ENCODING,
|
|
},{
|
|
.strid = "audio_bitrate",
|
|
.id = V4L2_CID_MPEG_AUDIO_L2_BITRATE,
|
|
},{
|
|
/* Already using audio_mode elsewhere :-( */
|
|
.strid = "mpeg_audio_mode",
|
|
.id = V4L2_CID_MPEG_AUDIO_MODE,
|
|
},{
|
|
.strid = "mpeg_audio_mode_extension",
|
|
.id = V4L2_CID_MPEG_AUDIO_MODE_EXTENSION,
|
|
},{
|
|
.strid = "audio_emphasis",
|
|
.id = V4L2_CID_MPEG_AUDIO_EMPHASIS,
|
|
},{
|
|
.strid = "audio_crc",
|
|
.id = V4L2_CID_MPEG_AUDIO_CRC,
|
|
},{
|
|
.strid = "video_aspect",
|
|
.id = V4L2_CID_MPEG_VIDEO_ASPECT,
|
|
},{
|
|
.strid = "video_b_frames",
|
|
.id = V4L2_CID_MPEG_VIDEO_B_FRAMES,
|
|
},{
|
|
.strid = "video_gop_size",
|
|
.id = V4L2_CID_MPEG_VIDEO_GOP_SIZE,
|
|
},{
|
|
.strid = "video_gop_closure",
|
|
.id = V4L2_CID_MPEG_VIDEO_GOP_CLOSURE,
|
|
},{
|
|
.strid = "video_bitrate_mode",
|
|
.id = V4L2_CID_MPEG_VIDEO_BITRATE_MODE,
|
|
},{
|
|
.strid = "video_bitrate",
|
|
.id = V4L2_CID_MPEG_VIDEO_BITRATE,
|
|
},{
|
|
.strid = "video_bitrate_peak",
|
|
.id = V4L2_CID_MPEG_VIDEO_BITRATE_PEAK,
|
|
},{
|
|
.strid = "video_temporal_decimation",
|
|
.id = V4L2_CID_MPEG_VIDEO_TEMPORAL_DECIMATION,
|
|
},{
|
|
.strid = "stream_type",
|
|
.id = V4L2_CID_MPEG_STREAM_TYPE,
|
|
},{
|
|
.strid = "video_spatial_filter_mode",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE,
|
|
},{
|
|
.strid = "video_spatial_filter",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
|
|
},{
|
|
.strid = "video_luma_spatial_filter_type",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE,
|
|
},{
|
|
.strid = "video_chroma_spatial_filter_type",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE,
|
|
},{
|
|
.strid = "video_temporal_filter_mode",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE,
|
|
},{
|
|
.strid = "video_temporal_filter",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER,
|
|
},{
|
|
.strid = "video_median_filter_type",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE,
|
|
},{
|
|
.strid = "video_luma_median_filter_top",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_TOP,
|
|
},{
|
|
.strid = "video_luma_median_filter_bottom",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_BOTTOM,
|
|
},{
|
|
.strid = "video_chroma_median_filter_top",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_TOP,
|
|
},{
|
|
.strid = "video_chroma_median_filter_bottom",
|
|
.id = V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_BOTTOM,
|
|
}
|
|
};
|
|
#define MPEGDEF_COUNT ARRAY_SIZE(mpeg_ids)
|
|
|
|
|
|
static const char *control_values_srate[] = {
|
|
[V4L2_MPEG_AUDIO_SAMPLING_FREQ_44100] = "44.1 kHz",
|
|
[V4L2_MPEG_AUDIO_SAMPLING_FREQ_48000] = "48 kHz",
|
|
[V4L2_MPEG_AUDIO_SAMPLING_FREQ_32000] = "32 kHz",
|
|
};
|
|
|
|
|
|
|
|
static const char *control_values_input[] = {
|
|
[PVR2_CVAL_INPUT_TV] = "television", /*xawtv needs this name*/
|
|
[PVR2_CVAL_INPUT_DTV] = "dtv",
|
|
[PVR2_CVAL_INPUT_RADIO] = "radio",
|
|
[PVR2_CVAL_INPUT_SVIDEO] = "s-video",
|
|
[PVR2_CVAL_INPUT_COMPOSITE] = "composite",
|
|
};
|
|
|
|
|
|
static const char *control_values_audiomode[] = {
|
|
[V4L2_TUNER_MODE_MONO] = "Mono",
|
|
[V4L2_TUNER_MODE_STEREO] = "Stereo",
|
|
[V4L2_TUNER_MODE_LANG1] = "Lang1",
|
|
[V4L2_TUNER_MODE_LANG2] = "Lang2",
|
|
[V4L2_TUNER_MODE_LANG1_LANG2] = "Lang1+Lang2",
|
|
};
|
|
|
|
|
|
static const char *control_values_hsm[] = {
|
|
[PVR2_CVAL_HSM_FAIL] = "Fail",
|
|
[PVR2_CVAL_HSM_HIGH] = "High",
|
|
[PVR2_CVAL_HSM_FULL] = "Full",
|
|
};
|
|
|
|
|
|
static const char *pvr2_state_names[] = {
|
|
[PVR2_STATE_NONE] = "none",
|
|
[PVR2_STATE_DEAD] = "dead",
|
|
[PVR2_STATE_COLD] = "cold",
|
|
[PVR2_STATE_WARM] = "warm",
|
|
[PVR2_STATE_ERROR] = "error",
|
|
[PVR2_STATE_READY] = "ready",
|
|
[PVR2_STATE_RUN] = "run",
|
|
};
|
|
|
|
|
|
struct pvr2_fx2cmd_descdef {
|
|
unsigned char id;
|
|
unsigned char *desc;
|
|
};
|
|
|
|
static const struct pvr2_fx2cmd_descdef pvr2_fx2cmd_desc[] = {
|
|
{FX2CMD_MEM_WRITE_DWORD, "write encoder dword"},
|
|
{FX2CMD_MEM_READ_DWORD, "read encoder dword"},
|
|
{FX2CMD_HCW_ZILOG_RESET, "zilog IR reset control"},
|
|
{FX2CMD_MEM_READ_64BYTES, "read encoder 64bytes"},
|
|
{FX2CMD_REG_WRITE, "write encoder register"},
|
|
{FX2CMD_REG_READ, "read encoder register"},
|
|
{FX2CMD_MEMSEL, "encoder memsel"},
|
|
{FX2CMD_I2C_WRITE, "i2c write"},
|
|
{FX2CMD_I2C_READ, "i2c read"},
|
|
{FX2CMD_GET_USB_SPEED, "get USB speed"},
|
|
{FX2CMD_STREAMING_ON, "stream on"},
|
|
{FX2CMD_STREAMING_OFF, "stream off"},
|
|
{FX2CMD_FWPOST1, "fwpost1"},
|
|
{FX2CMD_POWER_OFF, "power off"},
|
|
{FX2CMD_POWER_ON, "power on"},
|
|
{FX2CMD_DEEP_RESET, "deep reset"},
|
|
{FX2CMD_GET_EEPROM_ADDR, "get rom addr"},
|
|
{FX2CMD_GET_IR_CODE, "get IR code"},
|
|
{FX2CMD_HCW_DEMOD_RESETIN, "hcw demod resetin"},
|
|
{FX2CMD_HCW_DTV_STREAMING_ON, "hcw dtv stream on"},
|
|
{FX2CMD_HCW_DTV_STREAMING_OFF, "hcw dtv stream off"},
|
|
{FX2CMD_ONAIR_DTV_STREAMING_ON, "onair dtv stream on"},
|
|
{FX2CMD_ONAIR_DTV_STREAMING_OFF, "onair dtv stream off"},
|
|
{FX2CMD_ONAIR_DTV_POWER_ON, "onair dtv power on"},
|
|
{FX2CMD_ONAIR_DTV_POWER_OFF, "onair dtv power off"},
|
|
{FX2CMD_HCW_DEMOD_RESET_PIN, "hcw demod reset pin"},
|
|
{FX2CMD_HCW_MAKO_SLEEP_PIN, "hcw mako sleep pin"},
|
|
};
|
|
|
|
|
|
static int pvr2_hdw_set_input(struct pvr2_hdw *hdw,int v);
|
|
static void pvr2_hdw_state_sched(struct pvr2_hdw *);
|
|
static int pvr2_hdw_state_eval(struct pvr2_hdw *);
|
|
static void pvr2_hdw_set_cur_freq(struct pvr2_hdw *,unsigned long);
|
|
static void pvr2_hdw_worker_poll(struct work_struct *work);
|
|
static int pvr2_hdw_wait(struct pvr2_hdw *,int state);
|
|
static int pvr2_hdw_untrip_unlocked(struct pvr2_hdw *);
|
|
static void pvr2_hdw_state_log_state(struct pvr2_hdw *);
|
|
static int pvr2_hdw_cmd_usbstream(struct pvr2_hdw *hdw,int runFl);
|
|
static int pvr2_hdw_commit_setup(struct pvr2_hdw *hdw);
|
|
static int pvr2_hdw_get_eeprom_addr(struct pvr2_hdw *hdw);
|
|
static void pvr2_hdw_quiescent_timeout(struct timer_list *);
|
|
static void pvr2_hdw_decoder_stabilization_timeout(struct timer_list *);
|
|
static void pvr2_hdw_encoder_wait_timeout(struct timer_list *);
|
|
static void pvr2_hdw_encoder_run_timeout(struct timer_list *);
|
|
static int pvr2_issue_simple_cmd(struct pvr2_hdw *,u32);
|
|
static int pvr2_send_request_ex(struct pvr2_hdw *hdw,
|
|
unsigned int timeout,int probe_fl,
|
|
void *write_data,unsigned int write_len,
|
|
void *read_data,unsigned int read_len);
|
|
static int pvr2_hdw_check_cropcap(struct pvr2_hdw *hdw);
|
|
static v4l2_std_id pvr2_hdw_get_detected_std(struct pvr2_hdw *hdw);
|
|
|
|
static void trace_stbit(const char *name,int val)
|
|
{
|
|
pvr2_trace(PVR2_TRACE_STBITS,
|
|
"State bit %s <-- %s",
|
|
name,(val ? "true" : "false"));
|
|
}
|
|
|
|
static int ctrl_channelfreq_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
if ((hdw->freqProgSlot > 0) && (hdw->freqProgSlot <= FREQTABLE_SIZE)) {
|
|
*vp = hdw->freqTable[hdw->freqProgSlot-1];
|
|
} else {
|
|
*vp = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_channelfreq_set(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
unsigned int slotId = hdw->freqProgSlot;
|
|
if ((slotId > 0) && (slotId <= FREQTABLE_SIZE)) {
|
|
hdw->freqTable[slotId-1] = v;
|
|
/* Handle side effects correctly - if we're tuned to this
|
|
slot, then forgot the slot id relation since the stored
|
|
frequency has been changed. */
|
|
if (hdw->freqSelector) {
|
|
if (hdw->freqSlotRadio == slotId) {
|
|
hdw->freqSlotRadio = 0;
|
|
}
|
|
} else {
|
|
if (hdw->freqSlotTelevision == slotId) {
|
|
hdw->freqSlotTelevision = 0;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_channelprog_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = cptr->hdw->freqProgSlot;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_channelprog_set(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
if ((v >= 0) && (v <= FREQTABLE_SIZE)) {
|
|
hdw->freqProgSlot = v;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_channel_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
*vp = hdw->freqSelector ? hdw->freqSlotRadio : hdw->freqSlotTelevision;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_channel_set(struct pvr2_ctrl *cptr,int m,int slotId)
|
|
{
|
|
unsigned freq = 0;
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
if ((slotId < 0) || (slotId > FREQTABLE_SIZE)) return 0;
|
|
if (slotId > 0) {
|
|
freq = hdw->freqTable[slotId-1];
|
|
if (!freq) return 0;
|
|
pvr2_hdw_set_cur_freq(hdw,freq);
|
|
}
|
|
if (hdw->freqSelector) {
|
|
hdw->freqSlotRadio = slotId;
|
|
} else {
|
|
hdw->freqSlotTelevision = slotId;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_freq_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = pvr2_hdw_get_cur_freq(cptr->hdw);
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_freq_is_dirty(struct pvr2_ctrl *cptr)
|
|
{
|
|
return cptr->hdw->freqDirty != 0;
|
|
}
|
|
|
|
static void ctrl_freq_clear_dirty(struct pvr2_ctrl *cptr)
|
|
{
|
|
cptr->hdw->freqDirty = 0;
|
|
}
|
|
|
|
static int ctrl_freq_set(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
pvr2_hdw_set_cur_freq(cptr->hdw,v);
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cropl_min_get(struct pvr2_ctrl *cptr, int *left)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*left = cap->bounds.left;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cropl_max_get(struct pvr2_ctrl *cptr, int *left)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*left = cap->bounds.left;
|
|
if (cap->bounds.width > cptr->hdw->cropw_val) {
|
|
*left += cap->bounds.width - cptr->hdw->cropw_val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cropt_min_get(struct pvr2_ctrl *cptr, int *top)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*top = cap->bounds.top;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cropt_max_get(struct pvr2_ctrl *cptr, int *top)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*top = cap->bounds.top;
|
|
if (cap->bounds.height > cptr->hdw->croph_val) {
|
|
*top += cap->bounds.height - cptr->hdw->croph_val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cropw_max_get(struct pvr2_ctrl *cptr, int *width)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat, bleftend, cleft;
|
|
|
|
stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
bleftend = cap->bounds.left+cap->bounds.width;
|
|
cleft = cptr->hdw->cropl_val;
|
|
|
|
*width = cleft < bleftend ? bleftend-cleft : 0;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_croph_max_get(struct pvr2_ctrl *cptr, int *height)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat, btopend, ctop;
|
|
|
|
stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
btopend = cap->bounds.top+cap->bounds.height;
|
|
ctop = cptr->hdw->cropt_val;
|
|
|
|
*height = ctop < btopend ? btopend-ctop : 0;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapbl(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->bounds.left;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapbt(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->bounds.top;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapbw(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->bounds.width;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapbh(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->bounds.height;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapdl(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->defrect.left;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapdt(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->defrect.top;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapdw(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->defrect.width;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcapdh(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->defrect.height;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcappan(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->pixelaspect.numerator;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_cropcappad(struct pvr2_ctrl *cptr, int *val)
|
|
{
|
|
struct v4l2_cropcap *cap = &cptr->hdw->cropcap_info;
|
|
int stat = pvr2_hdw_check_cropcap(cptr->hdw);
|
|
if (stat != 0) {
|
|
return stat;
|
|
}
|
|
*val = cap->pixelaspect.denominator;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_vres_max_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
/* Actual maximum depends on the video standard in effect. */
|
|
if (cptr->hdw->std_mask_cur & V4L2_STD_525_60) {
|
|
*vp = 480;
|
|
} else {
|
|
*vp = 576;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_vres_min_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
/* Actual minimum depends on device digitizer type. */
|
|
if (cptr->hdw->hdw_desc->flag_has_cx25840) {
|
|
*vp = 75;
|
|
} else {
|
|
*vp = 17;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_get_input(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = cptr->hdw->input_val;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_check_input(struct pvr2_ctrl *cptr,int v)
|
|
{
|
|
if (v < 0 || v > PVR2_CVAL_INPUT_MAX)
|
|
return 0;
|
|
return ((1UL << v) & cptr->hdw->input_allowed_mask) != 0;
|
|
}
|
|
|
|
static int ctrl_set_input(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
return pvr2_hdw_set_input(cptr->hdw,v);
|
|
}
|
|
|
|
static int ctrl_isdirty_input(struct pvr2_ctrl *cptr)
|
|
{
|
|
return cptr->hdw->input_dirty != 0;
|
|
}
|
|
|
|
static void ctrl_cleardirty_input(struct pvr2_ctrl *cptr)
|
|
{
|
|
cptr->hdw->input_dirty = 0;
|
|
}
|
|
|
|
|
|
static int ctrl_freq_max_get(struct pvr2_ctrl *cptr, int *vp)
|
|
{
|
|
unsigned long fv;
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
if (hdw->tuner_signal_stale) {
|
|
pvr2_hdw_status_poll(hdw);
|
|
}
|
|
fv = hdw->tuner_signal_info.rangehigh;
|
|
if (!fv) {
|
|
/* Safety fallback */
|
|
*vp = TV_MAX_FREQ;
|
|
return 0;
|
|
}
|
|
if (hdw->tuner_signal_info.capability & V4L2_TUNER_CAP_LOW) {
|
|
fv = (fv * 125) / 2;
|
|
} else {
|
|
fv = fv * 62500;
|
|
}
|
|
*vp = fv;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_freq_min_get(struct pvr2_ctrl *cptr, int *vp)
|
|
{
|
|
unsigned long fv;
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
if (hdw->tuner_signal_stale) {
|
|
pvr2_hdw_status_poll(hdw);
|
|
}
|
|
fv = hdw->tuner_signal_info.rangelow;
|
|
if (!fv) {
|
|
/* Safety fallback */
|
|
*vp = TV_MIN_FREQ;
|
|
return 0;
|
|
}
|
|
if (hdw->tuner_signal_info.capability & V4L2_TUNER_CAP_LOW) {
|
|
fv = (fv * 125) / 2;
|
|
} else {
|
|
fv = fv * 62500;
|
|
}
|
|
*vp = fv;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cx2341x_is_dirty(struct pvr2_ctrl *cptr)
|
|
{
|
|
return cptr->hdw->enc_stale != 0;
|
|
}
|
|
|
|
static void ctrl_cx2341x_clear_dirty(struct pvr2_ctrl *cptr)
|
|
{
|
|
cptr->hdw->enc_stale = 0;
|
|
cptr->hdw->enc_unsafe_stale = 0;
|
|
}
|
|
|
|
static int ctrl_cx2341x_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
int ret;
|
|
struct v4l2_ext_controls cs;
|
|
struct v4l2_ext_control c1;
|
|
memset(&cs,0,sizeof(cs));
|
|
memset(&c1,0,sizeof(c1));
|
|
cs.controls = &c1;
|
|
cs.count = 1;
|
|
c1.id = cptr->info->v4l_id;
|
|
ret = cx2341x_ext_ctrls(&cptr->hdw->enc_ctl_state, 0, &cs,
|
|
VIDIOC_G_EXT_CTRLS);
|
|
if (ret) return ret;
|
|
*vp = c1.value;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_cx2341x_set(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
int ret;
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
struct v4l2_ext_controls cs;
|
|
struct v4l2_ext_control c1;
|
|
memset(&cs,0,sizeof(cs));
|
|
memset(&c1,0,sizeof(c1));
|
|
cs.controls = &c1;
|
|
cs.count = 1;
|
|
c1.id = cptr->info->v4l_id;
|
|
c1.value = v;
|
|
ret = cx2341x_ext_ctrls(&hdw->enc_ctl_state,
|
|
hdw->state_encoder_run, &cs,
|
|
VIDIOC_S_EXT_CTRLS);
|
|
if (ret == -EBUSY) {
|
|
/* Oops. cx2341x is telling us it's not safe to change
|
|
this control while we're capturing. Make a note of this
|
|
fact so that the pipeline will be stopped the next time
|
|
controls are committed. Then go on ahead and store this
|
|
change anyway. */
|
|
ret = cx2341x_ext_ctrls(&hdw->enc_ctl_state,
|
|
0, &cs,
|
|
VIDIOC_S_EXT_CTRLS);
|
|
if (!ret) hdw->enc_unsafe_stale = !0;
|
|
}
|
|
if (ret) return ret;
|
|
hdw->enc_stale = !0;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int ctrl_cx2341x_getv4lflags(struct pvr2_ctrl *cptr)
|
|
{
|
|
struct v4l2_queryctrl qctrl = {};
|
|
struct pvr2_ctl_info *info;
|
|
qctrl.id = cptr->info->v4l_id;
|
|
cx2341x_ctrl_query(&cptr->hdw->enc_ctl_state,&qctrl);
|
|
/* Strip out the const so we can adjust a function pointer. It's
|
|
OK to do this here because we know this is a dynamically created
|
|
control, so the underlying storage for the info pointer is (a)
|
|
private to us, and (b) not in read-only storage. Either we do
|
|
this or we significantly complicate the underlying control
|
|
implementation. */
|
|
info = (struct pvr2_ctl_info *)(cptr->info);
|
|
if (qctrl.flags & V4L2_CTRL_FLAG_READ_ONLY) {
|
|
if (info->set_value) {
|
|
info->set_value = NULL;
|
|
}
|
|
} else {
|
|
if (!(info->set_value)) {
|
|
info->set_value = ctrl_cx2341x_set;
|
|
}
|
|
}
|
|
return qctrl.flags;
|
|
}
|
|
|
|
static int ctrl_streamingenabled_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = cptr->hdw->state_pipeline_req;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_masterstate_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = cptr->hdw->master_state;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_hsm_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
int result = pvr2_hdw_is_hsm(cptr->hdw);
|
|
*vp = PVR2_CVAL_HSM_FULL;
|
|
if (result < 0) *vp = PVR2_CVAL_HSM_FAIL;
|
|
if (result) *vp = PVR2_CVAL_HSM_HIGH;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_stddetect_get(struct pvr2_ctrl *cptr, int *vp)
|
|
{
|
|
*vp = pvr2_hdw_get_detected_std(cptr->hdw);
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_stdavail_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = cptr->hdw->std_mask_avail;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_stdavail_set(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
v4l2_std_id ns;
|
|
ns = hdw->std_mask_avail;
|
|
ns = (ns & ~m) | (v & m);
|
|
if (ns == hdw->std_mask_avail) return 0;
|
|
hdw->std_mask_avail = ns;
|
|
hdw->std_info_cur.def.type_bitmask.valid_bits = hdw->std_mask_avail;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_std_val_to_sym(struct pvr2_ctrl *cptr,int msk,int val,
