1177 lines
30 KiB
C
1177 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* VPDMA helper library
|
|
*
|
|
* Copyright (c) 2013 Texas Instruments Inc.
|
|
*
|
|
* David Griego, <dagriego@biglakesoftware.com>
|
|
* Dale Farnsworth, <dale@farnsworth.org>
|
|
* Archit Taneja, <archit@ti.com>
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/videodev2.h>
|
|
|
|
#include "vpdma.h"
|
|
#include "vpdma_priv.h"
|
|
|
|
#define VPDMA_FIRMWARE "vpdma-1b8.bin"
|
|
|
|
const struct vpdma_data_format vpdma_yuv_fmts[] = {
|
|
[VPDMA_DATA_FMT_Y444] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_Y444,
|
|
.depth = 8,
|
|
},
|
|
[VPDMA_DATA_FMT_Y422] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_Y422,
|
|
.depth = 8,
|
|
},
|
|
[VPDMA_DATA_FMT_Y420] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_Y420,
|
|
.depth = 8,
|
|
},
|
|
[VPDMA_DATA_FMT_C444] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_C444,
|
|
.depth = 8,
|
|
},
|
|
[VPDMA_DATA_FMT_C422] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_C422,
|
|
.depth = 8,
|
|
},
|
|
[VPDMA_DATA_FMT_C420] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_C420,
|
|
.depth = 4,
|
|
},
|
|
[VPDMA_DATA_FMT_CB420] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_CB420,
|
|
.depth = 4,
|
|
},
|
|
[VPDMA_DATA_FMT_YCR422] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_YCR422,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_YC444] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_YC444,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_CRY422] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_CRY422,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_CBY422] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_CBY422,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_YCB422] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_YCB422,
|
|
.depth = 16,
|
|
},
|
|
};
|
|
EXPORT_SYMBOL(vpdma_yuv_fmts);
|
|
|
|
const struct vpdma_data_format vpdma_rgb_fmts[] = {
|
|
[VPDMA_DATA_FMT_RGB565] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_RGB16_565,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_ARGB16_1555] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ARGB_1555,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_ARGB16] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ARGB_4444,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_RGBA16_5551] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_RGBA_5551,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_RGBA16] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_RGBA_4444,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_ARGB24] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ARGB24_6666,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_RGB24] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_RGB24_888,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_ARGB32] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ARGB32_8888,
|
|
.depth = 32,
|
|
},
|
|
[VPDMA_DATA_FMT_RGBA24] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_RGBA24_6666,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_RGBA32] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_RGBA32_8888,
|
|
.depth = 32,
|
|
},
|
|
[VPDMA_DATA_FMT_BGR565] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_BGR16_565,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_ABGR16_1555] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ABGR_1555,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_ABGR16] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ABGR_4444,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_BGRA16_5551] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_BGRA_5551,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_BGRA16] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_BGRA_4444,
|
|
.depth = 16,
|
|
},
|
|
[VPDMA_DATA_FMT_ABGR24] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ABGR24_6666,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_BGR24] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_BGR24_888,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_ABGR32] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_ABGR32_8888,
|
|
.depth = 32,
|
|
},
|
|
[VPDMA_DATA_FMT_BGRA24] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_BGRA24_6666,
|
|
.depth = 24,
|
|
},
|
|
[VPDMA_DATA_FMT_BGRA32] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_RGB,
|
|
.data_type = DATA_TYPE_BGRA32_8888,
|
|
.depth = 32,
|
|
},
|
|
};
|
|
EXPORT_SYMBOL(vpdma_rgb_fmts);
|
|
|
|
/*
|
|
* To handle RAW format we are re-using the CBY422
|
|
* vpdma data type so that we use the vpdma to re-order
|
|
* the incoming bytes, as the parser assumes that the
|
|
* first byte presented on the bus is the MSB of a 2
|
|
* bytes value.
|
|
* RAW8 handles from 1 to 8 bits
|
|
* RAW16 handles from 9 to 16 bits
|
|
*/
|
|
const struct vpdma_data_format vpdma_raw_fmts[] = {
|
|
[VPDMA_DATA_FMT_RAW8] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_CBY422,
|
|
.depth = 8,
|
|
},
|
|
[VPDMA_DATA_FMT_RAW16] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_YUV,
|
|
.data_type = DATA_TYPE_CBY422,
|
|
.depth = 16,
|
|
},
|
|
};
|
|
EXPORT_SYMBOL(vpdma_raw_fmts);
|
|
|
|
const struct vpdma_data_format vpdma_misc_fmts[] = {
|
|
[VPDMA_DATA_FMT_MV] = {
|
|
.type = VPDMA_DATA_FMT_TYPE_MISC,
|
|
.data_type = DATA_TYPE_MV,
|
|
.depth = 4,
|
|
},
|
|
};
|
|
EXPORT_SYMBOL(vpdma_misc_fmts);
|
|
|
|
struct vpdma_channel_info {
|
|
int num; /* VPDMA channel number */
|
|
int cstat_offset; /* client CSTAT register offset */
|
|
};
|
|
|
|
static const struct vpdma_channel_info chan_info[] = {
|
|
[VPE_CHAN_LUMA1_IN] = {
|
|
.num = VPE_CHAN_NUM_LUMA1_IN,
|
|
.cstat_offset = VPDMA_DEI_LUMA1_CSTAT,
|
|
},
|
|
[VPE_CHAN_CHROMA1_IN] = {
|
|
.num = VPE_CHAN_NUM_CHROMA1_IN,
|
|
.cstat_offset = VPDMA_DEI_CHROMA1_CSTAT,
|
|
},
|
|
[VPE_CHAN_LUMA2_IN] = {
|
|
.num = VPE_CHAN_NUM_LUMA2_IN,
|
|
.cstat_offset = VPDMA_DEI_LUMA2_CSTAT,
|
|
},
|
|
[VPE_CHAN_CHROMA2_IN] = {
|
|
.num = VPE_CHAN_NUM_CHROMA2_IN,
|
|
.cstat_offset = VPDMA_DEI_CHROMA2_CSTAT,
|
|
},
|
|
[VPE_CHAN_LUMA3_IN] = {
|
|
.num = VPE_CHAN_NUM_LUMA3_IN,
|
|
.cstat_offset = VPDMA_DEI_LUMA3_CSTAT,
|
|
},
|
|
[VPE_CHAN_CHROMA3_IN] = {
|
|
.num = VPE_CHAN_NUM_CHROMA3_IN,
|
|
.cstat_offset = VPDMA_DEI_CHROMA3_CSTAT,
|
|
},
|
|
[VPE_CHAN_MV_IN] = {
|
|
.num = VPE_CHAN_NUM_MV_IN,
|
|
.cstat_offset = VPDMA_DEI_MV_IN_CSTAT,
|
|
},
|
|
[VPE_CHAN_MV_OUT] = {
|
|
.num = VPE_CHAN_NUM_MV_OUT,
|
|
.cstat_offset = VPDMA_DEI_MV_OUT_CSTAT,
|
|
},
|
|
[VPE_CHAN_LUMA_OUT] = {
|
|
.num = VPE_CHAN_NUM_LUMA_OUT,
|
|
.cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
|
|
},
|
|
[VPE_CHAN_CHROMA_OUT] = {
|
|
.num = VPE_CHAN_NUM_CHROMA_OUT,
|
|
.cstat_offset = VPDMA_VIP_UP_UV_CSTAT,
|
|
},
|
|
[VPE_CHAN_RGB_OUT] = {
|
|
.num = VPE_CHAN_NUM_RGB_OUT,
|
|
.cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
|
|
},
|
|
};
|
|
|
|
static u32 read_reg(struct vpdma_data *vpdma, int offset)
|
|
{
|
|
return ioread32(vpdma->base + offset);
|
|
}
|
|
|
|
static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
|
|
{
|
|
iowrite32(value, vpdma->base + offset);
|
|
}
|
|
|
|
static int read_field_reg(struct vpdma_data *vpdma, int offset,
|
|
u32 mask, int shift)
|
|
{
|
|
return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
|
|
}
|
|
|
|
static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
|
|
u32 mask, int shift)
|
|
{
|
|
u32 val = read_reg(vpdma, offset);
|
|
|
|
val &= ~(mask << shift);
|
|
val |= (field & mask) << shift;
|
|
|
|
write_reg(vpdma, offset, val);
|
|
}
|
|
|
|
void vpdma_dump_regs(struct vpdma_data *vpdma)
|
|
{
|
|
struct device *dev = &vpdma->pdev->dev;
|
|
|
|
#define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
|
|
|
|
dev_dbg(dev, "VPDMA Registers:\n");
|
|
|
|