|
|
char *bufPtr,unsigned int bufSize,
|
|
unsigned int *len)
|
|
{
|
|
*len = pvr2_std_id_to_str(bufPtr,bufSize,msk & val);
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_std_sym_to_val(struct pvr2_ctrl *cptr,
|
|
const char *bufPtr,unsigned int bufSize,
|
|
int *mskp,int *valp)
|
|
{
|
|
v4l2_std_id id;
|
|
if (!pvr2_std_str_to_id(&id, bufPtr, bufSize))
|
|
return -EINVAL;
|
|
if (mskp) *mskp = id;
|
|
if (valp) *valp = id;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_stdcur_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
*vp = cptr->hdw->std_mask_cur;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_stdcur_set(struct pvr2_ctrl *cptr,int m,int v)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
v4l2_std_id ns;
|
|
ns = hdw->std_mask_cur;
|
|
ns = (ns & ~m) | (v & m);
|
|
if (ns == hdw->std_mask_cur) return 0;
|
|
hdw->std_mask_cur = ns;
|
|
hdw->std_dirty = !0;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_stdcur_is_dirty(struct pvr2_ctrl *cptr)
|
|
{
|
|
return cptr->hdw->std_dirty != 0;
|
|
}
|
|
|
|
static void ctrl_stdcur_clear_dirty(struct pvr2_ctrl *cptr)
|
|
{
|
|
cptr->hdw->std_dirty = 0;
|
|
}
|
|
|
|
static int ctrl_signal_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
pvr2_hdw_status_poll(hdw);
|
|
*vp = hdw->tuner_signal_info.signal;
|
|
return 0;
|
|
}
|
|
|
|
static int ctrl_audio_modes_present_get(struct pvr2_ctrl *cptr,int *vp)
|
|
{
|
|
int val = 0;
|
|
unsigned int subchan;
|
|
struct pvr2_hdw *hdw = cptr->hdw;
|
|
pvr2_hdw_status_poll(hdw);
|
|
subchan = hdw->tuner_signal_info.rxsubchans;
|
|
if (subchan & V4L2_TUNER_SUB_MONO) {
|
|
val |= (1 << V4L2_TUNER_MODE_MONO);
|
|
}
|
|
if (subchan & V4L2_TUNER_SUB_STEREO) {
|
|
val |= (1 << V4L2_TUNER_MODE_STEREO);
|
|
}
|
|
if (subchan & V4L2_TUNER_SUB_LANG1) {
|
|
val |= (1 << V4L2_TUNER_MODE_LANG1);
|
|
}
|
|
if (subchan & V4L2_TUNER_SUB_LANG2) {
|
|
val |= (1 << V4L2_TUNER_MODE_LANG2);
|
|
}
|
|
*vp = val;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#define DEFINT(vmin,vmax) \
|
|
.type = pvr2_ctl_int, \
|
|
.def.type_int.min_value = vmin, \
|
|
.def.type_int.max_value = vmax
|
|
|
|
#define DEFENUM(tab) \
|
|
.type = pvr2_ctl_enum, \
|
|
.def.type_enum.count = ARRAY_SIZE(tab), \
|
|
.def.type_enum.value_names = tab
|
|
|
|
#define DEFBOOL \
|
|
.type = pvr2_ctl_bool
|
|
|
|
#define DEFMASK(msk,tab) \
|
|
.type = pvr2_ctl_bitmask, \
|
|
.def.type_bitmask.valid_bits = msk, \
|
|
.def.type_bitmask.bit_names = tab
|
|
|
|
#define DEFREF(vname) \
|
|
.set_value = ctrl_set_##vname, \
|
|
.get_value = ctrl_get_##vname, \
|
|
.is_dirty = ctrl_isdirty_##vname, \
|
|
.clear_dirty = ctrl_cleardirty_##vname
|
|
|
|
|
|
#define VCREATE_FUNCS(vname) \
|
|
static int ctrl_get_##vname(struct pvr2_ctrl *cptr,int *vp) \
|
|
{*vp = cptr->hdw->vname##_val; return 0;} \
|
|
static int ctrl_set_##vname(struct pvr2_ctrl *cptr,int m,int v) \
|
|
{cptr->hdw->vname##_val = v; cptr->hdw->vname##_dirty = !0; return 0;} \
|
|
static int ctrl_isdirty_##vname(struct pvr2_ctrl *cptr) \
|
|
{return cptr->hdw->vname##_dirty != 0;} \
|
|
static void ctrl_cleardirty_##vname(struct pvr2_ctrl *cptr) \
|
|
{cptr->hdw->vname##_dirty = 0;}
|
|
|
|
VCREATE_FUNCS(brightness)
|
|
VCREATE_FUNCS(contrast)
|
|
VCREATE_FUNCS(saturation)
|
|
VCREATE_FUNCS(hue)
|
|
VCREATE_FUNCS(volume)
|
|
VCREATE_FUNCS(balance)
|
|
VCREATE_FUNCS(bass)
|
|
VCREATE_FUNCS(treble)
|
|
VCREATE_FUNCS(mute)
|
|
VCREATE_FUNCS(cropl)
|
|
VCREATE_FUNCS(cropt)
|
|
VCREATE_FUNCS(cropw)
|
|
VCREATE_FUNCS(croph)
|
|
VCREATE_FUNCS(audiomode)
|
|
VCREATE_FUNCS(res_hor)
|
|
VCREATE_FUNCS(res_ver)
|
|
VCREATE_FUNCS(srate)
|
|
|
|
/* Table definition of all controls which can be manipulated */
|
|
static const struct pvr2_ctl_info control_defs[] = {
|
|
{
|
|
.v4l_id = V4L2_CID_BRIGHTNESS,
|
|
.desc = "Brightness",
|
|
.name = "brightness",
|
|
.default_value = 128,
|
|
DEFREF(brightness),
|
|
DEFINT(0,255),
|
|
},{
|
|
.v4l_id = V4L2_CID_CONTRAST,
|
|
.desc = "Contrast",
|
|
.name = "contrast",
|
|
.default_value = 68,
|
|
DEFREF(contrast),
|
|
DEFINT(0,127),
|
|
},{
|
|
.v4l_id = V4L2_CID_SATURATION,
|
|
.desc = "Saturation",
|
|
.name = "saturation",
|
|
.default_value = 64,
|
|
DEFREF(saturation),
|
|
DEFINT(0,127),
|
|
},{
|
|
.v4l_id = V4L2_CID_HUE,
|
|
.desc = "Hue",
|
|
.name = "hue",
|
|
.default_value = 0,
|
|
DEFREF(hue),
|
|
DEFINT(-128,127),
|
|
},{
|
|
.v4l_id = V4L2_CID_AUDIO_VOLUME,
|
|
.desc = "Volume",
|
|
.name = "volume",
|
|
.default_value = 62000,
|
|
DEFREF(volume),
|
|
DEFINT(0,65535),
|
|
},{
|
|
.v4l_id = V4L2_CID_AUDIO_BALANCE,
|
|
.desc = "Balance",
|
|
.name = "balance",
|
|
.default_value = 0,
|
|
DEFREF(balance),
|
|
DEFINT(-32768,32767),
|
|
},{
|
|
.v4l_id = V4L2_CID_AUDIO_BASS,
|
|
.desc = "Bass",
|
|
.name = "bass",
|
|
.default_value = 0,
|
|
DEFREF(bass),
|
|
DEFINT(-32768,32767),
|
|
},{
|
|
.v4l_id = V4L2_CID_AUDIO_TREBLE,
|
|
.desc = "Treble",
|
|
.name = "treble",
|
|
.default_value = 0,
|
|
DEFREF(treble),
|
|
DEFINT(-32768,32767),
|
|
},{
|
|
.v4l_id = V4L2_CID_AUDIO_MUTE,
|
|
.desc = "Mute",
|
|
.name = "mute",
|
|
.default_value = 0,
|
|
DEFREF(mute),
|
|
DEFBOOL,
|
|
}, {
|
|
.desc = "Capture crop left margin",
|
|
.name = "crop_left",
|
|
.internal_id = PVR2_CID_CROPL,
|
|
.default_value = 0,
|
|
DEFREF(cropl),
|
|
DEFINT(-129, 340),
|
|
.get_min_value = ctrl_cropl_min_get,
|
|
.get_max_value = ctrl_cropl_max_get,
|
|
.get_def_value = ctrl_get_cropcapdl,
|
|
}, {
|
|
.desc = "Capture crop top margin",
|
|
.name = "crop_top",
|
|
.internal_id = PVR2_CID_CROPT,
|
|
.default_value = 0,
|
|
DEFREF(cropt),
|
|
DEFINT(-35, 544),
|
|
.get_min_value = ctrl_cropt_min_get,
|
|
.get_max_value = ctrl_cropt_max_get,
|
|
.get_def_value = ctrl_get_cropcapdt,
|
|
}, {
|
|
.desc = "Capture crop width",
|
|
.name = "crop_width",
|
|
.internal_id = PVR2_CID_CROPW,
|
|
.default_value = 720,
|
|
DEFREF(cropw),
|
|
DEFINT(0, 864),
|
|
.get_max_value = ctrl_cropw_max_get,
|
|
.get_def_value = ctrl_get_cropcapdw,
|
|
}, {
|
|
.desc = "Capture crop height",
|
|
.name = "crop_height",
|
|
.internal_id = PVR2_CID_CROPH,
|
|
.default_value = 480,
|
|
DEFREF(croph),
|
|
DEFINT(0, 576),
|
|
.get_max_value = ctrl_croph_max_get,
|
|
.get_def_value = ctrl_get_cropcapdh,
|
|
}, {
|
|
.desc = "Capture capability pixel aspect numerator",
|
|
.name = "cropcap_pixel_numerator",
|
|
.internal_id = PVR2_CID_CROPCAPPAN,
|
|
.get_value = ctrl_get_cropcappan,
|
|
}, {
|
|
.desc = "Capture capability pixel aspect denominator",
|
|
.name = "cropcap_pixel_denominator",
|
|
.internal_id = PVR2_CID_CROPCAPPAD,
|
|
.get_value = ctrl_get_cropcappad,
|
|
}, {
|
|
.desc = "Capture capability bounds top",
|
|
.name = "cropcap_bounds_top",
|
|
.internal_id = PVR2_CID_CROPCAPBT,
|
|
.get_value = ctrl_get_cropcapbt,
|
|
}, {
|
|
.desc = "Capture capability bounds left",
|
|
.name = "cropcap_bounds_left",
|
|
.internal_id = PVR2_CID_CROPCAPBL,
|
|
.get_value = ctrl_get_cropcapbl,
|
|
}, {
|
|
.desc = "Capture capability bounds width",
|
|
.name = "cropcap_bounds_width",
|
|
.internal_id = PVR2_CID_CROPCAPBW,
|
|
.get_value = ctrl_get_cropcapbw,
|
|
}, {
|
|
.desc = "Capture capability bounds height",
|
|
.name = "cropcap_bounds_height",
|
|
.internal_id = PVR2_CID_CROPCAPBH,
|
|
.get_value = ctrl_get_cropcapbh,
|
|
},{
|
|
.desc = "Video Source",
|
|
.name = "input",
|
|
.internal_id = PVR2_CID_INPUT,
|
|
.default_value = PVR2_CVAL_INPUT_TV,
|
|
.check_value = ctrl_check_input,
|
|
DEFREF(input),
|
|
DEFENUM(control_values_input),
|
|
},{
|
|
.desc = "Audio Mode",
|
|
.name = "audio_mode",
|
|
.internal_id = PVR2_CID_AUDIOMODE,
|
|
.default_value = V4L2_TUNER_MODE_STEREO,
|
|
DEFREF(audiomode),
|
|
DEFENUM(control_values_audiomode),
|
|
},{
|
|
.desc = "Horizontal capture resolution",
|
|
.name = "resolution_hor",
|
|
.internal_id = PVR2_CID_HRES,
|
|
.default_value = 720,
|
|
DEFREF(res_hor),
|
|
DEFINT(19,720),
|
|
},{
|
|
.desc = "Vertical capture resolution",
|
|
.name = "resolution_ver",
|
|
.internal_id = PVR2_CID_VRES,
|
|
.default_value = 480,
|
|
DEFREF(res_ver),
|
|
DEFINT(17,576),
|
|
/* Hook in check for video standard and adjust maximum
|
|
depending on the standard. */
|
|
.get_max_value = ctrl_vres_max_get,
|
|
.get_min_value = ctrl_vres_min_get,
|
|
},{
|
|
.v4l_id = V4L2_CID_MPEG_AUDIO_SAMPLING_FREQ,
|
|
.default_value = V4L2_MPEG_AUDIO_SAMPLING_FREQ_48000,
|
|
.desc = "Audio Sampling Frequency",
|
|
.name = "srate",
|
|
DEFREF(srate),
|
|
DEFENUM(control_values_srate),
|
|
},{
|
|
.desc = "Tuner Frequency (Hz)",
|
|
.name = "frequency",
|
|
.internal_id = PVR2_CID_FREQUENCY,
|
|
.default_value = 0,
|
|
.set_value = ctrl_freq_set,
|
|
.get_value = ctrl_freq_get,
|
|
.is_dirty = ctrl_freq_is_dirty,
|
|
.clear_dirty = ctrl_freq_clear_dirty,
|
|
DEFINT(0,0),
|
|
/* Hook in check for input value (tv/radio) and adjust
|
|
max/min values accordingly */
|
|
.get_max_value = ctrl_freq_max_get,
|
|
.get_min_value = ctrl_freq_min_get,
|
|
},{
|
|
.desc = "Channel",
|
|
.name = "channel",
|
|
.set_value = ctrl_channel_set,
|
|
.get_value = ctrl_channel_get,
|
|
DEFINT(0,FREQTABLE_SIZE),
|
|
},{
|
|
.desc = "Channel Program Frequency",
|
|
.name = "freq_table_value",
|
|
.set_value = ctrl_channelfreq_set,
|
|
.get_value = ctrl_channelfreq_get,
|
|
DEFINT(0,0),
|
|
/* Hook in check for input value (tv/radio) and adjust
|
|
max/min values accordingly */
|
|
.get_max_value = ctrl_freq_max_get,
|
|
.get_min_value = ctrl_freq_min_get,
|
|
},{
|
|
.desc = "Channel Program ID",
|
|
.name = "freq_table_channel",
|
|
.set_value = ctrl_channelprog_set,
|
|
.get_value = ctrl_channelprog_get,
|
|
DEFINT(0,FREQTABLE_SIZE),
|
|
},{
|
|
.desc = "Streaming Enabled",
|
|
.name = "streaming_enabled",
|
|
.get_value = ctrl_streamingenabled_get,
|
|
DEFBOOL,
|
|
},{
|
|
.desc = "USB Speed",
|
|
.name = "usb_speed",
|
|
.get_value = ctrl_hsm_get,
|
|
DEFENUM(control_values_hsm),
|
|
},{
|
|
.desc = "Master State",
|
|
.name = "master_state",
|
|
.get_value = ctrl_masterstate_get,
|
|
DEFENUM(pvr2_state_names),
|
|
},{
|
|
.desc = "Signal Present",
|
|
.name = "signal_present",
|
|
.get_value = ctrl_signal_get,
|
|
DEFINT(0,65535),
|
|
},{
|
|
.desc = "Audio Modes Present",
|
|
.name = "audio_modes_present",
|
|
.get_value = ctrl_audio_modes_present_get,
|
|
/* For this type we "borrow" the V4L2_TUNER_MODE enum from
|
|
v4l. Nothing outside of this module cares about this,
|
|
but I reuse it in order to also reuse the
|
|
control_values_audiomode string table. */
|
|
DEFMASK(((1 << V4L2_TUNER_MODE_MONO)|
|
|
(1 << V4L2_TUNER_MODE_STEREO)|
|
|
(1 << V4L2_TUNER_MODE_LANG1)|
|
|
(1 << V4L2_TUNER_MODE_LANG2)),
|
|
control_values_audiomode),
|
|
},{
|
|
.desc = "Video Standards Available Mask",
|
|
.name = "video_standard_mask_available",
|
|
.internal_id = PVR2_CID_STDAVAIL,
|
|
.skip_init = !0,
|
|
.get_value = ctrl_stdavail_get,
|
|
.set_value = ctrl_stdavail_set,
|
|
.val_to_sym = ctrl_std_val_to_sym,
|
|
.sym_to_val = ctrl_std_sym_to_val,
|
|
.type = pvr2_ctl_bitmask,
|
|
},{
|
|
.desc = "Video Standards In Use Mask",
|
|
.name = "video_standard_mask_active",
|
|
.internal_id = PVR2_CID_STDCUR,
|
|
.skip_init = !0,
|
|
.get_value = ctrl_stdcur_get,
|
|
.set_value = ctrl_stdcur_set,
|
|
.is_dirty = ctrl_stdcur_is_dirty,
|
|
.clear_dirty = ctrl_stdcur_clear_dirty,
|
|
.val_to_sym = ctrl_std_val_to_sym,
|
|
.sym_to_val = ctrl_std_sym_to_val,
|
|
.type = pvr2_ctl_bitmask,
|
|
},{
|
|
.desc = "Video Standards Detected Mask",
|
|
.name = "video_standard_mask_detected",
|
|
.internal_id = PVR2_CID_STDDETECT,
|
|
.skip_init = !0,
|
|
.get_value = ctrl_stddetect_get,
|
|
.val_to_sym = ctrl_std_val_to_sym,
|
|
.sym_to_val = ctrl_std_sym_to_val,
|
|
.type = pvr2_ctl_bitmask,
|
|
}
|
|
};
|
|
|
|
#define CTRLDEF_COUNT ARRAY_SIZE(control_defs)
|
|
|
|
|
|
const char *pvr2_config_get_name(enum pvr2_config cfg)
|
|
{
|
|
switch (cfg) {
|
|
case pvr2_config_empty: return "empty";
|
|
case pvr2_config_mpeg: return "mpeg";
|
|
case pvr2_config_vbi: return "vbi";
|
|
case pvr2_config_pcm: return "pcm";
|
|
case pvr2_config_rawvideo: return "raw video";
|
|
}
|
|
return "<unknown>";
|
|
}
|
|
|
|
|
|
struct usb_device *pvr2_hdw_get_dev(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->usb_dev;
|
|
}
|
|
|
|
|
|
unsigned long pvr2_hdw_get_sn(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->serial_number;
|
|
}
|
|
|
|
|
|
const char *pvr2_hdw_get_bus_info(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->bus_info;
|
|
}
|
|
|
|
|
|
const char *pvr2_hdw_get_device_identifier(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->identifier;
|
|
}
|
|
|
|
|
|
unsigned long pvr2_hdw_get_cur_freq(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->freqSelector ? hdw->freqValTelevision : hdw->freqValRadio;
|
|
}
|
|
|
|
/* Set the currently tuned frequency and account for all possible
|
|
driver-core side effects of this action. */
|
|
static void pvr2_hdw_set_cur_freq(struct pvr2_hdw *hdw,unsigned long val)
|
|
{
|
|
if (hdw->input_val == PVR2_CVAL_INPUT_RADIO) {
|
|
if (hdw->freqSelector) {
|
|
/* Swing over to radio frequency selection */
|
|
hdw->freqSelector = 0;
|
|
hdw->freqDirty = !0;
|
|
}
|
|
if (hdw->freqValRadio != val) {
|
|
hdw->freqValRadio = val;
|
|
hdw->freqSlotRadio = 0;
|
|
hdw->freqDirty = !0;
|
|
}
|
|
} else {
|
|
if (!(hdw->freqSelector)) {
|
|
/* Swing over to television frequency selection */
|
|
hdw->freqSelector = 1;
|
|
hdw->freqDirty = !0;
|
|
}
|
|
if (hdw->freqValTelevision != val) {
|
|
hdw->freqValTelevision = val;
|
|
hdw->freqSlotTelevision = 0;
|
|
hdw->freqDirty = !0;
|
|
}
|
|
}
|
|
}
|
|
|
|
int pvr2_hdw_get_unit_number(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->unit_number;
|
|
}
|
|
|
|
|
|
/* Attempt to locate one of the given set of files. Messages are logged
|
|
appropriate to what has been found. The return value will be 0 or
|
|
greater on success (it will be the index of the file name found) and
|
|
fw_entry will be filled in. Otherwise a negative error is returned on
|
|
failure. If the return value is -ENOENT then no viable firmware file
|
|
could be located. */
|
|
static int pvr2_locate_firmware(struct pvr2_hdw *hdw,
|
|
const struct firmware **fw_entry,
|
|
const char *fwtypename,
|
|
unsigned int fwcount,
|
|
const char *fwnames[])
|
|
{
|
|
unsigned int idx;
|
|
int ret = -EINVAL;
|
|
for (idx = 0; idx < fwcount; idx++) {
|
|
ret = request_firmware(fw_entry,
|
|
fwnames[idx],
|
|
&hdw->usb_dev->dev);
|
|
if (!ret) {
|
|
trace_firmware("Located %s firmware: %s; uploading...",
|
|
fwtypename,
|
|
fwnames[idx]);
|
|
return idx;
|
|
}
|
|
if (ret == -ENOENT) continue;
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"request_firmware fatal error with code=%d",ret);
|
|
return ret;
|
|
}
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"***WARNING*** Device %s firmware seems to be missing.",
|
|
fwtypename);
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Did you install the pvrusb2 firmware files in their proper location?");
|
|
if (fwcount == 1) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"request_firmware unable to locate %s file %s",
|
|
fwtypename,fwnames[0]);
|
|
} else {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"request_firmware unable to locate one of the following %s files:",
|
|
fwtypename);
|
|
for (idx = 0; idx < fwcount; idx++) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"request_firmware: Failed to find %s",
|
|
fwnames[idx]);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* pvr2_upload_firmware1().
|
|
*
|
|
* Send the 8051 firmware to the device. After the upload, arrange for
|
|
* device to re-enumerate.
|
|
*
|
|
* NOTE : the pointer to the firmware data given by request_firmware()
|
|
* is not suitable for an usb transaction.
|
|
*
|
|
*/
|
|
static int pvr2_upload_firmware1(struct pvr2_hdw *hdw)
|
|
{
|
|
const struct firmware *fw_entry = NULL;
|
|
void *fw_ptr;
|
|
unsigned int pipe;
|
|
unsigned int fwsize;
|
|
int ret;
|
|
u16 address;
|
|
|
|
if (!hdw->hdw_desc->fx2_firmware.cnt) {
|
|
hdw->fw1_state = FW1_STATE_OK;
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Connected device type defines no firmware to upload; ignoring firmware");
|
|
return -ENOTTY;
|
|
}
|
|
|
|
hdw->fw1_state = FW1_STATE_FAILED; // default result
|
|
|
|
trace_firmware("pvr2_upload_firmware1");
|
|
|
|
ret = pvr2_locate_firmware(hdw,&fw_entry,"fx2 controller",
|
|
hdw->hdw_desc->fx2_firmware.cnt,
|
|
hdw->hdw_desc->fx2_firmware.lst);
|
|
if (ret < 0) {
|
|
if (ret == -ENOENT) hdw->fw1_state = FW1_STATE_MISSING;
|
|
return ret;
|
|
}
|
|
|
|
usb_clear_halt(hdw->usb_dev, usb_sndbulkpipe(hdw->usb_dev, 0 & 0x7f));
|
|
|
|
pipe = usb_sndctrlpipe(hdw->usb_dev, 0);
|
|
fwsize = fw_entry->size;
|
|
|
|
if ((fwsize != 0x2000) &&
|
|
(!(hdw->hdw_desc->flag_fx2_16kb && (fwsize == 0x4000)))) {
|
|
if (hdw->hdw_desc->flag_fx2_16kb) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Wrong fx2 firmware size (expected 8192 or 16384, got %u)",
|
|
fwsize);
|
|
} else {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Wrong fx2 firmware size (expected 8192, got %u)",
|
|
fwsize);
|
|
}
|
|
release_firmware(fw_entry);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fw_ptr = kmalloc(0x800, GFP_KERNEL);
|
|
if (fw_ptr == NULL){
|
|
release_firmware(fw_entry);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* We have to hold the CPU during firmware upload. */
|
|
pvr2_hdw_cpureset_assert(hdw,1);
|
|
|
|
/* upload the firmware to address 0000-1fff in 2048 (=0x800) bytes
|
|
chunk. */
|
|
|
|
ret = 0;
|
|
for (address = 0; address < fwsize; address += 0x800) {
|
|
memcpy(fw_ptr, fw_entry->data + address, 0x800);
|
|
ret += usb_control_msg(hdw->usb_dev, pipe, 0xa0, 0x40, address,
|
|
0, fw_ptr, 0x800, 1000);
|
|
}
|
|
|
|
trace_firmware("Upload done, releasing device's CPU");
|
|
|
|
/* Now release the CPU. It will disconnect and reconnect later. */
|
|
pvr2_hdw_cpureset_assert(hdw,0);
|
|
|
|
kfree(fw_ptr);
|
|
release_firmware(fw_entry);
|
|
|
|
trace_firmware("Upload done (%d bytes sent)",ret);
|
|
|
|
/* We should have written fwsize bytes */
|
|
if (ret == fwsize) {
|
|
hdw->fw1_state = FW1_STATE_RELOAD;
|
|
return 0;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
|
|
/*
|
|
* pvr2_upload_firmware2()
|
|
*
|
|
* This uploads encoder firmware on endpoint 2.
|
|
*
|
|
*/
|
|
|
|
int pvr2_upload_firmware2(struct pvr2_hdw *hdw)
|
|
{
|
|
const struct firmware *fw_entry = NULL;
|
|
void *fw_ptr;
|
|
unsigned int pipe, fw_len, fw_done, bcnt, icnt;
|
|
int actual_length;
|
|
int ret = 0;
|
|
int fwidx;
|
|
static const char *fw_files[] = {
|
|
CX2341X_FIRM_ENC_FILENAME,
|
|
};
|
|
|
|
if (hdw->hdw_desc->flag_skip_cx23416_firmware) {
|
|
return 0;
|
|
}
|
|
|
|
trace_firmware("pvr2_upload_firmware2");
|
|
|
|
ret = pvr2_locate_firmware(hdw,&fw_entry,"encoder",
|
|
ARRAY_SIZE(fw_files), fw_files);
|
|
if (ret < 0) return ret;
|
|
fwidx = ret;
|
|
ret = 0;
|
|
/* Since we're about to completely reinitialize the encoder,
|
|
invalidate our cached copy of its configuration state. Next
|
|
time we configure the encoder, then we'll fully configure it. */
|
|
hdw->enc_cur_valid = 0;
|
|
|
|
/* Encoder is about to be reset so note that as far as we're
|
|
concerned now, the encoder has never been run. */
|
|
del_timer_sync(&hdw->encoder_run_timer);
|
|
if (hdw->state_encoder_runok) {
|
|
hdw->state_encoder_runok = 0;
|
|
trace_stbit("state_encoder_runok",hdw->state_encoder_runok);
|
|
}
|
|
|
|
/* First prepare firmware loading */
|
|
ret |= pvr2_write_register(hdw, 0x0048, 0xffffffff); /*interrupt mask*/
|
|
ret |= pvr2_hdw_gpio_chg_dir(hdw,0xffffffff,0x00000088); /*gpio dir*/
|
|
ret |= pvr2_hdw_gpio_chg_out(hdw,0xffffffff,0x00000008); /*gpio output state*/
|
|
ret |= pvr2_hdw_cmd_deep_reset(hdw);
|
|
ret |= pvr2_write_register(hdw, 0xa064, 0x00000000); /*APU command*/
|
|
ret |= pvr2_hdw_gpio_chg_dir(hdw,0xffffffff,0x00000408); /*gpio dir*/
|
|
ret |= pvr2_hdw_gpio_chg_out(hdw,0xffffffff,0x00000008); /*gpio output state*/
|
|
ret |= pvr2_write_register(hdw, 0x9058, 0xffffffed); /*VPU ctrl*/
|
|
ret |= pvr2_write_register(hdw, 0x9054, 0xfffffffd); /*reset hw blocks*/
|
|
ret |= pvr2_write_register(hdw, 0x07f8, 0x80000800); /*encoder SDRAM refresh*/
|
|
ret |= pvr2_write_register(hdw, 0x07fc, 0x0000001a); /*encoder SDRAM pre-charge*/
|
|
ret |= pvr2_write_register(hdw, 0x0700, 0x00000000); /*I2C clock*/
|
|
ret |= pvr2_write_register(hdw, 0xaa00, 0x00000000); /*unknown*/
|
|
ret |= pvr2_write_register(hdw, 0xaa04, 0x00057810); /*unknown*/
|
|
ret |= pvr2_write_register(hdw, 0xaa10, 0x00148500); /*unknown*/
|
|
ret |= pvr2_write_register(hdw, 0xaa18, 0x00840000); /*unknown*/
|
|
ret |= pvr2_issue_simple_cmd(hdw,FX2CMD_FWPOST1);
|
|
ret |= pvr2_issue_simple_cmd(hdw,FX2CMD_MEMSEL | (1 << 8) | (0 << 16));
|
|
|
|
if (ret) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"firmware2 upload prep failed, ret=%d",ret);
|
|
release_firmware(fw_entry);
|
|
goto done;
|
|
}
|
|
|
|
/* Now send firmware */
|
|
|
|
fw_len = fw_entry->size;
|
|
|
|
if (fw_len % sizeof(u32)) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"size of %s firmware must be a multiple of %zu bytes",
|
|
fw_files[fwidx],sizeof(u32));
|
|
release_firmware(fw_entry);
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
fw_ptr = kmalloc(FIRMWARE_CHUNK_SIZE, GFP_KERNEL);
|
|
if (fw_ptr == NULL){
|
|
release_firmware(fw_entry);
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"failed to allocate memory for firmware2 upload");
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
pipe = usb_sndbulkpipe(hdw->usb_dev, PVR2_FIRMWARE_ENDPOINT);
|
|
|
|
fw_done = 0;
|
|
for (fw_done = 0; fw_done < fw_len;) {
|
|
bcnt = fw_len - fw_done;
|
|
if (bcnt > FIRMWARE_CHUNK_SIZE) bcnt = FIRMWARE_CHUNK_SIZE;
|
|
memcpy(fw_ptr, fw_entry->data + fw_done, bcnt);
|
|
/* Usbsnoop log shows that we must swap bytes... */
|
|
/* Some background info: The data being swapped here is a
|
|
firmware image destined for the mpeg encoder chip that
|
|
lives at the other end of a USB endpoint. The encoder
|
|
chip always talks in 32 bit chunks and its storage is
|
|
organized into 32 bit words. However from the file
|
|
system to the encoder chip everything is purely a byte
|
|
stream. The firmware file's contents are always 32 bit
|
|
swapped from what the encoder expects. Thus the need
|
|
always exists to swap the bytes regardless of the endian
|
|
type of the host processor and therefore swab32() makes
|
|
the most sense. */
|
|
for (icnt = 0; icnt < bcnt/4 ; icnt++)
|
|
((u32 *)fw_ptr)[icnt] = swab32(((u32 *)fw_ptr)[icnt]);
|
|
|
|
ret |= usb_bulk_msg(hdw->usb_dev, pipe, fw_ptr,bcnt,
|
|
&actual_length, 1000);
|
|
ret |= (actual_length != bcnt);
|
|
if (ret) break;
|
|
fw_done += bcnt;
|
|
}
|
|
|
|
trace_firmware("upload of %s : %i / %i ",
|
|
fw_files[fwidx],fw_done,fw_len);
|
|
|
|
kfree(fw_ptr);
|
|
release_firmware(fw_entry);
|
|
|
|
if (ret) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"firmware2 upload transfer failure");
|
|
goto done;
|
|
}
|
|
|
|
/* Finish upload */
|
|
|
|
ret |= pvr2_write_register(hdw, 0x9054, 0xffffffff); /*reset hw blocks*/
|
|
ret |= pvr2_write_register(hdw, 0x9058, 0xffffffe8); /*VPU ctrl*/
|
|
ret |= pvr2_issue_simple_cmd(hdw,FX2CMD_MEMSEL | (1 << 8) | (0 << 16));
|
|
|
|
if (ret) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"firmware2 upload post-proc failure");
|
|
}
|
|
|
|
done:
|
|
if (hdw->hdw_desc->signal_routing_scheme ==
|
|
PVR2_ROUTING_SCHEME_GOTVIEW) {
|
|
/* Ensure that GPIO 11 is set to output for GOTVIEW
|
|
hardware. */
|
|
pvr2_hdw_gpio_chg_dir(hdw,(1 << 11),~0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static const char *pvr2_get_state_name(unsigned int st)
|
|
{
|
|
if (st < ARRAY_SIZE(pvr2_state_names)) {
|
|
return pvr2_state_names[st];
|
|
}
|
|
return "???";
|
|
}
|
|
|
|
static int pvr2_decoder_enable(struct pvr2_hdw *hdw,int enablefl)
|
|
{
|
|
/* Even though we really only care about the video decoder chip at
|
|
this point, we'll broadcast stream on/off to all sub-devices
|
|
anyway, just in case somebody else wants to hear the
|
|
command... */
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev v4l2 stream=%s",
|
|
(enablefl ? "on" : "off"));
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, video, s_stream, enablefl);
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, audio, s_stream, enablefl);
|
|
if (hdw->decoder_client_id) {
|
|
/* We get here if the encoder has been noticed. Otherwise
|
|
we'll issue a warning to the user (which should
|
|
normally never happen). */
|
|
return 0;
|
|
}
|
|
if (!hdw->flag_decoder_missed) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"***WARNING*** No decoder present");
|
|
hdw->flag_decoder_missed = !0;
|
|
trace_stbit("flag_decoder_missed",
|
|
hdw->flag_decoder_missed);
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_get_state(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->master_state;
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_untrip_unlocked(struct pvr2_hdw *hdw)
|
|
{
|
|
if (!hdw->flag_tripped) return 0;
|
|
hdw->flag_tripped = 0;
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Clearing driver error status");
|
|
return !0;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_untrip(struct pvr2_hdw *hdw)
|
|
{
|
|
int fl;
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
fl = pvr2_hdw_untrip_unlocked(hdw);
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
if (fl) pvr2_hdw_state_sched(hdw);
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
int pvr2_hdw_get_streaming(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->state_pipeline_req != 0;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_set_streaming(struct pvr2_hdw *hdw,int enable_flag)
|
|
{
|
|
int ret,st;
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
pvr2_hdw_untrip_unlocked(hdw);
|
|
if ((!enable_flag) != !(hdw->state_pipeline_req)) {
|
|
hdw->state_pipeline_req = enable_flag != 0;
|
|
pvr2_trace(PVR2_TRACE_START_STOP,
|
|
"/*--TRACE_STREAM--*/ %s",
|
|
enable_flag ? "enable" : "disable");
|
|
}
|
|
pvr2_hdw_state_sched(hdw);
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
if ((ret = pvr2_hdw_wait(hdw,0)) < 0) return ret;
|
|
if (enable_flag) {
|
|
while ((st = hdw->master_state) != PVR2_STATE_RUN) {
|
|
if (st != PVR2_STATE_READY) return -EIO;
|
|
if ((ret = pvr2_hdw_wait(hdw,st)) < 0) return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_set_stream_type(struct pvr2_hdw *hdw,enum pvr2_config config)
|
|
{
|
|
int fl;
|
|
LOCK_TAKE(hdw->big_lock);
|
|
if ((fl = (hdw->desired_stream_type != config)) != 0) {
|
|
hdw->desired_stream_type = config;
|
|
hdw->state_pipeline_config = 0;
|
|
trace_stbit("state_pipeline_config",
|
|
hdw->state_pipeline_config);
|
|
pvr2_hdw_state_sched(hdw);
|
|
}
|
|
LOCK_GIVE(hdw->big_lock);
|
|
if (fl) return 0;
|
|
return pvr2_hdw_wait(hdw,0);
|
|
}
|
|
|
|
|
|
static int get_default_tuner_type(struct pvr2_hdw *hdw)
|
|
{
|
|
int unit_number = hdw->unit_number;
|
|
int tp = -1;
|
|
if ((unit_number >= 0) && (unit_number < PVR_NUM)) {
|
|
tp = tuner[unit_number];
|
|
}
|
|
if (tp < 0) return -EINVAL;
|
|
hdw->tuner_type = tp;
|
|
hdw->tuner_updated = !0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static v4l2_std_id get_default_standard(struct pvr2_hdw *hdw)
|
|
{
|
|
int unit_number = hdw->unit_number;
|
|
int tp = 0;
|
|
if ((unit_number >= 0) && (unit_number < PVR_NUM)) {
|
|
tp = video_std[unit_number];
|
|
if (tp) return tp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static unsigned int get_default_error_tolerance(struct pvr2_hdw *hdw)
|
|
{
|
|
int unit_number = hdw->unit_number;
|
|
int tp = 0;
|
|
if ((unit_number >= 0) && (unit_number < PVR_NUM)) {
|
|
tp = tolerance[unit_number];
|
|
}
|
|
return tp;
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_check_firmware(struct pvr2_hdw *hdw)
|
|
{
|
|
/* Try a harmless request to fetch the eeprom's address over
|
|
endpoint 1. See what happens. Only the full FX2 image can
|
|
respond to this. If this probe fails then likely the FX2
|
|
firmware needs be loaded. */
|
|
int result;
|
|
LOCK_TAKE(hdw->ctl_lock); do {
|
|
hdw->cmd_buffer[0] = FX2CMD_GET_EEPROM_ADDR;
|
|
result = pvr2_send_request_ex(hdw,HZ*1,!0,
|
|
hdw->cmd_buffer,1,
|
|
hdw->cmd_buffer,1);
|
|
if (result < 0) break;
|
|
} while(0); LOCK_GIVE(hdw->ctl_lock);
|
|
if (result) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Probe of device endpoint 1 result status %d",
|
|
result);
|
|
} else {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Probe of device endpoint 1 succeeded");
|
|
}
|
|
return result == 0;
|
|
}
|
|
|
|
struct pvr2_std_hack {
|
|
v4l2_std_id pat; /* Pattern to match */
|
|
v4l2_std_id msk; /* Which bits we care about */
|
|
v4l2_std_id std; /* What additional standards or default to set */
|
|
};
|
|
|
|
/* This data structure labels specific combinations of standards from
|
|
tveeprom that we'll try to recognize. If we recognize one, then assume
|
|
a specified default standard to use. This is here because tveeprom only
|
|
tells us about available standards not the intended default standard (if
|
|
any) for the device in question. We guess the default based on what has
|
|
been reported as available. Note that this is only for guessing a
|
|
default - which can always be overridden explicitly - and if the user
|
|
has otherwise named a default then that default will always be used in
|
|
place of this table. */
|
|
static const struct pvr2_std_hack std_eeprom_maps[] = {
|
|
{ /* PAL(B/G) */
|
|
.pat = V4L2_STD_B|V4L2_STD_GH,
|
|
.std = V4L2_STD_PAL_B|V4L2_STD_PAL_B1|V4L2_STD_PAL_G,
|
|
},
|
|
{ /* NTSC(M) */
|
|
.pat = V4L2_STD_MN,
|
|
.std = V4L2_STD_NTSC_M,
|
|
},
|
|
{ /* PAL(I) */
|
|
.pat = V4L2_STD_PAL_I,
|
|
.std = V4L2_STD_PAL_I,
|
|
},
|
|
{ /* SECAM(L/L') */
|
|
.pat = V4L2_STD_SECAM_L|V4L2_STD_SECAM_LC,
|
|
.std = V4L2_STD_SECAM_L|V4L2_STD_SECAM_LC,
|
|
},
|
|
{ /* PAL(D/D1/K) */
|
|
.pat = V4L2_STD_DK,
|
|
.std = V4L2_STD_PAL_D|V4L2_STD_PAL_D1|V4L2_STD_PAL_K,
|
|
},
|
|
};
|
|
|
|
static void pvr2_hdw_setup_std(struct pvr2_hdw *hdw)
|
|
{
|
|
char buf[40];
|
|
unsigned int bcnt;
|
|
v4l2_std_id std1,std2,std3;
|
|
|
|
std1 = get_default_standard(hdw);
|
|
std3 = std1 ? 0 : hdw->hdw_desc->default_std_mask;
|
|
|
|
bcnt = pvr2_std_id_to_str(buf,sizeof(buf),hdw->std_mask_eeprom);
|
|
pvr2_trace(PVR2_TRACE_STD,
|
|
"Supported video standard(s) reported available in hardware: %.*s",
|
|
bcnt,buf);
|
|
|
|
hdw->std_mask_avail = hdw->std_mask_eeprom;
|
|
|
|
std2 = (std1|std3) & ~hdw->std_mask_avail;
|
|
if (std2) {
|
|
bcnt = pvr2_std_id_to_str(buf,sizeof(buf),std2);
|
|
pvr2_trace(PVR2_TRACE_STD,
|
|
"Expanding supported video standards to include: %.*s",
|
|
bcnt,buf);
|
|
hdw->std_mask_avail |= std2;
|
|
}
|
|
|
|
hdw->std_info_cur.def.type_bitmask.valid_bits = hdw->std_mask_avail;
|
|
|
|
if (std1) {
|
|
bcnt = pvr2_std_id_to_str(buf,sizeof(buf),std1);
|
|
pvr2_trace(PVR2_TRACE_STD,
|
|
"Initial video standard forced to %.*s",
|
|
bcnt,buf);
|
|
hdw->std_mask_cur = std1;
|
|
hdw->std_dirty = !0;
|
|
return;
|
|
}
|
|
if (std3) {
|
|
bcnt = pvr2_std_id_to_str(buf,sizeof(buf),std3);
|
|
pvr2_trace(PVR2_TRACE_STD,
|
|
"Initial video standard (determined by device type): %.*s",
|
|
bcnt, buf);
|
|
hdw->std_mask_cur = std3;
|
|
hdw->std_dirty = !0;
|
|
return;
|
|
}
|
|
|
|
{
|
|
unsigned int idx;
|
|
for (idx = 0; idx < ARRAY_SIZE(std_eeprom_maps); idx++) {
|
|
if (std_eeprom_maps[idx].msk ?
|
|
((std_eeprom_maps[idx].pat ^
|
|
hdw->std_mask_eeprom) &
|
|
std_eeprom_maps[idx].msk) :
|
|
(std_eeprom_maps[idx].pat !=
|
|
hdw->std_mask_eeprom)) continue;
|
|
bcnt = pvr2_std_id_to_str(buf,sizeof(buf),
|
|
std_eeprom_maps[idx].std);
|
|
pvr2_trace(PVR2_TRACE_STD,
|
|
"Initial video standard guessed as %.*s",
|
|
bcnt,buf);
|
|
hdw->std_mask_cur = std_eeprom_maps[idx].std;
|
|
hdw->std_dirty = !0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static unsigned int pvr2_copy_i2c_addr_list(
|
|
unsigned short *dst, const unsigned char *src,
|
|
unsigned int dst_max)
|
|
{
|
|
unsigned int cnt = 0;
|
|
if (!src) return 0;
|
|
while (src[cnt] && (cnt + 1) < dst_max) {
|
|
dst[cnt] = src[cnt];
|
|
cnt++;
|
|
}
|
|
dst[cnt] = I2C_CLIENT_END;
|
|
return cnt;
|
|
}
|
|
|
|
|
|
static void pvr2_hdw_cx25840_vbi_hack(struct pvr2_hdw *hdw)
|
|
{
|
|
/*
|
|
Mike Isely <isely@pobox.com> 19-Nov-2006 - This bit of nuttiness
|
|
for cx25840 causes that module to correctly set up its video
|
|
scaling. This is really a problem in the cx25840 module itself,
|
|
but we work around it here. The problem has not been seen in
|
|
ivtv because there VBI is supported and set up. We don't do VBI
|
|
here (at least not yet) and thus we never attempted to even set
|
|
it up.
|
|
*/
|
|
struct v4l2_format fmt;
|
|
if (hdw->decoder_client_id != PVR2_CLIENT_ID_CX25840) {
|
|
/* We're not using a cx25840 so don't enable the hack */
|
|
return;
|
|
}
|
|
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Module ID %u: Executing cx25840 VBI hack",
|
|
hdw->decoder_client_id);
|
|
memset(&fmt, 0, sizeof(fmt));
|
|
fmt.type = V4L2_BUF_TYPE_SLICED_VBI_CAPTURE;
|
|
fmt.fmt.sliced.service_lines[0][21] = V4L2_SLICED_CAPTION_525;
|
|
fmt.fmt.sliced.service_lines[1][21] = V4L2_SLICED_CAPTION_525;
|
|
v4l2_device_call_all(&hdw->v4l2_dev, hdw->decoder_client_id,
|
|
vbi, s_sliced_fmt, &fmt.fmt.sliced);
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_load_subdev(struct pvr2_hdw *hdw,
|
|
const struct pvr2_device_client_desc *cd)
|
|
{
|
|
const char *fname;
|
|
unsigned char mid;
|
|
struct v4l2_subdev *sd;
|
|
unsigned int i2ccnt;
|
|
const unsigned char *p;
|
|
/* Arbitrary count - max # i2c addresses we will probe */
|
|
unsigned short i2caddr[25];
|
|
|
|
mid = cd->module_id;
|
|
fname = (mid < ARRAY_SIZE(module_names)) ? module_names[mid] : NULL;
|
|
if (!fname) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Module ID %u for device %s has no name? The driver might have a configuration problem.",
|
|
mid,
|
|
hdw->hdw_desc->description);
|
|
return -EINVAL;
|
|
}
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Module ID %u (%s) for device %s being loaded...",
|
|
mid, fname,
|
|
hdw->hdw_desc->description);
|
|
|
|
i2ccnt = pvr2_copy_i2c_addr_list(i2caddr, cd->i2c_address_list,
|
|
ARRAY_SIZE(i2caddr));
|
|
if (!i2ccnt && ((p = (mid < ARRAY_SIZE(module_i2c_addresses)) ?
|
|
module_i2c_addresses[mid] : NULL) != NULL)) {
|
|
/* Second chance: Try default i2c address list */
|
|
i2ccnt = pvr2_copy_i2c_addr_list(i2caddr, p,
|
|
ARRAY_SIZE(i2caddr));
|
|
if (i2ccnt) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Module ID %u: Using default i2c address list",
|
|
mid);
|
|
}
|
|
}
|
|
|
|
if (!i2ccnt) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Module ID %u (%s) for device %s: No i2c addresses. The driver might have a configuration problem.",
|
|
mid, fname, hdw->hdw_desc->description);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (i2ccnt == 1) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Module ID %u: Setting up with specified i2c address 0x%x",
|
|
mid, i2caddr[0]);
|
|
sd = v4l2_i2c_new_subdev(&hdw->v4l2_dev, &hdw->i2c_adap,
|
|
fname, i2caddr[0], NULL);
|
|
} else {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Module ID %u: Setting up with address probe list",
|
|
mid);
|
|
sd = v4l2_i2c_new_subdev(&hdw->v4l2_dev, &hdw->i2c_adap,
|
|
fname, 0, i2caddr);
|
|
}
|
|
|
|
if (!sd) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Module ID %u (%s) for device %s failed to load. Possible missing sub-device kernel module or initialization failure within module.",
|
|
mid, fname, hdw->hdw_desc->description);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Tag this sub-device instance with the module ID we know about.
|
|
In other places we'll use that tag to determine if the instance
|
|
requires special handling. */
|
|
sd->grp_id = mid;
|
|
|
|
pvr2_trace(PVR2_TRACE_INFO, "Attached sub-driver %s", fname);
|
|
|
|
|
|
/* client-specific setup... */
|
|
switch (mid) {
|
|
case PVR2_CLIENT_ID_CX25840:
|
|
case PVR2_CLIENT_ID_SAA7115:
|
|
hdw->decoder_client_id = mid;
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void pvr2_hdw_load_modules(struct pvr2_hdw *hdw)
|
|
{
|
|
unsigned int idx;
|
|
const struct pvr2_string_table *cm;
|
|
const struct pvr2_device_client_table *ct;
|
|
int okFl = !0;
|
|
|
|
cm = &hdw->hdw_desc->client_modules;
|
|
for (idx = 0; idx < cm->cnt; idx++) {
|
|
request_module(cm->lst[idx]);
|
|
}
|
|
|
|
ct = &hdw->hdw_desc->client_table;
|
|
for (idx = 0; idx < ct->cnt; idx++) {
|
|
if (pvr2_hdw_load_subdev(hdw, &ct->lst[idx]) < 0) okFl = 0;
|
|
}
|
|
if (!okFl) {
|
|
hdw->flag_modulefail = !0;
|
|
pvr2_hdw_render_useless(hdw);
|
|
}
|
|
}
|
|
|
|
|
|
static void pvr2_hdw_setup_low(struct pvr2_hdw *hdw)
|
|
{
|
|
int ret;
|
|
unsigned int idx;
|
|
struct pvr2_ctrl *cptr;
|
|
int reloadFl = 0;
|
|
if (hdw->hdw_desc->fx2_firmware.cnt) {
|
|
if (!reloadFl) {
|
|
reloadFl =
|
|
(hdw->usb_intf->cur_altsetting->desc.bNumEndpoints
|
|
== 0);
|
|
if (reloadFl) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"USB endpoint config looks strange; possibly firmware needs to be loaded");
|
|
}
|
|
}
|
|
if (!reloadFl) {
|
|
reloadFl = !pvr2_hdw_check_firmware(hdw);
|
|
if (reloadFl) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Check for FX2 firmware failed; possibly firmware needs to be loaded");
|
|
}
|
|
}
|
|
if (reloadFl) {
|
|
if (pvr2_upload_firmware1(hdw) != 0) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Failure uploading firmware1");
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
hdw->fw1_state = FW1_STATE_OK;
|
|
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
|
|
hdw->force_dirty = !0;
|
|
|
|
if (!hdw->hdw_desc->flag_no_powerup) {
|
|
pvr2_hdw_cmd_powerup(hdw);
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
}
|
|
|
|
/* Take the IR chip out of reset, if appropriate */
|
|
if (hdw->ir_scheme_active == PVR2_IR_SCHEME_ZILOG) {
|
|
pvr2_issue_simple_cmd(hdw,
|
|
FX2CMD_HCW_ZILOG_RESET |
|
|
(1 << 8) |
|
|
((0) << 16));
|
|
}
|
|
|
|
/* This step MUST happen after the earlier powerup step */
|
|
pvr2_i2c_core_init(hdw);
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
|
|
/* Reset demod only on Hauppauge 160xxx platform */
|
|
if (le16_to_cpu(hdw->usb_dev->descriptor.idVendor) == 0x2040 &&
|
|
(le16_to_cpu(hdw->usb_dev->descriptor.idProduct) == 0x7502 ||
|
|
le16_to_cpu(hdw->usb_dev->descriptor.idProduct) == 0x7510)) {
|
|
pr_info("%s(): resetting 160xxx demod\n", __func__);
|
|
/* TODO: not sure this is proper place to reset once only */
|
|
pvr2_issue_simple_cmd(hdw,
|
|
FX2CMD_HCW_DEMOD_RESET_PIN |
|
|
(1 << 8) |
|
|
((0) << 16));
|
|
usleep_range(10000, 10500);
|
|
pvr2_issue_simple_cmd(hdw,
|
|
FX2CMD_HCW_DEMOD_RESET_PIN |
|
|
(1 << 8) |
|
|
((1) << 16));
|
|
usleep_range(10000, 10500);
|
|
}
|
|
|
|
pvr2_hdw_load_modules(hdw);
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, core, load_fw);
|
|
|
|
for (idx = 0; idx < CTRLDEF_COUNT; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
if (cptr->info->skip_init) continue;
|
|
if (!cptr->info->set_value) continue;
|
|
cptr->info->set_value(cptr,~0,cptr->info->default_value);
|
|
}
|
|
|
|
pvr2_hdw_cx25840_vbi_hack(hdw);
|
|
|
|
/* Set up special default values for the television and radio
|
|
frequencies here. It's not really important what these defaults
|
|
are, but I set them to something usable in the Chicago area just
|
|
to make driver testing a little easier. */
|
|
|
|
hdw->freqValTelevision = default_tv_freq;
|
|
hdw->freqValRadio = default_radio_freq;
|
|
|
|
// Do not use pvr2_reset_ctl_endpoints() here. It is not
|
|
// thread-safe against the normal pvr2_send_request() mechanism.