DUMPREG(PID);
|
|
DUMPREG(LIST_ADDR);
|
|
DUMPREG(LIST_ATTR);
|
|
DUMPREG(LIST_STAT_SYNC);
|
|
DUMPREG(BG_RGB);
|
|
DUMPREG(BG_YUV);
|
|
DUMPREG(SETUP);
|
|
DUMPREG(MAX_SIZE1);
|
|
DUMPREG(MAX_SIZE2);
|
|
DUMPREG(MAX_SIZE3);
|
|
|
|
/*
|
|
* dumping registers of only group0 and group3, because VPE channels
|
|
* lie within group0 and group3 registers
|
|
*/
|
|
DUMPREG(INT_CHAN_STAT(0));
|
|
DUMPREG(INT_CHAN_MASK(0));
|
|
DUMPREG(INT_CHAN_STAT(3));
|
|
DUMPREG(INT_CHAN_MASK(3));
|
|
DUMPREG(INT_CLIENT0_STAT);
|
|
DUMPREG(INT_CLIENT0_MASK);
|
|
DUMPREG(INT_CLIENT1_STAT);
|
|
DUMPREG(INT_CLIENT1_MASK);
|
|
DUMPREG(INT_LIST0_STAT);
|
|
DUMPREG(INT_LIST0_MASK);
|
|
|
|
/*
|
|
* these are registers specific to VPE clients, we can make this
|
|
* function dump client registers specific to VPE or VIP based on
|
|
* who is using it
|
|
*/
|
|
DUMPREG(DEI_CHROMA1_CSTAT);
|
|
DUMPREG(DEI_LUMA1_CSTAT);
|
|
DUMPREG(DEI_CHROMA2_CSTAT);
|
|
DUMPREG(DEI_LUMA2_CSTAT);
|
|
DUMPREG(DEI_CHROMA3_CSTAT);
|
|
DUMPREG(DEI_LUMA3_CSTAT);
|
|
DUMPREG(DEI_MV_IN_CSTAT);
|
|
DUMPREG(DEI_MV_OUT_CSTAT);
|
|
DUMPREG(VIP_UP_Y_CSTAT);
|
|
DUMPREG(VIP_UP_UV_CSTAT);
|
|
DUMPREG(VPI_CTL_CSTAT);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_dump_regs);
|
|
|
|
/*
|
|
* Allocate a DMA buffer
|
|
*/
|
|
int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
|
|
{
|
|
buf->size = size;
|
|
buf->mapped = false;
|
|
buf->addr = kzalloc(size, GFP_KERNEL);
|
|
if (!buf->addr)
|
|
return -ENOMEM;
|
|
|
|
WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_alloc_desc_buf);
|
|
|
|
void vpdma_free_desc_buf(struct vpdma_buf *buf)
|
|
{
|
|
WARN_ON(buf->mapped);
|
|
kfree(buf->addr);
|
|
buf->addr = NULL;
|
|
buf->size = 0;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_free_desc_buf);
|
|
|
|
/*
|
|
* map descriptor/payload DMA buffer, enabling DMA access
|
|
*/
|
|
int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
|
|
{
|
|
struct device *dev = &vpdma->pdev->dev;
|
|
|
|
WARN_ON(buf->mapped);
|
|
buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, buf->dma_addr)) {
|
|
dev_err(dev, "failed to map buffer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
buf->mapped = true;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_map_desc_buf);
|
|
|
|
/*
|
|
* unmap descriptor/payload DMA buffer, disabling DMA access and
|
|
* allowing the main processor to access the data
|
|
*/
|
|
void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
|
|
{
|
|
struct device *dev = &vpdma->pdev->dev;
|
|
|
|
if (buf->mapped)
|
|
dma_unmap_single(dev, buf->dma_addr, buf->size,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
buf->mapped = false;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_unmap_desc_buf);
|
|
|
|
/*
|
|
* Cleanup all pending descriptors of a list
|
|
* First, stop the current list being processed.
|
|
* If the VPDMA was busy, this step makes vpdma to accept post lists.
|
|
* To cleanup the internal FSM, post abort list descriptor for all the
|
|
* channels from @channels array of size @size.