|
|
// (We should make it thread safe).
|
|
|
|
if (hdw->hdw_desc->flag_has_hauppauge_rom) {
|
|
ret = pvr2_hdw_get_eeprom_addr(hdw);
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
if (ret < 0) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Unable to determine location of eeprom, skipping");
|
|
} else {
|
|
hdw->eeprom_addr = ret;
|
|
pvr2_eeprom_analyze(hdw);
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
}
|
|
} else {
|
|
hdw->tuner_type = hdw->hdw_desc->default_tuner_type;
|
|
hdw->tuner_updated = !0;
|
|
hdw->std_mask_eeprom = V4L2_STD_ALL;
|
|
}
|
|
|
|
if (hdw->serial_number) {
|
|
idx = scnprintf(hdw->identifier, sizeof(hdw->identifier) - 1,
|
|
"sn-%lu", hdw->serial_number);
|
|
} else if (hdw->unit_number >= 0) {
|
|
idx = scnprintf(hdw->identifier, sizeof(hdw->identifier) - 1,
|
|
"unit-%c",
|
|
hdw->unit_number + 'a');
|
|
} else {
|
|
idx = scnprintf(hdw->identifier, sizeof(hdw->identifier) - 1,
|
|
"unit-??");
|
|
}
|
|
hdw->identifier[idx] = 0;
|
|
|
|
pvr2_hdw_setup_std(hdw);
|
|
|
|
if (!get_default_tuner_type(hdw)) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"pvr2_hdw_setup: Tuner type overridden to %d",
|
|
hdw->tuner_type);
|
|
}
|
|
|
|
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
|
|
if (hdw->hdw_desc->signal_routing_scheme ==
|
|
PVR2_ROUTING_SCHEME_GOTVIEW) {
|
|
/* Ensure that GPIO 11 is set to output for GOTVIEW
|
|
hardware. */
|
|
pvr2_hdw_gpio_chg_dir(hdw,(1 << 11),~0);
|
|
}
|
|
|
|
pvr2_hdw_commit_setup(hdw);
|
|
|
|
hdw->vid_stream = pvr2_stream_create();
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"pvr2_hdw_setup: video stream is %p",hdw->vid_stream);
|
|
if (hdw->vid_stream) {
|
|
idx = get_default_error_tolerance(hdw);
|
|
if (idx) {
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"pvr2_hdw_setup: video stream %p setting tolerance %u",
|
|
hdw->vid_stream,idx);
|
|
}
|
|
pvr2_stream_setup(hdw->vid_stream,hdw->usb_dev,
|
|
PVR2_VID_ENDPOINT,idx);
|
|
}
|
|
|
|
if (!pvr2_hdw_dev_ok(hdw)) return;
|
|
|
|
hdw->flag_init_ok = !0;
|
|
|
|
pvr2_hdw_state_sched(hdw);
|
|
}
|
|
|
|
|
|
/* Set up the structure and attempt to put the device into a usable state.
|
|
This can be a time-consuming operation, which is why it is not done
|
|
internally as part of the create() step. */
|
|
static void pvr2_hdw_setup(struct pvr2_hdw *hdw)
|
|
{
|
|
pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_setup(hdw=%p) begin",hdw);
|
|
do {
|
|
pvr2_hdw_setup_low(hdw);
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"pvr2_hdw_setup(hdw=%p) done, ok=%d init_ok=%d",
|
|
hdw,pvr2_hdw_dev_ok(hdw),hdw->flag_init_ok);
|
|
if (pvr2_hdw_dev_ok(hdw)) {
|
|
if (hdw->flag_init_ok) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_INFO,
|
|
"Device initialization completed successfully.");
|
|
break;
|
|
}
|
|
if (hdw->fw1_state == FW1_STATE_RELOAD) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_INFO,
|
|
"Device microcontroller firmware (re)loaded; it should now reset and reconnect.");
|
|
break;
|
|
}
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Device initialization was not successful.");
|
|
if (hdw->fw1_state == FW1_STATE_MISSING) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Giving up since device microcontroller firmware appears to be missing.");
|
|
break;
|
|
}
|
|
}
|
|
if (hdw->flag_modulefail) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"***WARNING*** pvrusb2 driver initialization failed due to the failure of one or more sub-device kernel modules.");
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"You need to resolve the failing condition before this driver can function. There should be some earlier messages giving more information about the problem.");
|
|
break;
|
|
}
|
|
if (procreload) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Attempting pvrusb2 recovery by reloading primary firmware.");
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"If this works, device should disconnect and reconnect in a sane state.");
|
|
hdw->fw1_state = FW1_STATE_UNKNOWN;
|
|
pvr2_upload_firmware1(hdw);
|
|
} else {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"***WARNING*** pvrusb2 device hardware appears to be jammed and I can't clear it.");
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"You might need to power cycle the pvrusb2 device in order to recover.");
|
|
}
|
|
} while (0);
|
|
pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_setup(hdw=%p) end",hdw);
|
|
}
|
|
|
|
|
|
/* Perform second stage initialization. Set callback pointer first so that
|
|
we can avoid a possible initialization race (if the kernel thread runs
|
|
before the callback has been set). */
|
|
int pvr2_hdw_initialize(struct pvr2_hdw *hdw,
|
|
void (*callback_func)(void *),
|
|
void *callback_data)
|
|
{
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
if (hdw->flag_disconnected) {
|
|
/* Handle a race here: If we're already
|
|
disconnected by this point, then give up. If we
|
|
get past this then we'll remain connected for
|
|
the duration of initialization since the entire
|
|
initialization sequence is now protected by the
|
|
big_lock. */
|
|
break;
|
|
}
|
|
hdw->state_data = callback_data;
|
|
hdw->state_func = callback_func;
|
|
pvr2_hdw_setup(hdw);
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
return hdw->flag_init_ok;
|
|
}
|
|
|
|
|
|
/* Create, set up, and return a structure for interacting with the
|
|
underlying hardware. */
|
|
struct pvr2_hdw *pvr2_hdw_create(struct usb_interface *intf,
|
|
const struct usb_device_id *devid)
|
|
{
|
|
unsigned int idx,cnt1,cnt2,m;
|
|
struct pvr2_hdw *hdw = NULL;
|
|
int valid_std_mask;
|
|
struct pvr2_ctrl *cptr;
|
|
struct usb_device *usb_dev;
|
|
const struct pvr2_device_desc *hdw_desc;
|
|
__u8 ifnum;
|
|
struct v4l2_queryctrl qctrl;
|
|
struct pvr2_ctl_info *ciptr;
|
|
|
|
usb_dev = interface_to_usbdev(intf);
|
|
|
|
hdw_desc = (const struct pvr2_device_desc *)(devid->driver_info);
|
|
|
|
if (hdw_desc == NULL) {
|
|
pvr2_trace(PVR2_TRACE_INIT, "pvr2_hdw_create: No device description pointer, unable to continue.");
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"If you have a new device type, please contact Mike Isely <isely@pobox.com> to get it included in the driver");
|
|
goto fail;
|
|
}
|
|
|
|
hdw = kzalloc(sizeof(*hdw),GFP_KERNEL);
|
|
pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_create: hdw=%p, type \"%s\"",
|
|
hdw,hdw_desc->description);
|
|
pvr2_trace(PVR2_TRACE_INFO, "Hardware description: %s",
|
|
hdw_desc->description);
|
|
if (hdw_desc->flag_is_experimental) {
|
|
pvr2_trace(PVR2_TRACE_INFO, "**********");
|
|
pvr2_trace(PVR2_TRACE_INFO,
|
|
"***WARNING*** Support for this device (%s) is experimental.",
|
|
hdw_desc->description);
|
|
pvr2_trace(PVR2_TRACE_INFO,
|
|
"Important functionality might not be entirely working.");
|
|
pvr2_trace(PVR2_TRACE_INFO,
|
|
"Please consider contacting the driver author to help with further stabilization of the driver.");
|
|
pvr2_trace(PVR2_TRACE_INFO, "**********");
|
|
}
|
|
if (!hdw) goto fail;
|
|
|
|
timer_setup(&hdw->quiescent_timer, pvr2_hdw_quiescent_timeout, 0);
|
|
|
|
timer_setup(&hdw->decoder_stabilization_timer,
|
|
pvr2_hdw_decoder_stabilization_timeout, 0);
|
|
|
|
timer_setup(&hdw->encoder_wait_timer, pvr2_hdw_encoder_wait_timeout,
|
|
0);
|
|
|
|
timer_setup(&hdw->encoder_run_timer, pvr2_hdw_encoder_run_timeout, 0);
|
|
|
|
hdw->master_state = PVR2_STATE_DEAD;
|
|
|
|
init_waitqueue_head(&hdw->state_wait_data);
|
|
|
|
hdw->tuner_signal_stale = !0;
|
|
cx2341x_fill_defaults(&hdw->enc_ctl_state);
|
|
|
|
/* Calculate which inputs are OK */
|
|
m = 0;
|
|
if (hdw_desc->flag_has_analogtuner) m |= 1 << PVR2_CVAL_INPUT_TV;
|
|
if (hdw_desc->digital_control_scheme != PVR2_DIGITAL_SCHEME_NONE) {
|
|
m |= 1 << PVR2_CVAL_INPUT_DTV;
|
|
}
|
|
if (hdw_desc->flag_has_svideo) m |= 1 << PVR2_CVAL_INPUT_SVIDEO;
|
|
if (hdw_desc->flag_has_composite) m |= 1 << PVR2_CVAL_INPUT_COMPOSITE;
|
|
if (hdw_desc->flag_has_fmradio) m |= 1 << PVR2_CVAL_INPUT_RADIO;
|
|
hdw->input_avail_mask = m;
|
|
hdw->input_allowed_mask = hdw->input_avail_mask;
|
|
|
|
/* If not a hybrid device, pathway_state never changes. So
|
|
initialize it here to what it should forever be. */
|
|
if (!(hdw->input_avail_mask & (1 << PVR2_CVAL_INPUT_DTV))) {
|
|
hdw->pathway_state = PVR2_PATHWAY_ANALOG;
|
|
} else if (!(hdw->input_avail_mask & (1 << PVR2_CVAL_INPUT_TV))) {
|
|
hdw->pathway_state = PVR2_PATHWAY_DIGITAL;
|
|
}
|
|
|
|
hdw->control_cnt = CTRLDEF_COUNT;
|
|
hdw->control_cnt += MPEGDEF_COUNT;
|
|
hdw->controls = kcalloc(hdw->control_cnt, sizeof(struct pvr2_ctrl),
|
|
GFP_KERNEL);
|
|
if (!hdw->controls) goto fail;
|
|
hdw->hdw_desc = hdw_desc;
|
|
hdw->ir_scheme_active = hdw->hdw_desc->ir_scheme;
|
|
for (idx = 0; idx < hdw->control_cnt; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
cptr->hdw = hdw;
|
|
}
|
|
for (idx = 0; idx < 32; idx++) {
|
|
hdw->std_mask_ptrs[idx] = hdw->std_mask_names[idx];
|
|
}
|
|
for (idx = 0; idx < CTRLDEF_COUNT; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
cptr->info = control_defs+idx;
|
|
}
|
|
|
|
/* Ensure that default input choice is a valid one. */
|
|
m = hdw->input_avail_mask;
|
|
if (m) for (idx = 0; idx < (sizeof(m) << 3); idx++) {
|
|
if (!((1UL << idx) & m)) continue;
|
|
hdw->input_val = idx;
|
|
break;
|
|
}
|
|
|
|
/* Define and configure additional controls from cx2341x module. */
|
|
hdw->mpeg_ctrl_info = kcalloc(MPEGDEF_COUNT,
|
|
sizeof(*(hdw->mpeg_ctrl_info)),
|
|
GFP_KERNEL);
|
|
if (!hdw->mpeg_ctrl_info) goto fail;
|
|
for (idx = 0; idx < MPEGDEF_COUNT; idx++) {
|
|
cptr = hdw->controls + idx + CTRLDEF_COUNT;
|
|
ciptr = &(hdw->mpeg_ctrl_info[idx].info);
|
|
ciptr->desc = hdw->mpeg_ctrl_info[idx].desc;
|
|
ciptr->name = mpeg_ids[idx].strid;
|
|
ciptr->v4l_id = mpeg_ids[idx].id;
|
|
ciptr->skip_init = !0;
|
|
ciptr->get_value = ctrl_cx2341x_get;
|
|
ciptr->get_v4lflags = ctrl_cx2341x_getv4lflags;
|
|
ciptr->is_dirty = ctrl_cx2341x_is_dirty;
|
|
if (!idx) ciptr->clear_dirty = ctrl_cx2341x_clear_dirty;
|
|
qctrl.id = ciptr->v4l_id;
|
|
cx2341x_ctrl_query(&hdw->enc_ctl_state,&qctrl);
|
|
if (!(qctrl.flags & V4L2_CTRL_FLAG_READ_ONLY)) {
|
|
ciptr->set_value = ctrl_cx2341x_set;
|
|
}
|
|
strscpy(hdw->mpeg_ctrl_info[idx].desc, qctrl.name,
|
|
sizeof(hdw->mpeg_ctrl_info[idx].desc));
|
|
ciptr->default_value = qctrl.default_value;
|
|
switch (qctrl.type) {
|
|
default:
|
|
case V4L2_CTRL_TYPE_INTEGER:
|
|
ciptr->type = pvr2_ctl_int;
|
|
ciptr->def.type_int.min_value = qctrl.minimum;
|
|
ciptr->def.type_int.max_value = qctrl.maximum;
|
|
break;
|
|
case V4L2_CTRL_TYPE_BOOLEAN:
|
|
ciptr->type = pvr2_ctl_bool;
|
|
break;
|
|
case V4L2_CTRL_TYPE_MENU:
|
|
ciptr->type = pvr2_ctl_enum;
|
|
ciptr->def.type_enum.value_names =
|
|
cx2341x_ctrl_get_menu(&hdw->enc_ctl_state,
|
|
ciptr->v4l_id);
|
|
for (cnt1 = 0;
|
|
ciptr->def.type_enum.value_names[cnt1] != NULL;
|
|
cnt1++) { }
|
|
ciptr->def.type_enum.count = cnt1;
|
|
break;
|
|
}
|
|
cptr->info = ciptr;
|
|
}
|
|
|
|
// Initialize control data regarding video standard masks
|
|
valid_std_mask = pvr2_std_get_usable();
|
|
for (idx = 0; idx < 32; idx++) {
|
|
if (!(valid_std_mask & (1UL << idx))) continue;
|
|
cnt1 = pvr2_std_id_to_str(
|
|
hdw->std_mask_names[idx],
|
|
sizeof(hdw->std_mask_names[idx])-1,
|
|
1UL << idx);
|
|
hdw->std_mask_names[idx][cnt1] = 0;
|
|
}
|
|
cptr = pvr2_hdw_get_ctrl_by_id(hdw,PVR2_CID_STDAVAIL);
|
|
if (cptr) {
|
|
memcpy(&hdw->std_info_avail,cptr->info,
|
|
sizeof(hdw->std_info_avail));
|
|
cptr->info = &hdw->std_info_avail;
|
|
hdw->std_info_avail.def.type_bitmask.bit_names =
|
|
hdw->std_mask_ptrs;
|
|
hdw->std_info_avail.def.type_bitmask.valid_bits =
|
|
valid_std_mask;
|
|
}
|
|
cptr = pvr2_hdw_get_ctrl_by_id(hdw,PVR2_CID_STDCUR);
|
|
if (cptr) {
|
|
memcpy(&hdw->std_info_cur,cptr->info,
|
|
sizeof(hdw->std_info_cur));
|
|
cptr->info = &hdw->std_info_cur;
|
|
hdw->std_info_cur.def.type_bitmask.bit_names =
|
|
hdw->std_mask_ptrs;
|
|
hdw->std_info_cur.def.type_bitmask.valid_bits =
|
|
valid_std_mask;
|
|
}
|
|
cptr = pvr2_hdw_get_ctrl_by_id(hdw,PVR2_CID_STDDETECT);
|
|
if (cptr) {
|
|
memcpy(&hdw->std_info_detect,cptr->info,
|
|
sizeof(hdw->std_info_detect));
|
|
cptr->info = &hdw->std_info_detect;
|
|
hdw->std_info_detect.def.type_bitmask.bit_names =
|
|
hdw->std_mask_ptrs;
|
|
hdw->std_info_detect.def.type_bitmask.valid_bits =
|
|
valid_std_mask;
|
|
}
|
|
|
|
hdw->cropcap_stale = !0;
|
|
hdw->eeprom_addr = -1;
|
|
hdw->unit_number = -1;
|
|
hdw->v4l_minor_number_video = -1;
|
|
hdw->v4l_minor_number_vbi = -1;
|
|
hdw->v4l_minor_number_radio = -1;
|
|
hdw->ctl_write_buffer = kmalloc(PVR2_CTL_BUFFSIZE,GFP_KERNEL);
|
|
if (!hdw->ctl_write_buffer) goto fail;
|
|
hdw->ctl_read_buffer = kmalloc(PVR2_CTL_BUFFSIZE,GFP_KERNEL);
|
|
if (!hdw->ctl_read_buffer) goto fail;
|
|
hdw->ctl_write_urb = usb_alloc_urb(0,GFP_KERNEL);
|
|
if (!hdw->ctl_write_urb) goto fail;
|
|
hdw->ctl_read_urb = usb_alloc_urb(0,GFP_KERNEL);
|
|
if (!hdw->ctl_read_urb) goto fail;
|
|
|
|
if (v4l2_device_register(&intf->dev, &hdw->v4l2_dev) != 0) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Error registering with v4l core, giving up");
|
|
goto fail;
|
|
}
|
|
mutex_lock(&pvr2_unit_mtx);
|
|
do {
|
|
for (idx = 0; idx < PVR_NUM; idx++) {
|
|
if (unit_pointers[idx]) continue;
|
|
hdw->unit_number = idx;
|
|
unit_pointers[idx] = hdw;
|
|
break;
|
|
}
|
|
} while (0);
|
|
mutex_unlock(&pvr2_unit_mtx);
|
|
|
|
INIT_WORK(&hdw->workpoll, pvr2_hdw_worker_poll);
|
|
|
|
if (hdw->unit_number == -1)
|
|
goto fail;
|
|
|
|
cnt1 = 0;
|
|
cnt2 = scnprintf(hdw->name+cnt1,sizeof(hdw->name)-cnt1,"pvrusb2");
|
|
cnt1 += cnt2;
|
|
if (hdw->unit_number >= 0) {
|
|
cnt2 = scnprintf(hdw->name+cnt1,sizeof(hdw->name)-cnt1,"_%c",
|
|
('a' + hdw->unit_number));
|
|
cnt1 += cnt2;
|
|
}
|
|
if (cnt1 >= sizeof(hdw->name)) cnt1 = sizeof(hdw->name)-1;
|
|
hdw->name[cnt1] = 0;
|
|
|
|
pvr2_trace(PVR2_TRACE_INIT,"Driver unit number is %d, name is %s",
|
|
hdw->unit_number,hdw->name);
|
|
|
|
hdw->tuner_type = -1;
|
|
hdw->flag_ok = !0;
|
|
|
|
hdw->usb_intf = intf;
|
|
hdw->usb_dev = usb_dev;
|
|
|
|
usb_make_path(hdw->usb_dev, hdw->bus_info, sizeof(hdw->bus_info));
|
|
|
|
ifnum = hdw->usb_intf->cur_altsetting->desc.bInterfaceNumber;
|
|
usb_set_interface(hdw->usb_dev,ifnum,0);
|
|
|
|
mutex_init(&hdw->ctl_lock_mutex);
|
|
mutex_init(&hdw->big_lock_mutex);
|
|
|
|
return hdw;
|
|
fail:
|
|
if (hdw) {
|
|
del_timer_sync(&hdw->quiescent_timer);
|
|
del_timer_sync(&hdw->decoder_stabilization_timer);
|
|
del_timer_sync(&hdw->encoder_run_timer);
|
|
del_timer_sync(&hdw->encoder_wait_timer);
|
|
flush_work(&hdw->workpoll);
|
|
v4l2_device_unregister(&hdw->v4l2_dev);
|
|
usb_free_urb(hdw->ctl_read_urb);
|
|
usb_free_urb(hdw->ctl_write_urb);
|
|
kfree(hdw->ctl_read_buffer);
|
|
kfree(hdw->ctl_write_buffer);
|
|
kfree(hdw->controls);
|
|
kfree(hdw->mpeg_ctrl_info);
|
|
kfree(hdw);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Remove _all_ associations between this driver and the underlying USB
|
|
layer. */
|
|
static void pvr2_hdw_remove_usb_stuff(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->flag_disconnected) return;
|
|
pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_remove_usb_stuff: hdw=%p",hdw);
|
|
if (hdw->ctl_read_urb) {
|
|
usb_kill_urb(hdw->ctl_read_urb);
|
|
usb_free_urb(hdw->ctl_read_urb);
|
|
hdw->ctl_read_urb = NULL;
|
|
}
|
|
if (hdw->ctl_write_urb) {
|
|
usb_kill_urb(hdw->ctl_write_urb);
|
|
usb_free_urb(hdw->ctl_write_urb);
|
|
hdw->ctl_write_urb = NULL;
|
|
}
|
|
if (hdw->ctl_read_buffer) {
|
|
kfree(hdw->ctl_read_buffer);
|
|
hdw->ctl_read_buffer = NULL;
|
|
}
|
|
if (hdw->ctl_write_buffer) {
|
|
kfree(hdw->ctl_write_buffer);
|
|
hdw->ctl_write_buffer = NULL;
|
|
}
|
|
hdw->flag_disconnected = !0;
|
|
/* If we don't do this, then there will be a dangling struct device
|
|
reference to our disappearing device persisting inside the V4L
|
|
core... */
|
|
v4l2_device_disconnect(&hdw->v4l2_dev);
|
|
hdw->usb_dev = NULL;
|
|
hdw->usb_intf = NULL;
|
|
pvr2_hdw_render_useless(hdw);
|
|
}
|
|
|
|
void pvr2_hdw_set_v4l2_dev(struct pvr2_hdw *hdw, struct video_device *vdev)
|
|
{
|
|
vdev->v4l2_dev = &hdw->v4l2_dev;
|
|
}
|
|
|
|
/* Destroy hardware interaction structure */
|
|
void pvr2_hdw_destroy(struct pvr2_hdw *hdw)
|
|
{
|
|
if (!hdw) return;
|
|
pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_destroy: hdw=%p",hdw);
|
|
flush_work(&hdw->workpoll);
|
|
del_timer_sync(&hdw->quiescent_timer);
|
|
del_timer_sync(&hdw->decoder_stabilization_timer);
|
|
del_timer_sync(&hdw->encoder_run_timer);
|
|
del_timer_sync(&hdw->encoder_wait_timer);
|
|
if (hdw->fw_buffer) {
|
|
kfree(hdw->fw_buffer);
|
|
hdw->fw_buffer = NULL;
|
|
}
|
|
if (hdw->vid_stream) {
|
|
pvr2_stream_destroy(hdw->vid_stream);
|
|
hdw->vid_stream = NULL;
|
|
}
|
|
v4l2_device_unregister(&hdw->v4l2_dev);
|
|
pvr2_hdw_disconnect(hdw);
|
|
mutex_lock(&pvr2_unit_mtx);
|
|
do {
|
|
if ((hdw->unit_number >= 0) &&
|
|
(hdw->unit_number < PVR_NUM) &&
|
|
(unit_pointers[hdw->unit_number] == hdw)) {
|
|
unit_pointers[hdw->unit_number] = NULL;
|
|
}
|
|
} while (0);
|
|
mutex_unlock(&pvr2_unit_mtx);
|
|
kfree(hdw->controls);
|
|
kfree(hdw->mpeg_ctrl_info);
|
|
kfree(hdw);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_dev_ok(struct pvr2_hdw *hdw)
|
|
{
|
|
return (hdw && hdw->flag_ok);
|
|
}
|
|
|
|
|
|
/* Called when hardware has been unplugged */
|
|
void pvr2_hdw_disconnect(struct pvr2_hdw *hdw)
|
|
{
|
|
pvr2_trace(PVR2_TRACE_INIT,"pvr2_hdw_disconnect(hdw=%p)",hdw);
|
|
LOCK_TAKE(hdw->big_lock);
|
|
pvr2_i2c_core_done(hdw);
|
|
LOCK_TAKE(hdw->ctl_lock);
|
|
pvr2_hdw_remove_usb_stuff(hdw);
|
|
LOCK_GIVE(hdw->ctl_lock);
|
|
LOCK_GIVE(hdw->big_lock);
|
|
}
|
|
|
|
|
|
/* Get the number of defined controls */
|
|
unsigned int pvr2_hdw_get_ctrl_count(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->control_cnt;
|
|
}
|
|
|
|
|
|
/* Retrieve a control handle given its index (0..count-1) */
|
|
struct pvr2_ctrl *pvr2_hdw_get_ctrl_by_index(struct pvr2_hdw *hdw,
|
|
unsigned int idx)
|
|
{
|
|
if (idx >= hdw->control_cnt) return NULL;
|
|
return hdw->controls + idx;
|
|
}
|
|
|
|
|
|
/* Retrieve a control handle given its index (0..count-1) */
|
|
struct pvr2_ctrl *pvr2_hdw_get_ctrl_by_id(struct pvr2_hdw *hdw,
|
|
unsigned int ctl_id)
|
|
{
|
|
struct pvr2_ctrl *cptr;
|
|
unsigned int idx;
|
|
int i;
|
|
|
|
/* This could be made a lot more efficient, but for now... */
|
|
for (idx = 0; idx < hdw->control_cnt; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
i = cptr->info->internal_id;
|
|
if (i && (i == ctl_id)) return cptr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Given a V4L ID, retrieve the control structure associated with it. */
|
|
struct pvr2_ctrl *pvr2_hdw_get_ctrl_v4l(struct pvr2_hdw *hdw,unsigned int ctl_id)
|
|
{
|
|
struct pvr2_ctrl *cptr;
|
|
unsigned int idx;
|
|
int i;
|
|
|
|
/* This could be made a lot more efficient, but for now... */
|
|
for (idx = 0; idx < hdw->control_cnt; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
i = cptr->info->v4l_id;
|
|
if (i && (i == ctl_id)) return cptr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Given a V4L ID for its immediate predecessor, retrieve the control
|
|
structure associated with it. */
|
|
struct pvr2_ctrl *pvr2_hdw_get_ctrl_nextv4l(struct pvr2_hdw *hdw,
|
|
unsigned int ctl_id)
|
|
{
|
|
struct pvr2_ctrl *cptr,*cp2;
|
|
unsigned int idx;
|
|
int i;
|
|
|
|
/* This could be made a lot more efficient, but for now... */
|
|
cp2 = NULL;
|
|
for (idx = 0; idx < hdw->control_cnt; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
i = cptr->info->v4l_id;
|
|
if (!i) continue;
|
|
if (i <= ctl_id) continue;
|
|
if (cp2 && (cp2->info->v4l_id < i)) continue;
|
|
cp2 = cptr;
|
|
}
|
|
return cp2;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static const char *get_ctrl_typename(enum pvr2_ctl_type tp)
|
|
{
|
|
switch (tp) {
|
|
case pvr2_ctl_int: return "integer";
|
|
case pvr2_ctl_enum: return "enum";
|
|
case pvr2_ctl_bool: return "boolean";
|
|
case pvr2_ctl_bitmask: return "bitmask";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
|
|
static void pvr2_subdev_set_control(struct pvr2_hdw *hdw, int id,
|
|
const char *name, int val)
|
|
{
|
|
struct v4l2_control ctrl;
|
|
struct v4l2_subdev *sd;
|
|
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev v4l2 %s=%d", name, val);
|
|
memset(&ctrl, 0, sizeof(ctrl));
|
|
ctrl.id = id;
|
|
ctrl.value = val;
|
|
|
|
v4l2_device_for_each_subdev(sd, &hdw->v4l2_dev)
|
|
v4l2_s_ctrl(NULL, sd->ctrl_handler, &ctrl);
|
|
}
|
|
|
|
#define PVR2_SUBDEV_SET_CONTROL(hdw, id, lab) \
|
|
if ((hdw)->lab##_dirty || (hdw)->force_dirty) { \
|
|
pvr2_subdev_set_control(hdw, id, #lab, (hdw)->lab##_val); \
|
|
}
|
|
|
|
static v4l2_std_id pvr2_hdw_get_detected_std(struct pvr2_hdw *hdw)
|
|
{
|
|
v4l2_std_id std;
|
|
std = (v4l2_std_id)hdw->std_mask_avail;
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0,
|
|
video, querystd, &std);
|
|
return std;
|
|
}
|
|
|
|
/* Execute whatever commands are required to update the state of all the
|
|
sub-devices so that they match our current control values. */
|
|
static void pvr2_subdev_update(struct pvr2_hdw *hdw)
|
|
{
|
|
struct v4l2_subdev *sd;
|
|
unsigned int id;
|
|
pvr2_subdev_update_func fp;
|
|
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev update...");
|
|
|
|
if (hdw->tuner_updated || hdw->force_dirty) {
|
|
struct tuner_setup setup;
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev tuner set_type(%d)",
|
|
hdw->tuner_type);
|
|
if (((int)(hdw->tuner_type)) >= 0) {
|
|
memset(&setup, 0, sizeof(setup));
|
|
setup.addr = ADDR_UNSET;
|
|
setup.type = hdw->tuner_type;
|
|
setup.mode_mask = T_RADIO | T_ANALOG_TV;
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0,
|
|
tuner, s_type_addr, &setup);
|
|
}
|
|
}
|
|
|
|
if (hdw->input_dirty || hdw->std_dirty || hdw->force_dirty) {
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev v4l2 set_standard");
|
|
if (hdw->input_val == PVR2_CVAL_INPUT_RADIO) {
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0,
|
|
tuner, s_radio);
|
|
} else {
|
|
v4l2_std_id vs;
|
|
vs = hdw->std_mask_cur;
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0,
|
|
video, s_std, vs);
|
|
pvr2_hdw_cx25840_vbi_hack(hdw);
|
|
}
|
|
hdw->tuner_signal_stale = !0;
|
|
hdw->cropcap_stale = !0;
|
|
}
|
|
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_BRIGHTNESS, brightness);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_CONTRAST, contrast);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_SATURATION, saturation);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_HUE, hue);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_AUDIO_MUTE, mute);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_AUDIO_VOLUME, volume);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_AUDIO_BALANCE, balance);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_AUDIO_BASS, bass);
|
|
PVR2_SUBDEV_SET_CONTROL(hdw, V4L2_CID_AUDIO_TREBLE, treble);
|
|
|
|
if (hdw->input_dirty || hdw->audiomode_dirty || hdw->force_dirty) {
|
|
struct v4l2_tuner vt;
|
|
memset(&vt, 0, sizeof(vt));
|
|
vt.type = (hdw->input_val == PVR2_CVAL_INPUT_RADIO) ?
|
|
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
|
|
vt.audmode = hdw->audiomode_val;
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, tuner, s_tuner, &vt);
|
|
}
|
|
|
|
if (hdw->freqDirty || hdw->force_dirty) {
|
|
unsigned long fv;
|
|
struct v4l2_frequency freq;
|
|
fv = pvr2_hdw_get_cur_freq(hdw);
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev v4l2 set_freq(%lu)", fv);
|
|
if (hdw->tuner_signal_stale) pvr2_hdw_status_poll(hdw);
|
|
memset(&freq, 0, sizeof(freq));
|
|
if (hdw->tuner_signal_info.capability & V4L2_TUNER_CAP_LOW) {
|
|
/* ((fv * 1000) / 62500) */
|
|
freq.frequency = (fv * 2) / 125;
|
|
} else {
|
|
freq.frequency = fv / 62500;
|
|
}
|
|
/* tuner-core currently doesn't seem to care about this, but
|
|
let's set it anyway for completeness. */
|
|
if (hdw->input_val == PVR2_CVAL_INPUT_RADIO) {
|
|
freq.type = V4L2_TUNER_RADIO;
|
|
} else {
|
|
freq.type = V4L2_TUNER_ANALOG_TV;
|
|
}
|
|
freq.tuner = 0;
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, tuner,
|
|
s_frequency, &freq);
|
|
}
|
|
|
|
if (hdw->res_hor_dirty || hdw->res_ver_dirty || hdw->force_dirty) {
|
|
struct v4l2_subdev_format format = {
|
|
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
|
|
};
|
|
|
|
format.format.width = hdw->res_hor_val;
|
|
format.format.height = hdw->res_ver_val;
|
|
format.format.code = MEDIA_BUS_FMT_FIXED;
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev v4l2 set_size(%dx%d)",
|
|
format.format.width, format.format.height);
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, pad, set_fmt,
|
|
NULL, &format);
|
|
}
|
|
|
|
if (hdw->srate_dirty || hdw->force_dirty) {
|
|
u32 val;
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev v4l2 set_audio %d",
|
|
hdw->srate_val);
|
|
switch (hdw->srate_val) {
|
|
default:
|
|
case V4L2_MPEG_AUDIO_SAMPLING_FREQ_48000:
|
|
val = 48000;
|
|
break;
|
|
case V4L2_MPEG_AUDIO_SAMPLING_FREQ_44100:
|
|
val = 44100;
|
|
break;
|
|
case V4L2_MPEG_AUDIO_SAMPLING_FREQ_32000:
|
|
val = 32000;
|
|
break;
|
|
}
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0,
|
|
audio, s_clock_freq, val);
|
|
}
|
|
|
|
/* Unable to set crop parameters; there is apparently no equivalent
|
|
for VIDIOC_S_CROP */
|
|
|
|
v4l2_device_for_each_subdev(sd, &hdw->v4l2_dev) {
|
|
id = sd->grp_id;
|
|
if (id >= ARRAY_SIZE(pvr2_module_update_functions)) continue;
|
|
fp = pvr2_module_update_functions[id];
|
|
if (!fp) continue;
|
|
(*fp)(hdw, sd);
|
|
}
|
|
|
|
if (hdw->tuner_signal_stale || hdw->cropcap_stale) {
|
|
pvr2_hdw_status_poll(hdw);
|
|
}
|
|
}
|
|
|
|
|
|
/* Figure out if we need to commit control changes. If so, mark internal
|
|
state flags to indicate this fact and return true. Otherwise do nothing
|
|
else and return false. */
|
|
static int pvr2_hdw_commit_setup(struct pvr2_hdw *hdw)
|
|
{
|
|
unsigned int idx;
|
|
struct pvr2_ctrl *cptr;
|
|
int value;
|
|
int commit_flag = hdw->force_dirty;
|
|
char buf[100];
|
|
unsigned int bcnt,ccnt;
|
|
|
|
for (idx = 0; idx < hdw->control_cnt; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
if (!cptr->info->is_dirty) continue;
|
|
if (!cptr->info->is_dirty(cptr)) continue;
|
|
commit_flag = !0;
|
|
|
|
if (!(pvrusb2_debug & PVR2_TRACE_CTL)) continue;
|
|
bcnt = scnprintf(buf,sizeof(buf),"\"%s\" <-- ",
|
|
cptr->info->name);
|
|
value = 0;
|
|
cptr->info->get_value(cptr,&value);
|
|
pvr2_ctrl_value_to_sym_internal(cptr,~0,value,
|
|
buf+bcnt,
|
|
sizeof(buf)-bcnt,&ccnt);
|
|
bcnt += ccnt;
|
|
bcnt += scnprintf(buf+bcnt,sizeof(buf)-bcnt," <%s>",
|
|
get_ctrl_typename(cptr->info->type));
|
|
pvr2_trace(PVR2_TRACE_CTL,
|
|
"/*--TRACE_COMMIT--*/ %.*s",
|
|
bcnt,buf);
|
|
}
|
|
|
|
if (!commit_flag) {
|
|
/* Nothing has changed */
|
|
return 0;
|
|
}
|
|
|
|
hdw->state_pipeline_config = 0;
|
|
trace_stbit("state_pipeline_config",hdw->state_pipeline_config);
|
|
pvr2_hdw_state_sched(hdw);
|
|
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Perform all operations needed to commit all control changes. This must
|
|
be performed in synchronization with the pipeline state and is thus
|
|
expected to be called as part of the driver's worker thread. Return
|
|
true if commit successful, otherwise return false to indicate that
|
|
commit isn't possible at this time. */
|
|
static int pvr2_hdw_commit_execute(struct pvr2_hdw *hdw)
|
|
{
|
|
unsigned int idx;
|
|
struct pvr2_ctrl *cptr;
|
|
int disruptive_change;
|
|
|
|
if (hdw->input_dirty && hdw->state_pathway_ok &&
|
|
(((hdw->input_val == PVR2_CVAL_INPUT_DTV) ?
|
|
PVR2_PATHWAY_DIGITAL : PVR2_PATHWAY_ANALOG) !=
|
|
hdw->pathway_state)) {
|
|
/* Change of mode being asked for... */
|
|
hdw->state_pathway_ok = 0;
|
|
trace_stbit("state_pathway_ok", hdw->state_pathway_ok);
|
|
}
|
|
if (!hdw->state_pathway_ok) {
|
|
/* Can't commit anything until pathway is ok. */
|
|
return 0;
|
|
}
|
|
|
|
/* Handle some required side effects when the video standard is
|
|
changed.... */
|
|
if (hdw->std_dirty) {
|
|
int nvres;
|
|
int gop_size;
|
|
if (hdw->std_mask_cur & V4L2_STD_525_60) {
|
|
nvres = 480;
|
|
gop_size = 15;
|
|
} else {
|
|
nvres = 576;
|
|
gop_size = 12;
|
|
}
|
|
/* Rewrite the vertical resolution to be appropriate to the
|
|
video standard that has been selected. */
|
|
if (nvres != hdw->res_ver_val) {
|
|
hdw->res_ver_val = nvres;
|
|
hdw->res_ver_dirty = !0;
|
|
}
|
|
/* Rewrite the GOP size to be appropriate to the video
|
|
standard that has been selected. */
|
|
if (gop_size != hdw->enc_ctl_state.video_gop_size) {
|
|
struct v4l2_ext_controls cs;
|
|
struct v4l2_ext_control c1;
|
|
memset(&cs, 0, sizeof(cs));
|
|
memset(&c1, 0, sizeof(c1));
|
|
cs.controls = &c1;
|
|
cs.count = 1;
|
|
c1.id = V4L2_CID_MPEG_VIDEO_GOP_SIZE;
|
|
c1.value = gop_size;
|
|
cx2341x_ext_ctrls(&hdw->enc_ctl_state, 0, &cs,
|
|
VIDIOC_S_EXT_CTRLS);
|
|
}
|
|
}
|
|
|
|
/* The broadcast decoder can only scale down, so if
|
|
* res_*_dirty && crop window < output format ==> enlarge crop.
|
|
*
|
|
* The mpeg encoder receives fields of res_hor_val dots and
|
|
* res_ver_val halflines. Limits: hor<=720, ver<=576.
|
|
*/
|
|
if (hdw->res_hor_dirty && hdw->cropw_val < hdw->res_hor_val) {
|
|
hdw->cropw_val = hdw->res_hor_val;
|
|
hdw->cropw_dirty = !0;
|
|
} else if (hdw->cropw_dirty) {
|
|
hdw->res_hor_dirty = !0; /* must rescale */
|
|
hdw->res_hor_val = min(720, hdw->cropw_val);
|
|
}
|
|
if (hdw->res_ver_dirty && hdw->croph_val < hdw->res_ver_val) {
|
|
hdw->croph_val = hdw->res_ver_val;
|
|
hdw->croph_dirty = !0;
|
|
} else if (hdw->croph_dirty) {
|
|
int nvres = hdw->std_mask_cur & V4L2_STD_525_60 ? 480 : 576;
|
|
hdw->res_ver_dirty = !0;
|
|
hdw->res_ver_val = min(nvres, hdw->croph_val);
|
|
}
|
|
|
|
/* If any of the below has changed, then we can't do the update
|
|
while the pipeline is running. Pipeline must be paused first
|
|
and decoder -> encoder connection be made quiescent before we
|
|
can proceed. */
|
|
disruptive_change =
|
|
(hdw->std_dirty ||
|
|
hdw->enc_unsafe_stale ||
|
|
hdw->srate_dirty ||
|
|
hdw->res_ver_dirty ||
|
|
hdw->res_hor_dirty ||
|
|
hdw->cropw_dirty ||
|
|
hdw->croph_dirty ||
|
|
hdw->input_dirty ||
|
|
(hdw->active_stream_type != hdw->desired_stream_type));
|
|
if (disruptive_change && !hdw->state_pipeline_idle) {
|
|
/* Pipeline is not idle; we can't proceed. Arrange to
|
|
cause pipeline to stop so that we can try this again
|
|
later.... */
|
|
hdw->state_pipeline_pause = !0;
|
|
return 0;
|
|
}
|
|
|
|
if (hdw->srate_dirty) {
|
|
/* Write new sample rate into control structure since
|
|
* the master copy is stale. We must track srate
|
|
* separate from the mpeg control structure because
|
|
* other logic also uses this value. */
|
|
struct v4l2_ext_controls cs;
|
|
struct v4l2_ext_control c1;
|
|
memset(&cs,0,sizeof(cs));
|
|
memset(&c1,0,sizeof(c1));
|
|
cs.controls = &c1;
|
|
cs.count = 1;
|
|
c1.id = V4L2_CID_MPEG_AUDIO_SAMPLING_FREQ;
|
|
c1.value = hdw->srate_val;
|
|
cx2341x_ext_ctrls(&hdw->enc_ctl_state, 0, &cs,VIDIOC_S_EXT_CTRLS);
|
|
}
|
|
|
|
if (hdw->active_stream_type != hdw->desired_stream_type) {
|
|
/* Handle any side effects of stream config here */
|
|
hdw->active_stream_type = hdw->desired_stream_type;
|
|
}
|
|
|
|
if (hdw->hdw_desc->signal_routing_scheme ==
|
|
PVR2_ROUTING_SCHEME_GOTVIEW) {
|
|
u32 b;
|
|
/* Handle GOTVIEW audio switching */
|
|
pvr2_hdw_gpio_get_out(hdw,&b);
|
|
if (hdw->input_val == PVR2_CVAL_INPUT_RADIO) {
|
|
/* Set GPIO 11 */
|
|
pvr2_hdw_gpio_chg_out(hdw,(1 << 11),~0);
|
|
} else {
|
|
/* Clear GPIO 11 */
|
|
pvr2_hdw_gpio_chg_out(hdw,(1 << 11),0);
|
|
}
|
|
}
|
|
|
|
/* Check and update state for all sub-devices. */
|
|
pvr2_subdev_update(hdw);
|
|
|
|
hdw->tuner_updated = 0;
|
|
hdw->force_dirty = 0;
|
|
for (idx = 0; idx < hdw->control_cnt; idx++) {
|
|
cptr = hdw->controls + idx;
|
|
if (!cptr->info->clear_dirty) continue;
|
|
cptr->info->clear_dirty(cptr);
|
|
}
|
|
|
|
if ((hdw->pathway_state == PVR2_PATHWAY_ANALOG) &&
|
|
hdw->state_encoder_run) {
|
|
/* If encoder isn't running or it can't be touched, then
|
|
this will get worked out later when we start the
|
|
encoder. */
|
|
if (pvr2_encoder_adjust(hdw) < 0) return !0;
|
|
}
|
|
|
|
hdw->state_pipeline_config = !0;
|
|
/* Hardware state may have changed in a way to cause the cropping
|
|
capabilities to have changed. So mark it stale, which will
|
|
cause a later re-fetch. */
|
|
trace_stbit("state_pipeline_config",hdw->state_pipeline_config);
|
|
return !0;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_commit_ctl(struct pvr2_hdw *hdw)
|
|
{
|
|
int fl;
|
|
LOCK_TAKE(hdw->big_lock);
|
|
fl = pvr2_hdw_commit_setup(hdw);
|
|
LOCK_GIVE(hdw->big_lock);
|
|
if (!fl) return 0;
|
|
return pvr2_hdw_wait(hdw,0);
|
|
}
|
|
|
|
|
|
static void pvr2_hdw_worker_poll(struct work_struct *work)
|
|
{
|
|
int fl = 0;
|
|
struct pvr2_hdw *hdw = container_of(work,struct pvr2_hdw,workpoll);
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
fl = pvr2_hdw_state_eval(hdw);
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
if (fl && hdw->state_func) {
|
|
hdw->state_func(hdw->state_data);
|
|
}
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_wait(struct pvr2_hdw *hdw,int state)
|
|
{
|
|
return wait_event_interruptible(
|
|
hdw->state_wait_data,
|
|
(hdw->state_stale == 0) &&
|
|
(!state || (hdw->master_state != state)));
|
|
}
|
|
|
|
|
|
/* Return name for this driver instance */
|
|
const char *pvr2_hdw_get_driver_name(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->name;
|
|
}
|
|
|
|
|
|
const char *pvr2_hdw_get_desc(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->hdw_desc->description;
|
|
}
|
|
|
|
|
|
const char *pvr2_hdw_get_type(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->hdw_desc->shortname;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_is_hsm(struct pvr2_hdw *hdw)
|
|
{
|
|
int result;
|
|
LOCK_TAKE(hdw->ctl_lock); do {
|
|
hdw->cmd_buffer[0] = FX2CMD_GET_USB_SPEED;
|
|
result = pvr2_send_request(hdw,
|
|
hdw->cmd_buffer,1,
|
|
hdw->cmd_buffer,1);
|
|
if (result < 0) break;
|
|
result = (hdw->cmd_buffer[0] != 0);
|
|
} while(0); LOCK_GIVE(hdw->ctl_lock);
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Execute poll of tuner status */
|
|
void pvr2_hdw_execute_tuner_poll(struct pvr2_hdw *hdw)
|
|
{
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
pvr2_hdw_status_poll(hdw);
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_check_cropcap(struct pvr2_hdw *hdw)
|
|
{
|
|
if (!hdw->cropcap_stale) {
|
|
return 0;
|
|
}
|
|
pvr2_hdw_status_poll(hdw);
|
|
if (hdw->cropcap_stale) {
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return information about cropping capabilities */
|
|
int pvr2_hdw_get_cropcap(struct pvr2_hdw *hdw, struct v4l2_cropcap *pp)
|
|
{
|
|
int stat = 0;
|
|
LOCK_TAKE(hdw->big_lock);
|
|
stat = pvr2_hdw_check_cropcap(hdw);
|
|
if (!stat) {
|
|
memcpy(pp, &hdw->cropcap_info, sizeof(hdw->cropcap_info));
|
|
}
|
|
LOCK_GIVE(hdw->big_lock);
|
|
return stat;
|
|
}
|
|
|
|
|
|
/* Return information about the tuner */
|
|
int pvr2_hdw_get_tuner_status(struct pvr2_hdw *hdw,struct v4l2_tuner *vtp)
|
|
{
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
if (hdw->tuner_signal_stale) {
|
|
pvr2_hdw_status_poll(hdw);
|
|
}
|
|
memcpy(vtp,&hdw->tuner_signal_info,sizeof(struct v4l2_tuner));
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Get handle to video output stream */
|
|
struct pvr2_stream *pvr2_hdw_get_video_stream(struct pvr2_hdw *hp)
|
|
{
|
|
return hp->vid_stream;
|
|
}
|
|
|
|
|
|
void pvr2_hdw_trigger_module_log(struct pvr2_hdw *hdw)
|
|
{
|
|
int nr = pvr2_hdw_get_unit_number(hdw);
|
|
LOCK_TAKE(hdw->big_lock);
|
|
do {
|
|
pr_info("pvrusb2: ================= START STATUS CARD #%d =================\n", nr);
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, core, log_status);
|
|
pvr2_trace(PVR2_TRACE_INFO,"cx2341x config:");
|
|
cx2341x_log_status(&hdw->enc_ctl_state, "pvrusb2");
|
|
pvr2_hdw_state_log_state(hdw);
|
|
pr_info("pvrusb2: ================== END STATUS CARD #%d ==================\n", nr);
|
|
} while (0);
|
|
LOCK_GIVE(hdw->big_lock);
|
|
}
|
|
|
|
|
|
/* Grab EEPROM contents, needed for direct method. */
|
|
#define EEPROM_SIZE 8192
|
|
#define trace_eeprom(...) pvr2_trace(PVR2_TRACE_EEPROM,__VA_ARGS__)
|
|
static u8 *pvr2_full_eeprom_fetch(struct pvr2_hdw *hdw)
|
|
{
|
|
struct i2c_msg msg[2];
|
|
u8 *eeprom;
|
|
u8 iadd[2];
|
|
u8 addr;
|
|
u16 eepromSize;
|
|
unsigned int offs;
|
|
int ret;
|
|
int mode16 = 0;
|
|
unsigned pcnt,tcnt;
|
|
eeprom = kzalloc(EEPROM_SIZE, GFP_KERNEL);
|
|
if (!eeprom) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Failed to allocate memory required to read eeprom");
|
|
return NULL;
|
|
}
|
|
|
|
trace_eeprom("Value for eeprom addr from controller was 0x%x",
|
|
hdw->eeprom_addr);
|
|
addr = hdw->eeprom_addr;
|
|
/* Seems that if the high bit is set, then the *real* eeprom
|
|
address is shifted right now bit position (noticed this in
|
|
newer PVR USB2 hardware) */
|
|
if (addr & 0x80) addr >>= 1;
|
|
|
|
/* FX2 documentation states that a 16bit-addressed eeprom is
|
|
expected if the I2C address is an odd number (yeah, this is
|
|
strange but it's what they do) */
|
|
mode16 = (addr & 1);
|
|
eepromSize = (mode16 ? EEPROM_SIZE : 256);
|
|
trace_eeprom("Examining %d byte eeprom at location 0x%x using %d bit addressing",
|
|
eepromSize, addr,
|
|
mode16 ? 16 : 8);
|
|
|
|
msg[0].addr = addr;
|
|
msg[0].flags = 0;
|
|
msg[0].len = mode16 ? 2 : 1;
|
|
msg[0].buf = iadd;
|
|
msg[1].addr = addr;
|
|
msg[1].flags = I2C_M_RD;
|
|
|
|