|
|
*/
|
|
int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
|
|
int *channels, int size)
|
|
{
|
|
struct vpdma_desc_list abort_list;
|
|
int i, ret, timeout = 500;
|
|
|
|
write_reg(vpdma, VPDMA_LIST_ATTR,
|
|
(list_num << VPDMA_LIST_NUM_SHFT) |
|
|
(1 << VPDMA_LIST_STOP_SHFT));
|
|
|
|
if (size <= 0 || !channels)
|
|
return 0;
|
|
|
|
ret = vpdma_create_desc_list(&abort_list,
|
|
size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < size; i++)
|
|
vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
|
|
|
|
ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
|
|
if (ret)
|
|
goto free_desc;
|
|
ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
|
|
if (ret)
|
|
goto unmap_desc;
|
|
|
|
while (vpdma_list_busy(vpdma, list_num) && --timeout)
|
|
;
|
|
|
|
if (timeout == 0) {
|
|
dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
unmap_desc:
|
|
vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
|
|
free_desc:
|
|
vpdma_free_desc_buf(&abort_list.buf);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_list_cleanup);
|
|
|
|
/*
|
|
* create a descriptor list, the user of this list will append configuration,
|
|
* control and data descriptors to this list, this list will be submitted to
|
|
* VPDMA. VPDMA's list parser will go through each descriptor and perform the
|
|
* required DMA operations
|
|
*/
|
|
int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
|
|
{
|
|
int r;
|
|
|
|
r = vpdma_alloc_desc_buf(&list->buf, size);
|
|
if (r)
|
|
return r;
|
|
|
|
list->next = list->buf.addr;
|
|
|
|
list->type = type;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_create_desc_list);
|
|
|
|
/*
|
|
* once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
|
|
* to allow new descriptors to be added to the list.
|
|
*/
|
|
void vpdma_reset_desc_list(struct vpdma_desc_list *list)
|
|
{
|
|
list->next = list->buf.addr;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_reset_desc_list);
|
|
|
|
/*
|
|
* free the buffer allocated for the VPDMA descriptor list, this should be
|
|
* called when the user doesn't want to use VPDMA any more.
|
|
*/
|
|
void vpdma_free_desc_list(struct vpdma_desc_list *list)
|
|
{
|
|
vpdma_free_desc_buf(&list->buf);
|
|
|
|
list->next = NULL;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_free_desc_list);
|
|
|
|
bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
|
|
{
|
|
return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_list_busy);
|
|
|
|
/*
|
|
* submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
|
|
*/
|
|
int vpdma_submit_descs(struct vpdma_data *vpdma,
|
|
struct vpdma_desc_list *list, int list_num)
|
|
{
|
|
int list_size;
|
|
unsigned long flags;
|
|
|
|
if (vpdma_list_busy(vpdma, list_num))
|
|
return -EBUSY;
|
|
|
|
/* 16-byte granularity */
|
|
list_size = (list->next - list->buf.addr) >> 4;
|
|
|
|
spin_lock_irqsave(&vpdma->lock, flags);
|
|
write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
|
|
|
|
write_reg(vpdma, VPDMA_LIST_ATTR,
|
|
(list_num << VPDMA_LIST_NUM_SHFT) |
|
|
(list->type << VPDMA_LIST_TYPE_SHFT) |
|
|
list_size);
|
|
spin_unlock_irqrestore(&vpdma->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_submit_descs);
|
|
|
|
static void dump_dtd(struct vpdma_dtd *dtd);
|
|
|
|
void vpdma_update_dma_addr(struct vpdma_data *vpdma,
|
|
struct vpdma_desc_list *list, dma_addr_t dma_addr,
|
|
void *write_dtd, int drop, int idx)
|
|
{
|
|
struct vpdma_dtd *dtd = list->buf.addr;
|
|
dma_addr_t write_desc_addr;
|
|
int offset;
|
|
|
|
dtd += idx;
|
|
vpdma_unmap_desc_buf(vpdma, &list->buf);
|
|
|
|
dtd->start_addr = dma_addr;
|
|
|
|
/* Calculate write address from the offset of write_dtd from start
|
|
* of the list->buf
|
|
*/
|
|
offset = (void *)write_dtd - list->buf.addr;
|
|
write_desc_addr = list->buf.dma_addr + offset;
|
|
|
|
if (drop)
|
|
dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
|
|
1, 1, 0);
|
|
else
|
|
dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
|
|
1, 0, 0);
|
|
|
|
vpdma_map_desc_buf(vpdma, &list->buf);
|
|
|
|
dump_dtd(dtd);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_update_dma_addr);
|
|
|
|
void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
|
|
u32 width, u32 height)
|
|
{
|
|
if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
|
|
reg_addr != VPDMA_MAX_SIZE3)
|
|
reg_addr = VPDMA_MAX_SIZE1;
|
|
|
|
write_field_reg(vpdma, reg_addr, width - 1,