/* We have to do the actual eeprom data fetch ourselves, because
|
|
(1) we're only fetching part of the eeprom, and (2) if we were
|
|
getting the whole thing our I2C driver can't grab it in one
|
|
pass - which is what tveeprom is otherwise going to attempt */
|
|
for (tcnt = 0; tcnt < EEPROM_SIZE; tcnt += pcnt) {
|
|
pcnt = 16;
|
|
if (pcnt + tcnt > EEPROM_SIZE) pcnt = EEPROM_SIZE-tcnt;
|
|
offs = tcnt + (eepromSize - EEPROM_SIZE);
|
|
if (mode16) {
|
|
iadd[0] = offs >> 8;
|
|
iadd[1] = offs;
|
|
} else {
|
|
iadd[0] = offs;
|
|
}
|
|
msg[1].len = pcnt;
|
|
msg[1].buf = eeprom+tcnt;
|
|
if ((ret = i2c_transfer(&hdw->i2c_adap,
|
|
msg,ARRAY_SIZE(msg))) != 2) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"eeprom fetch set offs err=%d",ret);
|
|
kfree(eeprom);
|
|
return NULL;
|
|
}
|
|
}
|
|
return eeprom;
|
|
}
|
|
|
|
|
|
void pvr2_hdw_cpufw_set_enabled(struct pvr2_hdw *hdw,
|
|
int mode,
|
|
int enable_flag)
|
|
{
|
|
int ret;
|
|
u16 address;
|
|
unsigned int pipe;
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
if ((hdw->fw_buffer == NULL) == !enable_flag) break;
|
|
|
|
if (!enable_flag) {
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Cleaning up after CPU firmware fetch");
|
|
kfree(hdw->fw_buffer);
|
|
hdw->fw_buffer = NULL;
|
|
hdw->fw_size = 0;
|
|
if (hdw->fw_cpu_flag) {
|
|
/* Now release the CPU. It will disconnect
|
|
and reconnect later. */
|
|
pvr2_hdw_cpureset_assert(hdw,0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
hdw->fw_cpu_flag = (mode != 2);
|
|
if (hdw->fw_cpu_flag) {
|
|
hdw->fw_size = (mode == 1) ? 0x4000 : 0x2000;
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Preparing to suck out CPU firmware (size=%u)",
|
|
hdw->fw_size);
|
|
hdw->fw_buffer = kzalloc(hdw->fw_size,GFP_KERNEL);
|
|
if (!hdw->fw_buffer) {
|
|
hdw->fw_size = 0;
|
|
break;
|
|
}
|
|
|
|
/* We have to hold the CPU during firmware upload. */
|
|
pvr2_hdw_cpureset_assert(hdw,1);
|
|
|
|
/* download the firmware from address 0000-1fff in 2048
|
|
(=0x800) bytes chunk. */
|
|
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Grabbing CPU firmware");
|
|
pipe = usb_rcvctrlpipe(hdw->usb_dev, 0);
|
|
for(address = 0; address < hdw->fw_size;
|
|
address += 0x800) {
|
|
ret = usb_control_msg(hdw->usb_dev,pipe,
|
|
0xa0,0xc0,
|
|
address,0,
|
|
hdw->fw_buffer+address,
|
|
0x800,1000);
|
|
if (ret < 0) break;
|
|
}
|
|
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Done grabbing CPU firmware");
|
|
} else {
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Sucking down EEPROM contents");
|
|
hdw->fw_buffer = pvr2_full_eeprom_fetch(hdw);
|
|
if (!hdw->fw_buffer) {
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"EEPROM content suck failed.");
|
|
break;
|
|
}
|
|
hdw->fw_size = EEPROM_SIZE;
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Done sucking down EEPROM contents");
|
|
}
|
|
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
}
|
|
|
|
|
|
/* Return true if we're in a mode for retrieval CPU firmware */
|
|
int pvr2_hdw_cpufw_get_enabled(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->fw_buffer != NULL;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_cpufw_get(struct pvr2_hdw *hdw,unsigned int offs,
|
|
char *buf,unsigned int cnt)
|
|
{
|
|
int ret = -EINVAL;
|
|
LOCK_TAKE(hdw->big_lock); do {
|
|
if (!buf) break;
|
|
if (!cnt) break;
|
|
|
|
if (!hdw->fw_buffer) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (offs >= hdw->fw_size) {
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Read firmware data offs=%d EOF",
|
|
offs);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (offs + cnt > hdw->fw_size) cnt = hdw->fw_size - offs;
|
|
|
|
memcpy(buf,hdw->fw_buffer+offs,cnt);
|
|
|
|
pvr2_trace(PVR2_TRACE_FIRMWARE,
|
|
"Read firmware data offs=%d cnt=%d",
|
|
offs,cnt);
|
|
ret = cnt;
|
|
} while (0); LOCK_GIVE(hdw->big_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_v4l_get_minor_number(struct pvr2_hdw *hdw,
|
|
enum pvr2_v4l_type index)
|
|
{
|
|
switch (index) {
|
|
case pvr2_v4l_type_video: return hdw->v4l_minor_number_video;
|
|
case pvr2_v4l_type_vbi: return hdw->v4l_minor_number_vbi;
|
|
case pvr2_v4l_type_radio: return hdw->v4l_minor_number_radio;
|
|
default: return -1;
|
|
}
|
|
}
|
|
|
|
|
|
/* Store a v4l minor device number */
|
|
void pvr2_hdw_v4l_store_minor_number(struct pvr2_hdw *hdw,
|
|
enum pvr2_v4l_type index,int v)
|
|
{
|
|
switch (index) {
|
|
case pvr2_v4l_type_video: hdw->v4l_minor_number_video = v;break;
|
|
case pvr2_v4l_type_vbi: hdw->v4l_minor_number_vbi = v;break;
|
|
case pvr2_v4l_type_radio: hdw->v4l_minor_number_radio = v;break;
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
|
|
static void pvr2_ctl_write_complete(struct urb *urb)
|
|
{
|
|
struct pvr2_hdw *hdw = urb->context;
|
|
hdw->ctl_write_pend_flag = 0;
|
|
if (hdw->ctl_read_pend_flag) return;
|
|
complete(&hdw->ctl_done);
|
|
}
|
|
|
|
|
|
static void pvr2_ctl_read_complete(struct urb *urb)
|
|
{
|
|
struct pvr2_hdw *hdw = urb->context;
|
|
hdw->ctl_read_pend_flag = 0;
|
|
if (hdw->ctl_write_pend_flag) return;
|
|
complete(&hdw->ctl_done);
|
|
}
|
|
|
|
struct hdw_timer {
|
|
struct timer_list timer;
|
|
struct pvr2_hdw *hdw;
|
|
};
|
|
|
|
static void pvr2_ctl_timeout(struct timer_list *t)
|
|
{
|
|
struct hdw_timer *timer = from_timer(timer, t, timer);
|
|
struct pvr2_hdw *hdw = timer->hdw;
|
|
|
|
if (hdw->ctl_write_pend_flag || hdw->ctl_read_pend_flag) {
|
|
hdw->ctl_timeout_flag = !0;
|
|
if (hdw->ctl_write_pend_flag)
|
|
usb_unlink_urb(hdw->ctl_write_urb);
|
|
if (hdw->ctl_read_pend_flag)
|
|
usb_unlink_urb(hdw->ctl_read_urb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Issue a command and get a response from the device. This extended
|
|
version includes a probe flag (which if set means that device errors
|
|
should not be logged or treated as fatal) and a timeout in jiffies.
|
|
This can be used to non-lethally probe the health of endpoint 1. */
|
|
static int pvr2_send_request_ex(struct pvr2_hdw *hdw,
|
|
unsigned int timeout,int probe_fl,
|
|
void *write_data,unsigned int write_len,
|
|
void *read_data,unsigned int read_len)
|
|
{
|
|
unsigned int idx;
|
|
int status = 0;
|
|
struct hdw_timer timer = {
|
|
.hdw = hdw,
|
|
};
|
|
|
|
if (!hdw->ctl_lock_held) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Attempted to execute control transfer without lock!!");
|
|
return -EDEADLK;
|
|
}
|
|
if (!hdw->flag_ok && !probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Attempted to execute control transfer when device not ok");
|
|
return -EIO;
|
|
}
|
|
if (!(hdw->ctl_read_urb && hdw->ctl_write_urb)) {
|
|
if (!probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Attempted to execute control transfer when USB is disconnected");
|
|
}
|
|
return -ENOTTY;
|
|
}
|
|
|
|
/* Ensure that we have sane parameters */
|
|
if (!write_data) write_len = 0;
|
|
if (!read_data) read_len = 0;
|
|
if (write_len > PVR2_CTL_BUFFSIZE) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Attempted to execute %d byte control-write transfer (limit=%d)",
|
|
write_len,PVR2_CTL_BUFFSIZE);
|
|
return -EINVAL;
|
|
}
|
|
if (read_len > PVR2_CTL_BUFFSIZE) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Attempted to execute %d byte control-read transfer (limit=%d)",
|
|
write_len,PVR2_CTL_BUFFSIZE);
|
|
return -EINVAL;
|
|
}
|
|
if ((!write_len) && (!read_len)) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Attempted to execute null control transfer?");
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
hdw->cmd_debug_state = 1;
|
|
if (write_len && write_data)
|
|
hdw->cmd_debug_code = ((unsigned char *)write_data)[0];
|
|
else
|
|
hdw->cmd_debug_code = 0;
|
|
hdw->cmd_debug_write_len = write_len;
|
|
hdw->cmd_debug_read_len = read_len;
|
|
|
|
/* Initialize common stuff */
|
|
init_completion(&hdw->ctl_done);
|
|
hdw->ctl_timeout_flag = 0;
|
|
hdw->ctl_write_pend_flag = 0;
|
|
hdw->ctl_read_pend_flag = 0;
|
|
timer_setup_on_stack(&timer.timer, pvr2_ctl_timeout, 0);
|
|
timer.timer.expires = jiffies + timeout;
|
|
|
|
if (write_len && write_data) {
|
|
hdw->cmd_debug_state = 2;
|
|
/* Transfer write data to internal buffer */
|
|
for (idx = 0; idx < write_len; idx++) {
|
|
hdw->ctl_write_buffer[idx] =
|
|
((unsigned char *)write_data)[idx];
|
|
}
|
|
/* Initiate a write request */
|
|
usb_fill_bulk_urb(hdw->ctl_write_urb,
|
|
hdw->usb_dev,
|
|
usb_sndbulkpipe(hdw->usb_dev,
|
|
PVR2_CTL_WRITE_ENDPOINT),
|
|
hdw->ctl_write_buffer,
|
|
write_len,
|
|
pvr2_ctl_write_complete,
|
|
hdw);
|
|
hdw->ctl_write_urb->actual_length = 0;
|
|
hdw->ctl_write_pend_flag = !0;
|
|
if (usb_urb_ep_type_check(hdw->ctl_write_urb)) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Invalid write control endpoint");
|
|
return -EINVAL;
|
|
}
|
|
status = usb_submit_urb(hdw->ctl_write_urb,GFP_KERNEL);
|
|
if (status < 0) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Failed to submit write-control URB status=%d",
|
|
status);
|
|
hdw->ctl_write_pend_flag = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (read_len) {
|
|
hdw->cmd_debug_state = 3;
|
|
memset(hdw->ctl_read_buffer,0x43,read_len);
|
|
/* Initiate a read request */
|
|
usb_fill_bulk_urb(hdw->ctl_read_urb,
|
|
hdw->usb_dev,
|
|
usb_rcvbulkpipe(hdw->usb_dev,
|
|
PVR2_CTL_READ_ENDPOINT),
|
|
hdw->ctl_read_buffer,
|
|
read_len,
|
|
pvr2_ctl_read_complete,
|
|
hdw);
|
|
hdw->ctl_read_urb->actual_length = 0;
|
|
hdw->ctl_read_pend_flag = !0;
|
|
if (usb_urb_ep_type_check(hdw->ctl_read_urb)) {
|
|
pvr2_trace(
|
|
PVR2_TRACE_ERROR_LEGS,
|
|
"Invalid read control endpoint");
|
|
return -EINVAL;
|
|
}
|
|
status = usb_submit_urb(hdw->ctl_read_urb,GFP_KERNEL);
|
|
if (status < 0) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Failed to submit read-control URB status=%d",
|
|
status);
|
|
hdw->ctl_read_pend_flag = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Start timer */
|
|
add_timer(&timer.timer);
|
|
|
|
/* Now wait for all I/O to complete */
|
|
hdw->cmd_debug_state = 4;
|
|
while (hdw->ctl_write_pend_flag || hdw->ctl_read_pend_flag) {
|
|
wait_for_completion(&hdw->ctl_done);
|
|
}
|
|
hdw->cmd_debug_state = 5;
|
|
|
|
/* Stop timer */
|
|
del_timer_sync(&timer.timer);
|
|
|
|
hdw->cmd_debug_state = 6;
|
|
status = 0;
|
|
|
|
if (hdw->ctl_timeout_flag) {
|
|
status = -ETIMEDOUT;
|
|
if (!probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Timed out control-write");
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
if (write_len) {
|
|
/* Validate results of write request */
|
|
if ((hdw->ctl_write_urb->status != 0) &&
|
|
(hdw->ctl_write_urb->status != -ENOENT) &&
|
|
(hdw->ctl_write_urb->status != -ESHUTDOWN) &&
|
|
(hdw->ctl_write_urb->status != -ECONNRESET)) {
|
|
/* USB subsystem is reporting some kind of failure
|
|
on the write */
|
|
status = hdw->ctl_write_urb->status;
|
|
if (!probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"control-write URB failure, status=%d",
|
|
status);
|
|
}
|
|
goto done;
|
|
}
|
|
if (hdw->ctl_write_urb->actual_length < write_len) {
|
|
/* Failed to write enough data */
|
|
status = -EIO;
|
|
if (!probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"control-write URB short, expected=%d got=%d",
|
|
write_len,
|
|
hdw->ctl_write_urb->actual_length);
|
|
}
|
|
goto done;
|
|
}
|
|
}
|
|
if (read_len && read_data) {
|
|
/* Validate results of read request */
|
|
if ((hdw->ctl_read_urb->status != 0) &&
|
|
(hdw->ctl_read_urb->status != -ENOENT) &&
|
|
(hdw->ctl_read_urb->status != -ESHUTDOWN) &&
|
|
(hdw->ctl_read_urb->status != -ECONNRESET)) {
|
|
/* USB subsystem is reporting some kind of failure
|
|
on the read */
|
|
status = hdw->ctl_read_urb->status;
|
|
if (!probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"control-read URB failure, status=%d",
|
|
status);
|
|
}
|
|
goto done;
|
|
}
|
|
if (hdw->ctl_read_urb->actual_length < read_len) {
|
|
/* Failed to read enough data */
|
|
status = -EIO;
|
|
if (!probe_fl) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"control-read URB short, expected=%d got=%d",
|
|
read_len,
|
|
hdw->ctl_read_urb->actual_length);
|
|
}
|
|
goto done;
|
|
}
|
|
/* Transfer retrieved data out from internal buffer */
|
|
for (idx = 0; idx < read_len; idx++) {
|
|
((unsigned char *)read_data)[idx] =
|
|
hdw->ctl_read_buffer[idx];
|
|
}
|
|
}
|
|
|
|
done:
|
|
|
|
hdw->cmd_debug_state = 0;
|
|
if ((status < 0) && (!probe_fl)) {
|
|
pvr2_hdw_render_useless(hdw);
|
|
}
|
|
destroy_timer_on_stack(&timer.timer);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
int pvr2_send_request(struct pvr2_hdw *hdw,
|
|
void *write_data,unsigned int write_len,
|
|
void *read_data,unsigned int read_len)
|
|
{
|
|
return pvr2_send_request_ex(hdw,HZ*4,0,
|
|
write_data,write_len,
|
|
read_data,read_len);
|
|
}
|
|
|
|
|
|
static int pvr2_issue_simple_cmd(struct pvr2_hdw *hdw,u32 cmdcode)
|
|
{
|
|
int ret;
|
|
unsigned int cnt = 1;
|
|
unsigned int args = 0;
|
|
LOCK_TAKE(hdw->ctl_lock);
|
|
hdw->cmd_buffer[0] = cmdcode & 0xffu;
|
|
args = (cmdcode >> 8) & 0xffu;
|
|
args = (args > 2) ? 2 : args;
|
|
if (args) {
|
|
cnt += args;
|
|
hdw->cmd_buffer[1] = (cmdcode >> 16) & 0xffu;
|
|
if (args > 1) {
|
|
hdw->cmd_buffer[2] = (cmdcode >> 24) & 0xffu;
|
|
}
|
|
}
|
|
if (pvrusb2_debug & PVR2_TRACE_INIT) {
|
|
unsigned int idx;
|
|
unsigned int ccnt,bcnt;
|
|
char tbuf[50];
|
|
cmdcode &= 0xffu;
|
|
bcnt = 0;
|
|
ccnt = scnprintf(tbuf+bcnt,
|
|
sizeof(tbuf)-bcnt,
|
|
"Sending FX2 command 0x%x",cmdcode);
|
|
bcnt += ccnt;
|
|
for (idx = 0; idx < ARRAY_SIZE(pvr2_fx2cmd_desc); idx++) {
|
|
if (pvr2_fx2cmd_desc[idx].id == cmdcode) {
|
|
ccnt = scnprintf(tbuf+bcnt,
|
|
sizeof(tbuf)-bcnt,
|
|
" \"%s\"",
|
|
pvr2_fx2cmd_desc[idx].desc);
|
|
bcnt += ccnt;
|
|
break;
|
|
}
|
|
}
|
|
if (args) {
|
|
ccnt = scnprintf(tbuf+bcnt,
|
|
sizeof(tbuf)-bcnt,
|
|
" (%u",hdw->cmd_buffer[1]);
|
|
bcnt += ccnt;
|
|
if (args > 1) {
|
|
ccnt = scnprintf(tbuf+bcnt,
|
|
sizeof(tbuf)-bcnt,
|
|
",%u",hdw->cmd_buffer[2]);
|
|
bcnt += ccnt;
|
|
}
|
|
ccnt = scnprintf(tbuf+bcnt,
|
|
sizeof(tbuf)-bcnt,
|
|
")");
|
|
bcnt += ccnt;
|
|
}
|
|
pvr2_trace(PVR2_TRACE_INIT,"%.*s",bcnt,tbuf);
|
|
}
|
|
ret = pvr2_send_request(hdw,hdw->cmd_buffer,cnt,NULL,0);
|
|
LOCK_GIVE(hdw->ctl_lock);
|
|
return ret;
|
|
}
|
|
|
|
|
|
int pvr2_write_register(struct pvr2_hdw *hdw, u16 reg, u32 data)
|
|
{
|
|
int ret;
|
|
|
|
LOCK_TAKE(hdw->ctl_lock);
|
|
|
|
hdw->cmd_buffer[0] = FX2CMD_REG_WRITE; /* write register prefix */
|
|
PVR2_DECOMPOSE_LE(hdw->cmd_buffer,1,data);
|
|
hdw->cmd_buffer[5] = 0;
|
|
hdw->cmd_buffer[6] = (reg >> 8) & 0xff;
|
|
hdw->cmd_buffer[7] = reg & 0xff;
|
|
|
|
|
|
ret = pvr2_send_request(hdw, hdw->cmd_buffer, 8, hdw->cmd_buffer, 0);
|
|
|
|
LOCK_GIVE(hdw->ctl_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int pvr2_read_register(struct pvr2_hdw *hdw, u16 reg, u32 *data)
|
|
{
|
|
int ret = 0;
|
|
|
|
LOCK_TAKE(hdw->ctl_lock);
|
|
|
|
hdw->cmd_buffer[0] = FX2CMD_REG_READ; /* read register prefix */
|
|
hdw->cmd_buffer[1] = 0;
|
|
hdw->cmd_buffer[2] = 0;
|
|
hdw->cmd_buffer[3] = 0;
|
|
hdw->cmd_buffer[4] = 0;
|
|
hdw->cmd_buffer[5] = 0;
|
|
hdw->cmd_buffer[6] = (reg >> 8) & 0xff;
|
|
hdw->cmd_buffer[7] = reg & 0xff;
|
|
|
|
ret |= pvr2_send_request(hdw, hdw->cmd_buffer, 8, hdw->cmd_buffer, 4);
|
|
*data = PVR2_COMPOSE_LE(hdw->cmd_buffer,0);
|
|
|
|
LOCK_GIVE(hdw->ctl_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
void pvr2_hdw_render_useless(struct pvr2_hdw *hdw)
|
|
{
|
|
if (!hdw->flag_ok) return;
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Device being rendered inoperable");
|
|
if (hdw->vid_stream) {
|
|
pvr2_stream_setup(hdw->vid_stream,NULL,0,0);
|
|
}
|
|
hdw->flag_ok = 0;
|
|
trace_stbit("flag_ok",hdw->flag_ok);
|
|
pvr2_hdw_state_sched(hdw);
|
|
}
|
|
|
|
|
|
void pvr2_hdw_device_reset(struct pvr2_hdw *hdw)
|
|
{
|
|
int ret;
|
|
pvr2_trace(PVR2_TRACE_INIT,"Performing a device reset...");
|
|
ret = usb_lock_device_for_reset(hdw->usb_dev,NULL);
|
|
if (ret == 0) {
|
|
ret = usb_reset_device(hdw->usb_dev);
|
|
usb_unlock_device(hdw->usb_dev);
|
|
} else {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Failed to lock USB device ret=%d",ret);
|
|
}
|
|
if (init_pause_msec) {
|
|
pvr2_trace(PVR2_TRACE_INFO,
|
|
"Waiting %u msec for hardware to settle",
|
|
init_pause_msec);
|
|
msleep(init_pause_msec);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void pvr2_hdw_cpureset_assert(struct pvr2_hdw *hdw,int val)
|
|
{
|
|
char *da;
|
|
unsigned int pipe;
|
|
int ret;
|
|
|
|
if (!hdw->usb_dev) return;
|
|
|
|
da = kmalloc(16, GFP_KERNEL);
|
|
|
|
if (da == NULL) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"Unable to allocate memory to control CPU reset");
|
|
return;
|
|
}
|
|
|
|
pvr2_trace(PVR2_TRACE_INIT,"cpureset_assert(%d)",val);
|
|
|
|
da[0] = val ? 0x01 : 0x00;
|
|
|
|
/* Write the CPUCS register on the 8051. The lsb of the register
|
|
is the reset bit; a 1 asserts reset while a 0 clears it. */
|
|
pipe = usb_sndctrlpipe(hdw->usb_dev, 0);
|
|
ret = usb_control_msg(hdw->usb_dev,pipe,0xa0,0x40,0xe600,0,da,1,1000);
|
|
if (ret < 0) {
|
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
|
"cpureset_assert(%d) error=%d",val,ret);
|
|
pvr2_hdw_render_useless(hdw);
|
|
}
|
|
|
|
kfree(da);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_cmd_deep_reset(struct pvr2_hdw *hdw)
|
|
{
|
|
return pvr2_issue_simple_cmd(hdw,FX2CMD_DEEP_RESET);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_cmd_powerup(struct pvr2_hdw *hdw)
|
|
{
|
|
return pvr2_issue_simple_cmd(hdw,FX2CMD_POWER_ON);
|
|
}
|
|
|
|
|
|
|
|
int pvr2_hdw_cmd_decoder_reset(struct pvr2_hdw *hdw)
|
|
{
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Requesting decoder reset");
|
|
if (hdw->decoder_client_id) {
|
|
v4l2_device_call_all(&hdw->v4l2_dev, hdw->decoder_client_id,
|
|
core, reset, 0);
|
|
pvr2_hdw_cx25840_vbi_hack(hdw);
|
|
return 0;
|
|
}
|
|
pvr2_trace(PVR2_TRACE_INIT,
|
|
"Unable to reset decoder: nothing attached");
|
|
return -ENOTTY;
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_cmd_hcw_demod_reset(struct pvr2_hdw *hdw, int onoff)
|
|
{
|
|
hdw->flag_ok = !0;
|
|
|
|
/* Use this for Hauppauge 160xxx only */
|
|
if (le16_to_cpu(hdw->usb_dev->descriptor.idVendor) == 0x2040 &&
|
|
(le16_to_cpu(hdw->usb_dev->descriptor.idProduct) == 0x7502 ||
|
|
le16_to_cpu(hdw->usb_dev->descriptor.idProduct) == 0x7510)) {
|
|
pr_debug("%s(): resetting demod on Hauppauge 160xxx platform skipped\n",
|
|
__func__);
|
|
/* Can't reset 160xxx or it will trash Demod tristate */
|
|
return pvr2_issue_simple_cmd(hdw,
|
|
FX2CMD_HCW_MAKO_SLEEP_PIN |
|
|
(1 << 8) |
|
|
((onoff ? 1 : 0) << 16));
|
|
}
|
|
|
|
return pvr2_issue_simple_cmd(hdw,
|
|
FX2CMD_HCW_DEMOD_RESETIN |
|
|
(1 << 8) |
|
|
((onoff ? 1 : 0) << 16));
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_cmd_onair_fe_power_ctrl(struct pvr2_hdw *hdw, int onoff)
|
|
{
|
|
hdw->flag_ok = !0;
|
|
return pvr2_issue_simple_cmd(hdw,(onoff ?
|
|
FX2CMD_ONAIR_DTV_POWER_ON :
|
|
FX2CMD_ONAIR_DTV_POWER_OFF));
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_cmd_onair_digital_path_ctrl(struct pvr2_hdw *hdw,
|
|
int onoff)
|
|
{
|
|
return pvr2_issue_simple_cmd(hdw,(onoff ?
|
|
FX2CMD_ONAIR_DTV_STREAMING_ON :
|
|
FX2CMD_ONAIR_DTV_STREAMING_OFF));
|
|
}
|
|
|
|
|
|
static void pvr2_hdw_cmd_modeswitch(struct pvr2_hdw *hdw,int digitalFl)
|
|
{
|
|
int cmode;
|
|
/* Compare digital/analog desired setting with current setting. If
|
|
they don't match, fix it... */
|
|
cmode = (digitalFl ? PVR2_PATHWAY_DIGITAL : PVR2_PATHWAY_ANALOG);
|
|
if (cmode == hdw->pathway_state) {
|
|
/* They match; nothing to do */
|
|
return;
|
|
}
|
|
|
|
switch (hdw->hdw_desc->digital_control_scheme) {
|
|
case PVR2_DIGITAL_SCHEME_HAUPPAUGE:
|
|
pvr2_hdw_cmd_hcw_demod_reset(hdw,digitalFl);
|
|
if (cmode == PVR2_PATHWAY_ANALOG) {
|
|
/* If moving to analog mode, also force the decoder
|
|
to reset. If no decoder is attached, then it's
|
|
ok to ignore this because if/when the decoder
|
|
attaches, it will reset itself at that time. */
|
|
pvr2_hdw_cmd_decoder_reset(hdw);
|
|
}
|
|
break;
|
|
case PVR2_DIGITAL_SCHEME_ONAIR:
|
|
/* Supposedly we should always have the power on whether in
|
|
digital or analog mode. But for now do what appears to
|
|
work... */
|
|
pvr2_hdw_cmd_onair_fe_power_ctrl(hdw,digitalFl);
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
pvr2_hdw_untrip_unlocked(hdw);
|
|
hdw->pathway_state = cmode;
|
|
}
|
|
|
|
|
|
static void pvr2_led_ctrl_hauppauge(struct pvr2_hdw *hdw, int onoff)
|
|
{
|
|
/* change some GPIO data
|
|
*
|
|
* note: bit d7 of dir appears to control the LED,
|
|
* so we shut it off here.
|
|
*
|
|
*/
|
|
if (onoff) {
|
|
pvr2_hdw_gpio_chg_dir(hdw, 0xffffffff, 0x00000481);
|
|
} else {
|
|
pvr2_hdw_gpio_chg_dir(hdw, 0xffffffff, 0x00000401);
|
|
}
|
|
pvr2_hdw_gpio_chg_out(hdw, 0xffffffff, 0x00000000);
|
|
}
|
|
|
|
|
|
typedef void (*led_method_func)(struct pvr2_hdw *,int);
|
|
|
|
static led_method_func led_methods[] = {
|
|
[PVR2_LED_SCHEME_HAUPPAUGE] = pvr2_led_ctrl_hauppauge,
|
|
};
|
|
|
|
|
|
/* Toggle LED */
|
|
static void pvr2_led_ctrl(struct pvr2_hdw *hdw,int onoff)
|
|
{
|
|
unsigned int scheme_id;
|
|
led_method_func fp;
|
|
|
|
if ((!onoff) == (!hdw->led_on)) return;
|
|
|
|
hdw->led_on = onoff != 0;
|
|
|
|
scheme_id = hdw->hdw_desc->led_scheme;
|
|
if (scheme_id < ARRAY_SIZE(led_methods)) {
|
|
fp = led_methods[scheme_id];
|
|
} else {
|
|
fp = NULL;
|
|
}
|
|
|
|
if (fp) (*fp)(hdw,onoff);
|
|
}
|
|
|
|
|
|
/* Stop / start video stream transport */
|
|
static int pvr2_hdw_cmd_usbstream(struct pvr2_hdw *hdw,int runFl)
|
|
{
|
|
int ret;
|
|
|
|
/* If we're in analog mode, then just issue the usual analog
|
|
command. */
|
|
if (hdw->pathway_state == PVR2_PATHWAY_ANALOG) {
|
|
return pvr2_issue_simple_cmd(hdw,
|
|
(runFl ?
|
|
FX2CMD_STREAMING_ON :
|
|
FX2CMD_STREAMING_OFF));
|
|
/*Note: Not reached */
|
|
}
|
|
|
|
if (hdw->pathway_state != PVR2_PATHWAY_DIGITAL) {
|
|
/* Whoops, we don't know what mode we're in... */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* To get here we have to be in digital mode. The mechanism here
|
|
is unfortunately different for different vendors. So we switch
|
|
on the device's digital scheme attribute in order to figure out
|
|
what to do. */
|
|
switch (hdw->hdw_desc->digital_control_scheme) {
|
|
case PVR2_DIGITAL_SCHEME_HAUPPAUGE:
|
|
return pvr2_issue_simple_cmd(hdw,
|
|
(runFl ?
|
|
FX2CMD_HCW_DTV_STREAMING_ON :
|
|
FX2CMD_HCW_DTV_STREAMING_OFF));
|
|
case PVR2_DIGITAL_SCHEME_ONAIR:
|
|
ret = pvr2_issue_simple_cmd(hdw,
|
|
(runFl ?
|
|
FX2CMD_STREAMING_ON :
|
|
FX2CMD_STREAMING_OFF));
|
|
if (ret) return ret;
|
|
return pvr2_hdw_cmd_onair_digital_path_ctrl(hdw,runFl);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Evaluate whether or not state_pathway_ok can change */
|
|
static int state_eval_pathway_ok(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_pathway_ok) {
|
|
/* Nothing to do if pathway is already ok */
|
|
return 0;
|
|
}
|
|
if (!hdw->state_pipeline_idle) {
|
|
/* Not allowed to change anything if pipeline is not idle */
|
|
return 0;
|
|
}
|
|
pvr2_hdw_cmd_modeswitch(hdw,hdw->input_val == PVR2_CVAL_INPUT_DTV);
|
|
hdw->state_pathway_ok = !0;
|
|
trace_stbit("state_pathway_ok",hdw->state_pathway_ok);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Evaluate whether or not state_encoder_ok can change */
|
|
static int state_eval_encoder_ok(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_encoder_ok) return 0;
|
|
if (hdw->flag_tripped) return 0;
|
|
if (hdw->state_encoder_run) return 0;
|
|
if (hdw->state_encoder_config) return 0;
|
|
if (hdw->state_decoder_run) return 0;
|
|
if (hdw->state_usbstream_run) return 0;
|
|
if (hdw->pathway_state == PVR2_PATHWAY_DIGITAL) {
|
|
if (!hdw->hdw_desc->flag_digital_requires_cx23416) return 0;
|
|
} else if (hdw->pathway_state != PVR2_PATHWAY_ANALOG) {
|
|
return 0;
|
|
}
|
|
|
|
if (pvr2_upload_firmware2(hdw) < 0) {
|
|
hdw->flag_tripped = !0;
|
|
trace_stbit("flag_tripped",hdw->flag_tripped);
|
|
return !0;
|
|
}
|
|
hdw->state_encoder_ok = !0;
|
|
trace_stbit("state_encoder_ok",hdw->state_encoder_ok);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Evaluate whether or not state_encoder_config can change */
|
|
static int state_eval_encoder_config(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_encoder_config) {
|
|
if (hdw->state_encoder_ok) {
|
|
if (hdw->state_pipeline_req &&
|
|
!hdw->state_pipeline_pause) return 0;
|
|
}
|
|
hdw->state_encoder_config = 0;
|
|
hdw->state_encoder_waitok = 0;
|
|
trace_stbit("state_encoder_waitok",hdw->state_encoder_waitok);
|
|
/* paranoia - solve race if timer just completed */
|
|
del_timer_sync(&hdw->encoder_wait_timer);
|
|
} else {
|
|
if (!hdw->state_pathway_ok ||
|
|
(hdw->pathway_state != PVR2_PATHWAY_ANALOG) ||
|
|
!hdw->state_encoder_ok ||
|
|
!hdw->state_pipeline_idle ||
|
|
hdw->state_pipeline_pause ||
|
|
!hdw->state_pipeline_req ||
|
|
!hdw->state_pipeline_config) {
|
|
/* We must reset the enforced wait interval if
|
|
anything has happened that might have disturbed
|
|
the encoder. This should be a rare case. */
|
|
if (timer_pending(&hdw->encoder_wait_timer)) {
|
|
del_timer_sync(&hdw->encoder_wait_timer);
|
|
}
|
|
if (hdw->state_encoder_waitok) {
|
|
/* Must clear the state - therefore we did
|
|
something to a state bit and must also
|
|
return true. */
|
|
hdw->state_encoder_waitok = 0;
|
|
trace_stbit("state_encoder_waitok",
|
|
hdw->state_encoder_waitok);
|
|
return !0;
|
|
}
|
|
return 0;
|
|
}
|
|
if (!hdw->state_encoder_waitok) {
|
|
if (!timer_pending(&hdw->encoder_wait_timer)) {
|
|
/* waitok flag wasn't set and timer isn't
|
|
running. Check flag once more to avoid
|
|
a race then start the timer. This is
|
|
the point when we measure out a minimal
|
|
quiet interval before doing something to
|
|
the encoder. */
|
|
if (!hdw->state_encoder_waitok) {
|
|
hdw->encoder_wait_timer.expires =
|
|
jiffies + msecs_to_jiffies(
|
|
TIME_MSEC_ENCODER_WAIT);
|
|
add_timer(&hdw->encoder_wait_timer);
|
|
}
|
|
}
|
|
/* We can't continue until we know we have been
|
|
quiet for the interval measured by this
|
|
timer. */
|
|
return 0;
|
|
}
|
|
pvr2_encoder_configure(hdw);
|
|
if (hdw->state_encoder_ok) hdw->state_encoder_config = !0;
|
|
}
|
|
trace_stbit("state_encoder_config",hdw->state_encoder_config);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Return true if the encoder should not be running. */
|
|
static int state_check_disable_encoder_run(struct pvr2_hdw *hdw)
|
|
{
|
|
if (!hdw->state_encoder_ok) {
|
|
/* Encoder isn't healthy at the moment, so stop it. */
|
|
return !0;
|
|
}
|
|
if (!hdw->state_pathway_ok) {
|
|
/* Mode is not understood at the moment (i.e. it wants to
|
|
change), so encoder must be stopped. */
|
|
return !0;
|
|
}
|
|
|
|
switch (hdw->pathway_state) {
|
|
case PVR2_PATHWAY_ANALOG:
|
|
if (!hdw->state_decoder_run) {
|
|
/* We're in analog mode and the decoder is not
|
|
running; thus the encoder should be stopped as
|
|
well. */
|
|
return !0;
|
|
}
|
|
break;
|
|
case PVR2_PATHWAY_DIGITAL:
|
|
if (hdw->state_encoder_runok) {
|
|
/* This is a funny case. We're in digital mode so
|
|
really the encoder should be stopped. However
|
|
if it really is running, only kill it after
|
|
runok has been set. This gives a chance for the
|
|
onair quirk to function (encoder must run
|
|
briefly first, at least once, before onair
|
|
digital streaming can work). */
|
|
return !0;
|
|
}
|
|
break;
|
|
default:
|
|
/* Unknown mode; so encoder should be stopped. */
|
|
return !0;
|
|
}
|
|
|
|
/* If we get here, we haven't found a reason to stop the
|
|
encoder. */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return true if the encoder should be running. */
|
|
static int state_check_enable_encoder_run(struct pvr2_hdw *hdw)
|
|
{
|
|
if (!hdw->state_encoder_ok) {
|
|
/* Don't run the encoder if it isn't healthy... */
|
|
return 0;
|
|
}
|
|
if (!hdw->state_pathway_ok) {
|
|
/* Don't run the encoder if we don't (yet) know what mode
|
|
we need to be in... */
|
|
return 0;
|
|
}
|
|
|
|
switch (hdw->pathway_state) {
|
|
case PVR2_PATHWAY_ANALOG:
|
|
if (hdw->state_decoder_run && hdw->state_decoder_ready) {
|
|
/* In analog mode, if the decoder is running, then
|
|
run the encoder. */
|
|
return !0;
|
|
}
|
|
break;
|
|
case PVR2_PATHWAY_DIGITAL:
|
|
if ((hdw->hdw_desc->digital_control_scheme ==
|
|
PVR2_DIGITAL_SCHEME_ONAIR) &&
|
|
!hdw->state_encoder_runok) {
|
|
/* This is a quirk. OnAir hardware won't stream
|
|
digital until the encoder has been run at least
|
|
once, for a minimal period of time (empiricially
|
|
measured to be 1/4 second). So if we're on
|
|
OnAir hardware and the encoder has never been
|
|
run at all, then start the encoder. Normal
|
|
state machine logic in the driver will
|
|
automatically handle the remaining bits. */
|
|
return !0;
|
|
}
|
|
break;
|
|
default:
|
|
/* For completeness (unknown mode; encoder won't run ever) */
|
|
break;
|
|
}
|
|
/* If we get here, then we haven't found any reason to run the
|
|
encoder, so don't run it. */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Evaluate whether or not state_encoder_run can change */
|
|
static int state_eval_encoder_run(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_encoder_run) {
|
|
if (!state_check_disable_encoder_run(hdw)) return 0;
|
|
if (hdw->state_encoder_ok) {
|
|
del_timer_sync(&hdw->encoder_run_timer);
|
|
if (pvr2_encoder_stop(hdw) < 0) return !0;
|
|
}
|
|
hdw->state_encoder_run = 0;
|
|
} else {
|
|
if (!state_check_enable_encoder_run(hdw)) return 0;
|
|
if (pvr2_encoder_start(hdw) < 0) return !0;
|
|
hdw->state_encoder_run = !0;
|
|
if (!hdw->state_encoder_runok) {
|
|
hdw->encoder_run_timer.expires = jiffies +
|
|
msecs_to_jiffies(TIME_MSEC_ENCODER_OK);
|
|
add_timer(&hdw->encoder_run_timer);
|
|
}
|
|
}
|
|
trace_stbit("state_encoder_run",hdw->state_encoder_run);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Timeout function for quiescent timer. */
|
|
static void pvr2_hdw_quiescent_timeout(struct timer_list *t)
|
|
{
|
|
struct pvr2_hdw *hdw = from_timer(hdw, t, quiescent_timer);
|
|
hdw->state_decoder_quiescent = !0;
|
|
trace_stbit("state_decoder_quiescent",hdw->state_decoder_quiescent);
|
|
hdw->state_stale = !0;
|
|
schedule_work(&hdw->workpoll);
|
|
}
|
|
|
|
|
|
/* Timeout function for decoder stabilization timer. */
|
|
static void pvr2_hdw_decoder_stabilization_timeout(struct timer_list *t)
|
|
{
|
|
struct pvr2_hdw *hdw = from_timer(hdw, t, decoder_stabilization_timer);
|
|
hdw->state_decoder_ready = !0;
|
|
trace_stbit("state_decoder_ready", hdw->state_decoder_ready);
|
|
hdw->state_stale = !0;
|
|
schedule_work(&hdw->workpoll);
|
|
}
|
|
|
|
|
|
/* Timeout function for encoder wait timer. */
|
|
static void pvr2_hdw_encoder_wait_timeout(struct timer_list *t)
|
|
{
|
|
struct pvr2_hdw *hdw = from_timer(hdw, t, encoder_wait_timer);
|
|
hdw->state_encoder_waitok = !0;
|
|
trace_stbit("state_encoder_waitok",hdw->state_encoder_waitok);
|
|
hdw->state_stale = !0;
|
|
schedule_work(&hdw->workpoll);
|
|
}
|
|
|
|
|
|
/* Timeout function for encoder run timer. */
|
|
static void pvr2_hdw_encoder_run_timeout(struct timer_list *t)
|
|
{
|
|
struct pvr2_hdw *hdw = from_timer(hdw, t, encoder_run_timer);
|
|
if (!hdw->state_encoder_runok) {
|
|
hdw->state_encoder_runok = !0;
|
|
trace_stbit("state_encoder_runok",hdw->state_encoder_runok);
|
|
hdw->state_stale = !0;
|
|
schedule_work(&hdw->workpoll);
|
|
}
|
|
}
|
|
|
|
|
|
/* Evaluate whether or not state_decoder_run can change */
|
|
static int state_eval_decoder_run(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_decoder_run) {
|
|
if (hdw->state_encoder_ok) {
|
|
if (hdw->state_pipeline_req &&
|
|
!hdw->state_pipeline_pause &&
|
|
hdw->state_pathway_ok) return 0;
|
|
}
|
|
if (!hdw->flag_decoder_missed) {
|
|
pvr2_decoder_enable(hdw,0);
|
|
}
|
|
hdw->state_decoder_quiescent = 0;
|
|
hdw->state_decoder_run = 0;
|
|
/* paranoia - solve race if timer(s) just completed */
|
|
del_timer_sync(&hdw->quiescent_timer);
|
|
/* Kill the stabilization timer, in case we're killing the
|
|
encoder before the previous stabilization interval has
|
|
been properly timed. */
|
|
del_timer_sync(&hdw->decoder_stabilization_timer);
|
|
hdw->state_decoder_ready = 0;
|
|
} else {
|
|
if (!hdw->state_decoder_quiescent) {
|
|
if (!timer_pending(&hdw->quiescent_timer)) {
|
|
/* We don't do something about the
|
|
quiescent timer until right here because
|
|
we also want to catch cases where the
|
|
decoder was already not running (like
|
|
after initialization) as opposed to
|
|
knowing that we had just stopped it.
|
|
The second flag check is here to cover a
|
|
race - the timer could have run and set
|
|
this flag just after the previous check
|
|
but before we did the pending check. */
|
|
if (!hdw->state_decoder_quiescent) {
|
|
hdw->quiescent_timer.expires =
|
|
jiffies + msecs_to_jiffies(
|
|
TIME_MSEC_DECODER_WAIT);
|
|
add_timer(&hdw->quiescent_timer);
|
|
}
|
|
}
|
|
/* Don't allow decoder to start again until it has
|
|
been quiesced first. This little detail should
|
|
hopefully further stabilize the encoder. */
|
|
return 0;
|
|
}
|
|
if (!hdw->state_pathway_ok ||
|
|
(hdw->pathway_state != PVR2_PATHWAY_ANALOG) ||
|
|
!hdw->state_pipeline_req ||
|
|
hdw->state_pipeline_pause ||
|
|
!hdw->state_pipeline_config ||
|
|
!hdw->state_encoder_config ||
|
|
!hdw->state_encoder_ok) return 0;
|
|
del_timer_sync(&hdw->quiescent_timer);
|
|
if (hdw->flag_decoder_missed) return 0;
|
|
if (pvr2_decoder_enable(hdw,!0) < 0) return 0;
|
|
hdw->state_decoder_quiescent = 0;
|
|
hdw->state_decoder_ready = 0;
|
|
hdw->state_decoder_run = !0;
|
|
if (hdw->decoder_client_id == PVR2_CLIENT_ID_SAA7115) {
|
|
hdw->decoder_stabilization_timer.expires =
|
|
jiffies + msecs_to_jiffies(
|
|
TIME_MSEC_DECODER_STABILIZATION_WAIT);
|
|
add_timer(&hdw->decoder_stabilization_timer);
|
|
} else {
|
|
hdw->state_decoder_ready = !0;
|
|
}
|
|
}
|
|
trace_stbit("state_decoder_quiescent",hdw->state_decoder_quiescent);
|
|
trace_stbit("state_decoder_run",hdw->state_decoder_run);
|
|
trace_stbit("state_decoder_ready", hdw->state_decoder_ready);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Evaluate whether or not state_usbstream_run can change */
|
|
static int state_eval_usbstream_run(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_usbstream_run) {
|
|
int fl = !0;
|
|
if (hdw->pathway_state == PVR2_PATHWAY_ANALOG) {
|
|
fl = (hdw->state_encoder_ok &&
|
|
hdw->state_encoder_run);
|
|
} else if ((hdw->pathway_state == PVR2_PATHWAY_DIGITAL) &&
|
|
(hdw->hdw_desc->flag_digital_requires_cx23416)) {
|
|
fl = hdw->state_encoder_ok;
|
|
}
|
|
if (fl &&
|
|
hdw->state_pipeline_req &&
|
|
!hdw->state_pipeline_pause &&
|
|
hdw->state_pathway_ok) {
|
|
return 0;
|
|
}
|
|
pvr2_hdw_cmd_usbstream(hdw,0);
|
|
hdw->state_usbstream_run = 0;
|
|
} else {
|
|
if (!hdw->state_pipeline_req ||
|
|
hdw->state_pipeline_pause ||
|
|
!hdw->state_pathway_ok) return 0;
|
|
if (hdw->pathway_state == PVR2_PATHWAY_ANALOG) {
|
|
if (!hdw->state_encoder_ok ||
|
|
!hdw->state_encoder_run) return 0;
|
|
} else if ((hdw->pathway_state == PVR2_PATHWAY_DIGITAL) &&
|
|
(hdw->hdw_desc->flag_digital_requires_cx23416)) {
|
|
if (!hdw->state_encoder_ok) return 0;
|
|
if (hdw->state_encoder_run) return 0;
|
|
if (hdw->hdw_desc->digital_control_scheme ==
|
|
PVR2_DIGITAL_SCHEME_ONAIR) {
|
|
/* OnAir digital receivers won't stream
|
|
unless the analog encoder has run first.