|
|
VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
|
|
|
|
write_field_reg(vpdma, reg_addr, height - 1,
|
|
VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
|
|
|
|
}
|
|
EXPORT_SYMBOL(vpdma_set_max_size);
|
|
|
|
static void dump_cfd(struct vpdma_cfd *cfd)
|
|
{
|
|
int class;
|
|
|
|
class = cfd_get_class(cfd);
|
|
|
|
pr_debug("config descriptor of payload class: %s\n",
|
|
class == CFD_CLS_BLOCK ? "simple block" :
|
|
"address data block");
|
|
|
|
if (class == CFD_CLS_BLOCK)
|
|
pr_debug("word0: dst_addr_offset = 0x%08x\n",
|
|
cfd->dest_addr_offset);
|
|
|
|
if (class == CFD_CLS_BLOCK)
|
|
pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
|
|
|
|
pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
|
|
|
|
pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
|
|
cfd_get_pkt_type(cfd),
|
|
cfd_get_direct(cfd), class, cfd_get_dest(cfd),
|
|
cfd_get_payload_len(cfd));
|
|
}
|
|
|
|
/*
|
|
* append a configuration descriptor to the given descriptor list, where the
|
|
* payload is in the form of a simple data block specified in the descriptor
|
|
* header, this is used to upload scaler coefficients to the scaler module
|
|
*/
|
|
void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
|
|
struct vpdma_buf *blk, u32 dest_offset)
|
|
{
|
|
struct vpdma_cfd *cfd;
|
|
int len = blk->size;
|
|
|
|
WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
|
|
|
|
cfd = list->next;
|
|
WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
|
|
|
|
cfd->dest_addr_offset = dest_offset;
|
|
cfd->block_len = len;
|
|
cfd->payload_addr = (u32) blk->dma_addr;
|
|
cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
|
|
client, len >> 4);
|
|
|
|
list->next = cfd + 1;
|
|
|
|
dump_cfd(cfd);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_add_cfd_block);
|
|
|
|
/*
|
|
* append a configuration descriptor to the given descriptor list, where the
|
|
* payload is in the address data block format, this is used to a configure a
|
|
* discontiguous set of MMRs
|
|
*/
|
|
void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
|
|
struct vpdma_buf *adb)
|
|
{
|
|
struct vpdma_cfd *cfd;
|
|
unsigned int len = adb->size;
|
|
|
|
WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
|
|
WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
|
|
|
|
cfd = list->next;
|
|
BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
|
|
|
|
cfd->w0 = 0;
|
|
cfd->w1 = 0;
|
|
cfd->payload_addr = (u32) adb->dma_addr;
|
|
cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
|
|
client, len >> 4);
|
|
|
|
list->next = cfd + 1;
|
|
|
|
dump_cfd(cfd);
|
|
};
|
|
EXPORT_SYMBOL(vpdma_add_cfd_adb);
|
|
|
|
/*
|
|
* control descriptor format change based on what type of control descriptor it
|
|
* is, we only use 'sync on channel' control descriptors for now, so assume it's
|
|
* that
|
|
*/
|
|
static void dump_ctd(struct vpdma_ctd *ctd)
|
|
{
|
|
pr_debug("control descriptor\n");
|
|
|
|
pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
|
|
ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
|
|
}
|
|
|
|
/*
|
|
* append a 'sync on channel' type control descriptor to the given descriptor
|
|
* list, this descriptor stalls the VPDMA list till the time DMA is completed
|
|
* on the specified channel
|
|
*/
|
|
void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
|
|
enum vpdma_channel chan)
|
|
{
|
|
struct vpdma_ctd *ctd;
|
|
|
|
ctd = list->next;
|
|
WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
|
|
|
|
ctd->w0 = 0;
|
|
ctd->w1 = 0;
|
|
ctd->w2 = 0;
|
|
ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
|
|
CTD_TYPE_SYNC_ON_CHANNEL);
|
|
|
|
list->next = ctd + 1;
|
|
|
|
dump_ctd(ctd);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
|
|
|
|
/*
|
|
* append an 'abort_channel' type control descriptor to the given descriptor
|
|
* list, this descriptor aborts any DMA transaction happening using the
|
|
* specified channel
|
|
*/
|
|
void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
|
|
int chan_num)
|
|
{
|
|
struct vpdma_ctd *ctd;
|
|
|
|
ctd = list->next;
|
|
WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
|
|
|
|
ctd->w0 = 0;
|
|
ctd->w1 = 0;
|
|
ctd->w2 = 0;
|
|
ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
|
|
CTD_TYPE_ABORT_CHANNEL);
|
|
|
|
list->next = ctd + 1;
|
|
|
|
dump_ctd(ctd);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
|