|
|
Why? I have no idea. But don't even
|
|
try until we know the analog side is
|
|
known to have run. */
|
|
if (!hdw->state_encoder_runok) return 0;
|
|
}
|
|
}
|
|
if (pvr2_hdw_cmd_usbstream(hdw,!0) < 0) return 0;
|
|
hdw->state_usbstream_run = !0;
|
|
}
|
|
trace_stbit("state_usbstream_run",hdw->state_usbstream_run);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Attempt to configure pipeline, if needed */
|
|
static int state_eval_pipeline_config(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_pipeline_config ||
|
|
hdw->state_pipeline_pause) return 0;
|
|
pvr2_hdw_commit_execute(hdw);
|
|
return !0;
|
|
}
|
|
|
|
|
|
/* Update pipeline idle and pipeline pause tracking states based on other
|
|
inputs. This must be called whenever the other relevant inputs have
|
|
changed. */
|
|
static int state_update_pipeline_state(struct pvr2_hdw *hdw)
|
|
{
|
|
unsigned int st;
|
|
int updatedFl = 0;
|
|
/* Update pipeline state */
|
|
st = !(hdw->state_encoder_run ||
|
|
hdw->state_decoder_run ||
|
|
hdw->state_usbstream_run ||
|
|
(!hdw->state_decoder_quiescent));
|
|
if (!st != !hdw->state_pipeline_idle) {
|
|
hdw->state_pipeline_idle = st;
|
|
updatedFl = !0;
|
|
}
|
|
if (hdw->state_pipeline_idle && hdw->state_pipeline_pause) {
|
|
hdw->state_pipeline_pause = 0;
|
|
updatedFl = !0;
|
|
}
|
|
return updatedFl;
|
|
}
|
|
|
|
|
|
typedef int (*state_eval_func)(struct pvr2_hdw *);
|
|
|
|
/* Set of functions to be run to evaluate various states in the driver. */
|
|
static const state_eval_func eval_funcs[] = {
|
|
state_eval_pathway_ok,
|
|
state_eval_pipeline_config,
|
|
state_eval_encoder_ok,
|
|
state_eval_encoder_config,
|
|
state_eval_decoder_run,
|
|
state_eval_encoder_run,
|
|
state_eval_usbstream_run,
|
|
};
|
|
|
|
|
|
/* Process various states and return true if we did anything interesting. */
|
|
static int pvr2_hdw_state_update(struct pvr2_hdw *hdw)
|
|
{
|
|
unsigned int i;
|
|
int state_updated = 0;
|
|
int check_flag;
|
|
|
|
if (!hdw->state_stale) return 0;
|
|
if ((hdw->fw1_state != FW1_STATE_OK) ||
|
|
!hdw->flag_ok) {
|
|
hdw->state_stale = 0;
|
|
return !0;
|
|
}
|
|
/* This loop is the heart of the entire driver. It keeps trying to
|
|
evaluate various bits of driver state until nothing changes for
|
|
one full iteration. Each "bit of state" tracks some global
|
|
aspect of the driver, e.g. whether decoder should run, if
|
|
pipeline is configured, usb streaming is on, etc. We separately
|
|
evaluate each of those questions based on other driver state to
|
|
arrive at the correct running configuration. */
|
|
do {
|
|
check_flag = 0;
|
|
state_update_pipeline_state(hdw);
|
|
/* Iterate over each bit of state */
|
|
for (i = 0; (i<ARRAY_SIZE(eval_funcs)) && hdw->flag_ok; i++) {
|
|
if ((*eval_funcs[i])(hdw)) {
|
|
check_flag = !0;
|
|
state_updated = !0;
|
|
state_update_pipeline_state(hdw);
|
|
}
|
|
}
|
|
} while (check_flag && hdw->flag_ok);
|
|
hdw->state_stale = 0;
|
|
trace_stbit("state_stale",hdw->state_stale);
|
|
return state_updated;
|
|
}
|
|
|
|
|
|
static unsigned int print_input_mask(unsigned int msk,
|
|
char *buf,unsigned int acnt)
|
|
{
|
|
unsigned int idx,ccnt;
|
|
unsigned int tcnt = 0;
|
|
for (idx = 0; idx < ARRAY_SIZE(control_values_input); idx++) {
|
|
if (!((1UL << idx) & msk)) continue;
|
|
ccnt = scnprintf(buf+tcnt,
|
|
acnt-tcnt,
|
|
"%s%s",
|
|
(tcnt ? ", " : ""),
|
|
control_values_input[idx]);
|
|
tcnt += ccnt;
|
|
}
|
|
return tcnt;
|
|
}
|
|
|
|
|
|
static const char *pvr2_pathway_state_name(int id)
|
|
{
|
|
switch (id) {
|
|
case PVR2_PATHWAY_ANALOG: return "analog";
|
|
case PVR2_PATHWAY_DIGITAL: return "digital";
|
|
default: return "unknown";
|
|
}
|
|
}
|
|
|
|
|
|
static unsigned int pvr2_hdw_report_unlocked(struct pvr2_hdw *hdw,int which,
|
|
char *buf,unsigned int acnt)
|
|
{
|
|
switch (which) {
|
|
case 0:
|
|
return scnprintf(
|
|
buf,acnt,
|
|
"driver:%s%s%s%s%s <mode=%s>",
|
|
(hdw->flag_ok ? " <ok>" : " <fail>"),
|
|
(hdw->flag_init_ok ? " <init>" : " <uninitialized>"),
|
|
(hdw->flag_disconnected ? " <disconnected>" :
|
|
" <connected>"),
|
|
(hdw->flag_tripped ? " <tripped>" : ""),
|
|
(hdw->flag_decoder_missed ? " <no decoder>" : ""),
|
|
pvr2_pathway_state_name(hdw->pathway_state));
|
|
|
|
case 1:
|
|
return scnprintf(
|
|
buf,acnt,
|
|
"pipeline:%s%s%s%s",
|
|
(hdw->state_pipeline_idle ? " <idle>" : ""),
|
|
(hdw->state_pipeline_config ?
|
|
" <configok>" : " <stale>"),
|
|
(hdw->state_pipeline_req ? " <req>" : ""),
|
|
(hdw->state_pipeline_pause ? " <pause>" : ""));
|
|
case 2:
|
|
return scnprintf(
|
|
buf,acnt,
|
|
"worker:%s%s%s%s%s%s%s",
|
|
(hdw->state_decoder_run ?
|
|
(hdw->state_decoder_ready ?
|
|
"<decode:run>" : " <decode:start>") :
|
|
(hdw->state_decoder_quiescent ?
|
|
"" : " <decode:stop>")),
|
|
(hdw->state_decoder_quiescent ?
|
|
" <decode:quiescent>" : ""),
|
|
(hdw->state_encoder_ok ?
|
|
"" : " <encode:init>"),
|
|
(hdw->state_encoder_run ?
|
|
(hdw->state_encoder_runok ?
|
|
" <encode:run>" :
|
|
" <encode:firstrun>") :
|
|
(hdw->state_encoder_runok ?
|
|
" <encode:stop>" :
|
|
" <encode:virgin>")),
|
|
(hdw->state_encoder_config ?
|
|
" <encode:configok>" :
|
|
(hdw->state_encoder_waitok ?
|
|
"" : " <encode:waitok>")),
|
|
(hdw->state_usbstream_run ?
|
|
" <usb:run>" : " <usb:stop>"),
|
|
(hdw->state_pathway_ok ?
|
|
" <pathway:ok>" : ""));
|
|
case 3:
|
|
return scnprintf(
|
|
buf,acnt,
|
|
"state: %s",
|
|
pvr2_get_state_name(hdw->master_state));
|
|
case 4: {
|
|
unsigned int tcnt = 0;
|
|
unsigned int ccnt;
|
|
|
|
ccnt = scnprintf(buf,
|
|
acnt,
|
|
"Hardware supported inputs: ");
|
|
tcnt += ccnt;
|
|
tcnt += print_input_mask(hdw->input_avail_mask,
|
|
buf+tcnt,
|
|
acnt-tcnt);
|
|
if (hdw->input_avail_mask != hdw->input_allowed_mask) {
|
|
ccnt = scnprintf(buf+tcnt,
|
|
acnt-tcnt,
|
|
"; allowed inputs: ");
|
|
tcnt += ccnt;
|
|
tcnt += print_input_mask(hdw->input_allowed_mask,
|
|
buf+tcnt,
|
|
acnt-tcnt);
|
|
}
|
|
return tcnt;
|
|
}
|
|
case 5: {
|
|
struct pvr2_stream_stats stats;
|
|
if (!hdw->vid_stream) break;
|
|
pvr2_stream_get_stats(hdw->vid_stream,
|
|
&stats,
|
|
0);
|
|
return scnprintf(
|
|
buf,acnt,
|
|
"Bytes streamed=%u URBs: queued=%u idle=%u ready=%u processed=%u failed=%u",
|
|
stats.bytes_processed,
|
|
stats.buffers_in_queue,
|
|
stats.buffers_in_idle,
|
|
stats.buffers_in_ready,
|
|
stats.buffers_processed,
|
|
stats.buffers_failed);
|
|
}
|
|
case 6: {
|
|
unsigned int id = hdw->ir_scheme_active;
|
|
return scnprintf(buf, acnt, "ir scheme: id=%d %s", id,
|
|
(id >= ARRAY_SIZE(ir_scheme_names) ?
|
|
"?" : ir_scheme_names[id]));
|
|
}
|
|
default: break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Generate report containing info about attached sub-devices and attached
|
|
i2c clients, including an indication of which attached i2c clients are
|
|
actually sub-devices. */
|
|
static unsigned int pvr2_hdw_report_clients(struct pvr2_hdw *hdw,
|
|
char *buf, unsigned int acnt)
|
|
{
|
|
struct v4l2_subdev *sd;
|
|
unsigned int tcnt = 0;
|
|
unsigned int ccnt;
|
|
struct i2c_client *client;
|
|
const char *p;
|
|
unsigned int id;
|
|
|
|
ccnt = scnprintf(buf, acnt, "Associated v4l2-subdev drivers and I2C clients:\n");
|
|
tcnt += ccnt;
|
|
v4l2_device_for_each_subdev(sd, &hdw->v4l2_dev) {
|
|
id = sd->grp_id;
|
|
p = NULL;
|
|
if (id < ARRAY_SIZE(module_names)) p = module_names[id];
|
|
if (p) {
|
|
ccnt = scnprintf(buf + tcnt, acnt - tcnt, " %s:", p);
|
|
tcnt += ccnt;
|
|
} else {
|
|
ccnt = scnprintf(buf + tcnt, acnt - tcnt,
|
|
" (unknown id=%u):", id);
|
|
tcnt += ccnt;
|
|
}
|
|
client = v4l2_get_subdevdata(sd);
|
|
if (client) {
|
|
ccnt = scnprintf(buf + tcnt, acnt - tcnt,
|
|
" %s @ %02x\n", client->name,
|
|
client->addr);
|
|
tcnt += ccnt;
|
|
} else {
|
|
ccnt = scnprintf(buf + tcnt, acnt - tcnt,
|
|
" no i2c client\n");
|
|
tcnt += ccnt;
|
|
}
|
|
}
|
|
return tcnt;
|
|
}
|
|
|
|
|
|
unsigned int pvr2_hdw_state_report(struct pvr2_hdw *hdw,
|
|
char *buf,unsigned int acnt)
|
|
{
|
|
unsigned int bcnt,ccnt,idx;
|
|
bcnt = 0;
|
|
LOCK_TAKE(hdw->big_lock);
|
|
for (idx = 0; ; idx++) {
|
|
ccnt = pvr2_hdw_report_unlocked(hdw,idx,buf,acnt);
|
|
if (!ccnt) break;
|
|
bcnt += ccnt; acnt -= ccnt; buf += ccnt;
|
|
if (!acnt) break;
|
|
buf[0] = '\n'; ccnt = 1;
|
|
bcnt += ccnt; acnt -= ccnt; buf += ccnt;
|
|
}
|
|
ccnt = pvr2_hdw_report_clients(hdw, buf, acnt);
|
|
bcnt += ccnt; acnt -= ccnt; buf += ccnt;
|
|
LOCK_GIVE(hdw->big_lock);
|
|
return bcnt;
|
|
}
|
|
|
|
|
|
static void pvr2_hdw_state_log_state(struct pvr2_hdw *hdw)
|
|
{
|
|
char buf[256];
|
|
unsigned int idx, ccnt;
|
|
unsigned int lcnt, ucnt;
|
|
|
|
for (idx = 0; ; idx++) {
|
|
ccnt = pvr2_hdw_report_unlocked(hdw,idx,buf,sizeof(buf));
|
|
if (!ccnt) break;
|
|
pr_info("%s %.*s\n", hdw->name, ccnt, buf);
|
|
}
|
|
ccnt = pvr2_hdw_report_clients(hdw, buf, sizeof(buf));
|
|
if (ccnt >= sizeof(buf))
|
|
ccnt = sizeof(buf);
|
|
|
|
ucnt = 0;
|
|
while (ucnt < ccnt) {
|
|
lcnt = 0;
|
|
while ((lcnt + ucnt < ccnt) && (buf[lcnt + ucnt] != '\n')) {
|
|
lcnt++;
|
|
}
|
|
pr_info("%s %.*s\n", hdw->name, lcnt, buf + ucnt);
|
|
ucnt += lcnt + 1;
|
|
}
|
|
}
|
|
|
|
|
|
/* Evaluate and update the driver's current state, taking various actions
|
|
as appropriate for the update. */
|
|
static int pvr2_hdw_state_eval(struct pvr2_hdw *hdw)
|
|
{
|
|
unsigned int st;
|
|
int state_updated = 0;
|
|
int callback_flag = 0;
|
|
int analog_mode;
|
|
|
|
pvr2_trace(PVR2_TRACE_STBITS,
|
|
"Drive state check START");
|
|
if (pvrusb2_debug & PVR2_TRACE_STBITS) {
|
|
pvr2_hdw_state_log_state(hdw);
|
|
}
|
|
|
|
/* Process all state and get back over disposition */
|
|
state_updated = pvr2_hdw_state_update(hdw);
|
|
|
|
analog_mode = (hdw->pathway_state != PVR2_PATHWAY_DIGITAL);
|
|
|
|
/* Update master state based upon all other states. */
|
|
if (!hdw->flag_ok) {
|
|
st = PVR2_STATE_DEAD;
|
|
} else if (hdw->fw1_state != FW1_STATE_OK) {
|
|
st = PVR2_STATE_COLD;
|
|
} else if ((analog_mode ||
|
|
hdw->hdw_desc->flag_digital_requires_cx23416) &&
|
|
!hdw->state_encoder_ok) {
|
|
st = PVR2_STATE_WARM;
|
|
} else if (hdw->flag_tripped ||
|
|
(analog_mode && hdw->flag_decoder_missed)) {
|
|
st = PVR2_STATE_ERROR;
|
|
} else if (hdw->state_usbstream_run &&
|
|
(!analog_mode ||
|
|
(hdw->state_encoder_run && hdw->state_decoder_run))) {
|
|
st = PVR2_STATE_RUN;
|
|
} else {
|
|
st = PVR2_STATE_READY;
|
|
}
|
|
if (hdw->master_state != st) {
|
|
pvr2_trace(PVR2_TRACE_STATE,
|
|
"Device state change from %s to %s",
|
|
pvr2_get_state_name(hdw->master_state),
|
|
pvr2_get_state_name(st));
|
|
pvr2_led_ctrl(hdw,st == PVR2_STATE_RUN);
|
|
hdw->master_state = st;
|
|
state_updated = !0;
|
|
callback_flag = !0;
|
|
}
|
|
if (state_updated) {
|
|
/* Trigger anyone waiting on any state changes here. */
|
|
wake_up(&hdw->state_wait_data);
|
|
}
|
|
|
|
if (pvrusb2_debug & PVR2_TRACE_STBITS) {
|
|
pvr2_hdw_state_log_state(hdw);
|
|
}
|
|
pvr2_trace(PVR2_TRACE_STBITS,
|
|
"Drive state check DONE callback=%d",callback_flag);
|
|
|
|
return callback_flag;
|
|
}
|
|
|
|
|
|
/* Cause kernel thread to check / update driver state */
|
|
static void pvr2_hdw_state_sched(struct pvr2_hdw *hdw)
|
|
{
|
|
if (hdw->state_stale) return;
|
|
hdw->state_stale = !0;
|
|
trace_stbit("state_stale",hdw->state_stale);
|
|
schedule_work(&hdw->workpoll);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_gpio_get_dir(struct pvr2_hdw *hdw,u32 *dp)
|
|
{
|
|
return pvr2_read_register(hdw,PVR2_GPIO_DIR,dp);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_gpio_get_out(struct pvr2_hdw *hdw,u32 *dp)
|
|
{
|
|
return pvr2_read_register(hdw,PVR2_GPIO_OUT,dp);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_gpio_get_in(struct pvr2_hdw *hdw,u32 *dp)
|
|
{
|
|
return pvr2_read_register(hdw,PVR2_GPIO_IN,dp);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_gpio_chg_dir(struct pvr2_hdw *hdw,u32 msk,u32 val)
|
|
{
|
|
u32 cval,nval;
|
|
int ret;
|
|
if (~msk) {
|
|
ret = pvr2_read_register(hdw,PVR2_GPIO_DIR,&cval);
|
|
if (ret) return ret;
|
|
nval = (cval & ~msk) | (val & msk);
|
|
pvr2_trace(PVR2_TRACE_GPIO,
|
|
"GPIO direction changing 0x%x:0x%x from 0x%x to 0x%x",
|
|
msk,val,cval,nval);
|
|
} else {
|
|
nval = val;
|
|
pvr2_trace(PVR2_TRACE_GPIO,
|
|
"GPIO direction changing to 0x%x",nval);
|
|
}
|
|
return pvr2_write_register(hdw,PVR2_GPIO_DIR,nval);
|
|
}
|
|
|
|
|
|
int pvr2_hdw_gpio_chg_out(struct pvr2_hdw *hdw,u32 msk,u32 val)
|
|
{
|
|
u32 cval,nval;
|
|
int ret;
|
|
if (~msk) {
|
|
ret = pvr2_read_register(hdw,PVR2_GPIO_OUT,&cval);
|
|
if (ret) return ret;
|
|
nval = (cval & ~msk) | (val & msk);
|
|
pvr2_trace(PVR2_TRACE_GPIO,
|
|
"GPIO output changing 0x%x:0x%x from 0x%x to 0x%x",
|
|
msk,val,cval,nval);
|
|
} else {
|
|
nval = val;
|
|
pvr2_trace(PVR2_TRACE_GPIO,
|
|
"GPIO output changing to 0x%x",nval);
|
|
}
|
|
return pvr2_write_register(hdw,PVR2_GPIO_OUT,nval);
|
|
}
|
|
|
|
|
|
void pvr2_hdw_status_poll(struct pvr2_hdw *hdw)
|
|
{
|
|
struct v4l2_tuner *vtp = &hdw->tuner_signal_info;
|
|
memset(vtp, 0, sizeof(*vtp));
|
|
vtp->type = (hdw->input_val == PVR2_CVAL_INPUT_RADIO) ?
|
|
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
|
|
hdw->tuner_signal_stale = 0;
|
|
/* Note: There apparently is no replacement for VIDIOC_CROPCAP
|
|
using v4l2-subdev - therefore we can't support that AT ALL right
|
|
now. (Of course, no sub-drivers seem to implement it either.
|
|
But now it's a a chicken and egg problem...) */
|
|
v4l2_device_call_all(&hdw->v4l2_dev, 0, tuner, g_tuner, vtp);
|
|
pvr2_trace(PVR2_TRACE_CHIPS, "subdev status poll type=%u strength=%u audio=0x%x cap=0x%x low=%u hi=%u",
|
|
vtp->type,
|
|
vtp->signal, vtp->rxsubchans, vtp->capability,
|
|
vtp->rangelow, vtp->rangehigh);
|
|
|
|
/* We have to do this to avoid getting into constant polling if
|
|
there's nobody to answer a poll of cropcap info. */
|
|
hdw->cropcap_stale = 0;
|
|
}
|
|
|
|
|
|
unsigned int pvr2_hdw_get_input_available(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->input_avail_mask;
|
|
}
|
|
|
|
|
|
unsigned int pvr2_hdw_get_input_allowed(struct pvr2_hdw *hdw)
|
|
{
|
|
return hdw->input_allowed_mask;
|
|
}
|
|
|
|
|
|
static int pvr2_hdw_set_input(struct pvr2_hdw *hdw,int v)
|
|
{
|
|
if (hdw->input_val != v) {
|
|
hdw->input_val = v;
|
|
hdw->input_dirty = !0;
|
|
}
|
|
|
|
/* Handle side effects - if we switch to a mode that needs the RF
|
|
tuner, then select the right frequency choice as well and mark
|
|
it dirty. */
|
|
if (hdw->input_val == PVR2_CVAL_INPUT_RADIO) {
|
|
hdw->freqSelector = 0;
|
|
hdw->freqDirty = !0;
|
|
} else if ((hdw->input_val == PVR2_CVAL_INPUT_TV) ||
|
|
(hdw->input_val == PVR2_CVAL_INPUT_DTV)) {
|
|
hdw->freqSelector = 1;
|
|
hdw->freqDirty = !0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int pvr2_hdw_set_input_allowed(struct pvr2_hdw *hdw,
|
|
unsigned int change_mask,
|
|
unsigned int change_val)
|
|
{
|
|
int ret = 0;
|
|
unsigned int nv,m,idx;
|
|
LOCK_TAKE(hdw->big_lock);
|
|
do {
|
|
nv = hdw->input_allowed_mask & ~change_mask;
|
|
nv |= (change_val & change_mask);
|
|
nv &= hdw->input_avail_mask;
|
|
if (!nv) {
|
|
/* No legal modes left; return error instead. */
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
hdw->input_allowed_mask = nv;
|
|
if ((1UL << hdw->input_val) & hdw->input_allowed_mask) {
|
|
/* Current mode is still in the allowed mask, so
|
|
we're done. */
|
|
break;
|
|
}
|
|
/* Select and switch to a mode that is still in the allowed
|
|
mask */
|
|
if (!hdw->input_allowed_mask) {
|
|
/* Nothing legal; give up */
|
|
break;
|
|
}
|
|
m = hdw->input_allowed_mask;
|
|
for (idx = 0; idx < (sizeof(m) << 3); idx++) {
|
|
if (!((1UL << idx) & m)) continue;
|
|
pvr2_hdw_set_input(hdw,idx);
|
|
break;
|
|
}
|
|
} while (0);
|
|
LOCK_GIVE(hdw->big_lock);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Find I2C address of eeprom */
|
|
static int pvr2_hdw_get_eeprom_addr(struct pvr2_hdw *hdw)
|
|
{
|
|
int result;
|
|
LOCK_TAKE(hdw->ctl_lock); do {
|
|
hdw->cmd_buffer[0] = FX2CMD_GET_EEPROM_ADDR;
|
|
result = pvr2_send_request(hdw,
|
|
hdw->cmd_buffer,1,
|
|
hdw->cmd_buffer,1);
|
|
if (result < 0) break;
|
|
result = hdw->cmd_buffer[0];
|
|
} while(0); LOCK_GIVE(hdw->ctl_lock);
|
|
return result;
|
|
}
|