|
|
|
static void dump_dtd(struct vpdma_dtd *dtd)
|
|
{
|
|
int dir, chan;
|
|
|
|
dir = dtd_get_dir(dtd);
|
|
chan = dtd_get_chan(dtd);
|
|
|
|
pr_debug("%s data transfer descriptor for channel %d\n",
|
|
dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
|
|
|
|
pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
|
|
dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
|
|
dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
|
|
dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
|
|
|
|
if (dir == DTD_DIR_IN)
|
|
pr_debug("word1: line_length = %d, xfer_height = %d\n",
|
|
dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
|
|
|
|
pr_debug("word2: start_addr = %x\n", dtd->start_addr);
|
|
|
|
pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
|
|
dtd_get_pkt_type(dtd),
|
|
dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
|
|
dtd_get_next_chan(dtd));
|
|
|
|
if (dir == DTD_DIR_IN)
|
|
pr_debug("word4: frame_width = %d, frame_height = %d\n",
|
|
dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
|
|
else
|
|
pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
|
|
dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
|
|
dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
|
|
|
|
if (dir == DTD_DIR_IN)
|
|
pr_debug("word5: hor_start = %d, ver_start = %d\n",
|
|
dtd_get_h_start(dtd), dtd_get_v_start(dtd));
|
|
else
|
|
pr_debug("word5: max_width %d, max_height %d\n",
|
|
dtd_get_max_width(dtd), dtd_get_max_height(dtd));
|
|
|
|
pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
|
|
pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
|
|
}
|
|
|
|
/*
|
|
* append an outbound data transfer descriptor to the given descriptor list,
|
|
* this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
|
|
*
|
|
* @list: vpdma desc list to which we add this descriptor
|
|
* @width: width of the image in pixels in memory
|
|
* @c_rect: compose params of output image
|
|
* @fmt: vpdma data format of the buffer
|
|
* dma_addr: dma address as seen by VPDMA
|
|
* max_width: enum for maximum width of data transfer
|
|
* max_height: enum for maximum height of data transfer
|
|
* chan: VPDMA channel
|
|
* flags: VPDMA flags to configure some descriptor fields
|
|
*/
|
|
void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
|
|
int stride, const struct v4l2_rect *c_rect,
|
|
const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
|
|
int max_w, int max_h, enum vpdma_channel chan, u32 flags)
|
|
{
|
|
vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
|
|
max_w, max_h, chan_info[chan].num, flags);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_add_out_dtd);
|
|
|
|
void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
|
|
int stride, const struct v4l2_rect *c_rect,
|
|
const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
|
|
int max_w, int max_h, int raw_vpdma_chan, u32 flags)
|
|
{
|
|
int priority = 0;
|
|
int field = 0;
|
|
int notify = 1;
|
|
int channel, next_chan;
|
|
struct v4l2_rect rect = *c_rect;
|
|
int depth = fmt->depth;
|
|
struct vpdma_dtd *dtd;
|
|
|
|
channel = next_chan = raw_vpdma_chan;
|
|
|
|
if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
|
|
(fmt->data_type == DATA_TYPE_C420 ||
|
|
fmt->data_type == DATA_TYPE_CB420)) {
|
|
rect.height >>= 1;
|
|
rect.top >>= 1;
|
|
depth = 8;
|
|
}
|
|
|
|
dma_addr += rect.top * stride + (rect.left * depth >> 3);
|
|
|
|
dtd = list->next;
|
|
WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
|
|
|
|
dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
|
|
notify,
|
|
field,
|
|
!!(flags & VPDMA_DATA_FRAME_1D),
|
|
!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
|
|
!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
|
|
stride);
|
|
dtd->w1 = 0;
|
|
dtd->start_addr = (u32) dma_addr;
|
|
dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
|
|
DTD_DIR_OUT, channel, priority, next_chan);
|
|
dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
|
|
dtd->max_width_height = dtd_max_width_height(max_w, max_h);
|
|
dtd->client_attr0 = 0;
|
|
dtd->client_attr1 = 0;
|
|
|
|
list->next = dtd + 1;
|
|
|
|
dump_dtd(dtd);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
|
|
|
|
/*
|
|
* append an inbound data transfer descriptor to the given descriptor list,
|
|
* this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
|
|
*
|
|
* @list: vpdma desc list to which we add this descriptor
|
|
* @width: width of the image in pixels in memory(not the cropped width)
|
|
* @c_rect: crop params of input image
|
|
* @fmt: vpdma data format of the buffer
|
|
* dma_addr: dma address as seen by VPDMA
|
|
* chan: VPDMA channel
|
|
* field: top or bottom field info of the input image
|
|
* flags: VPDMA flags to configure some descriptor fields
|
|
* frame_width/height: the complete width/height of the image presented to the
|
|
* client (this makes sense when multiple channels are
|
|
* connected to the same client, forming a larger frame)
|
|
* start_h, start_v: position where the given channel starts providing pixel
|
|
* data to the client (makes sense when multiple channels
|
|
* contribute to the client)
|
|
*/
|
|
void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
|
|
int stride, const struct v4l2_rect *c_rect,
|
|
const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
|
|
enum vpdma_channel chan, int field, u32 flags, int frame_width,
|
|
int frame_height, int start_h, int start_v)
|
|
{
|
|
int priority = 0;
|
|
int notify = 1;
|
|
int depth = fmt->depth;
|
|
int channel, next_chan;
|
|
struct v4l2_rect rect = *c_rect;
|
|
struct vpdma_dtd *dtd;
|
|
|
|
channel = next_chan = chan_info[chan].num;
|
|
|
|
if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
|
|
(fmt->data_type == DATA_TYPE_C420 ||
|
|
fmt->data_type == DATA_TYPE_CB420)) {
|
|
rect.height >>= 1;
|
|
rect.top >>= 1;
|
|
depth = 8;
|
|
}
|
|
|
|
dma_addr += rect.top * stride + (rect.left * depth >> 3);
|
|
|
|
dtd = list->next;
|
|
WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
|
|
|
|
dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
|
|
notify,
|
|
field,
|
|
!!(flags & VPDMA_DATA_FRAME_1D),
|
|
!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
|
|
!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
|
|
stride);
|
|
|
|
dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
|
|
rect.height);
|
|
dtd->start_addr = (u32) dma_addr;
|
|
dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
|
|
DTD_DIR_IN, channel, priority, next_chan);
|
|
dtd->frame_width_height = dtd_frame_width_height(frame_width,
|
|
frame_height);
|
|
dtd->start_h_v = dtd_start_h_v(start_h, start_v);
|
|
dtd->client_attr0 = 0;
|
|
dtd->client_attr1 = 0;
|
|
|
|
list->next = dtd + 1;
|
|
|
|
dump_dtd(dtd);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_add_in_dtd);
|
|
|
|
int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
|
|
{
|
|
int i, list_num = -1;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vpdma->lock, flags);
|
|
for (i = 0; i < VPDMA_MAX_NUM_LIST && vpdma->hwlist_used[i]; i++)
|
|
;
|
|
|
|
if (i < VPDMA_MAX_NUM_LIST) {
|
|
list_num = i;
|
|
vpdma->hwlist_used[i] = true;
|
|
vpdma->hwlist_priv[i] = priv;
|
|
}
|
|
spin_unlock_irqrestore(&vpdma->lock, flags);
|
|
|
|
return list_num;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_hwlist_alloc);
|
|
|
|
void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
|
|
{
|
|
if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
|
|
return NULL;
|
|
|
|
return vpdma->hwlist_priv[list_num];
|
|
}
|
|
EXPORT_SYMBOL(vpdma_hwlist_get_priv);
|
|
|
|
void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
|
|
{
|
|
void *priv;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vpdma->lock, flags);
|
|
vpdma->hwlist_used[list_num] = false;
|
|
priv = vpdma->hwlist_priv;
|
|
spin_unlock_irqrestore(&vpdma->lock, flags);
|
|
|
|
return priv;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_hwlist_release);
|
|
|
|
/* set or clear the mask for list complete interrupt */
|
|
void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
|
|
int list_num, bool enable)
|
|
{
|
|
u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
|
|
u32 val;
|
|
|
|
val = read_reg(vpdma, reg_addr);
|
|
if (enable)
|
|
val |= (1 << (list_num * 2));
|
|
else
|
|
val &= ~(1 << (list_num * 2));
|
|
write_reg(vpdma, reg_addr, val);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
|
|
|
|
/* get the LIST_STAT register */
|
|
unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
|
|
{
|
|
u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
|
|
|
|
return read_reg(vpdma, reg_addr);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_get_list_stat);
|
|
|
|
/* get the LIST_MASK register */
|
|
unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
|
|
{
|
|
u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
|
|
|
|
return read_reg(vpdma, reg_addr);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_get_list_mask);
|
|
|
|
/* clear previously occurred list interrupts in the LIST_STAT register */
|
|
void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
|
|
int list_num)
|
|
{
|
|
u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
|
|
|
|
write_reg(vpdma, reg_addr, 3 << (list_num * 2));
|
|
}
|
|
EXPORT_SYMBOL(vpdma_clear_list_stat);
|
|
|
|
void vpdma_set_bg_color(struct vpdma_data *vpdma,
|
|
struct vpdma_data_format *fmt, u32 color)
|
|
{
|
|
if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
|
|
write_reg(vpdma, VPDMA_BG_RGB, color);
|
|
else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
|
|
write_reg(vpdma, VPDMA_BG_YUV, color);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_set_bg_color);
|
|
|
|
/*
|
|
* configures the output mode of the line buffer for the given client, the
|
|
* line buffer content can either be mirrored(each line repeated twice) or
|
|
* passed to the client as is
|
|
*/
|
|
void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
|
|
enum vpdma_channel chan)
|
|
{
|
|
int client_cstat = chan_info[chan].cstat_offset;
|
|
|
|
write_field_reg(vpdma, client_cstat, line_mode,
|
|
VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_set_line_mode);
|
|
|
|
/*
|
|
* configures the event which should trigger VPDMA transfer for the given
|
|
* client
|
|
*/
|
|
void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
|
|
enum vpdma_frame_start_event fs_event,
|
|
enum vpdma_channel chan)
|
|
{
|
|
int client_cstat = chan_info[chan].cstat_offset;
|
|
|
|
write_field_reg(vpdma, client_cstat, fs_event,
|
|
VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
|
|
}
|
|
EXPORT_SYMBOL(vpdma_set_frame_start_event);
|
|
|
|
static void vpdma_firmware_cb(const struct firmware *f, void *context)
|
|
{
|
|
struct vpdma_data *vpdma = context;
|
|
struct vpdma_buf fw_dma_buf;
|
|
int i, r;
|
|
|
|
dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
|
|
|
|
if (!f || !f->data) {
|
|
dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
|
|
return;
|
|
}
|
|
|
|
/* already initialized */
|
|
if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
|
|
VPDMA_LIST_RDY_SHFT)) {
|
|
vpdma->cb(vpdma->pdev);
|
|
return;
|
|
}
|
|
|
|
r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
|
|
if (r) {
|
|
dev_err(&vpdma->pdev->dev,
|
|
"failed to allocate dma buffer for firmware\n");
|
|
goto rel_fw;
|
|
}
|
|
|
|
memcpy(fw_dma_buf.addr, f->data, f->size);
|
|
|
|
vpdma_map_desc_buf(vpdma, &fw_dma_buf);
|
|
|
|
write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
|
|
|
|
for (i = 0; i < 100; i++) { /* max 1 second */
|
|
msleep_interruptible(10);
|
|
|
|
if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
|
|
VPDMA_LIST_RDY_SHFT))
|
|
break;
|
|
}
|
|
|
|
if (i == 100) {
|
|
dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
|
|
goto free_buf;
|
|
}
|
|
|
|
vpdma->cb(vpdma->pdev);
|
|
|
|
free_buf:
|
|
vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
|
|
|
|
vpdma_free_desc_buf(&fw_dma_buf);
|
|
rel_fw:
|
|
release_firmware(f);
|
|
}
|
|
|
|
static int vpdma_load_firmware(struct vpdma_data *vpdma)
|
|
{
|
|
int r;
|
|
struct device *dev = &vpdma->pdev->dev;
|
|
|
|
r = request_firmware_nowait(THIS_MODULE, 1,
|
|
(const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
|
|
vpdma_firmware_cb);
|
|
if (r) {
|
|
dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
|
|
return r;
|
|
} else {
|
|
dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
|
|
void (*cb)(struct platform_device *pdev))
|
|
{
|
|
struct resource *res;
|
|
int r;
|
|
|
|
dev_dbg(&pdev->dev, "vpdma_create\n");
|
|
|
|
vpdma->pdev = pdev;
|
|
vpdma->cb = cb;
|
|
spin_lock_init(&vpdma->lock);
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
|
|
if (res == NULL) {
|
|
dev_err(&pdev->dev, "missing platform resources data\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
|
|
if (!vpdma->base) {
|
|
dev_err(&pdev->dev, "failed to ioremap\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
r = vpdma_load_firmware(vpdma);
|
|
if (r) {
|
|
pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(vpdma_create);
|
|
|
|
MODULE_AUTHOR("Texas Instruments Inc.");
|
|
MODULE_FIRMWARE(VPDMA_FIRMWARE);
|
|
MODULE_LICENSE("GPL v2");
|