kernel/drivers/media/platform/davinci/dm355_ccdc.c
2024-07-22 17:22:30 +08:00

936 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2005-2009 Texas Instruments Inc
*
* CCDC hardware module for DM355
* ------------------------------
*
* This module is for configuring DM355 CCD controller of VPFE to capture
* Raw yuv or Bayer RGB data from a decoder. CCDC has several modules
* such as Defect Pixel Correction, Color Space Conversion etc to
* pre-process the Bayer RGB data, before writing it to SDRAM.
*
* TODO: 1) Raw bayer parameter settings and bayer capture
* 2) Split module parameter structure to module specific ioctl structs
* 3) add support for lense shading correction
* 4) investigate if enum used for user space type definition
* to be replaced by #defines or integer
*/
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/videodev2.h>
#include <linux/err.h>
#include <linux/module.h>
#include <media/davinci/dm355_ccdc.h>
#include <media/davinci/vpss.h>
#include "dm355_ccdc_regs.h"
#include "ccdc_hw_device.h"
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CCDC Driver for DM355");
MODULE_AUTHOR("Texas Instruments");
static struct ccdc_oper_config {
struct device *dev;
/* CCDC interface type */
enum vpfe_hw_if_type if_type;
/* Raw Bayer configuration */
struct ccdc_params_raw bayer;
/* YCbCr configuration */
struct ccdc_params_ycbcr ycbcr;
/* ccdc base address */
void __iomem *base_addr;
} ccdc_cfg = {
/* Raw configurations */
.bayer = {
.pix_fmt = CCDC_PIXFMT_RAW,
.frm_fmt = CCDC_FRMFMT_PROGRESSIVE,
.win = CCDC_WIN_VGA,
.fid_pol = VPFE_PINPOL_POSITIVE,
.vd_pol = VPFE_PINPOL_POSITIVE,
.hd_pol = VPFE_PINPOL_POSITIVE,
.gain = {
.r_ye = 256,
.gb_g = 256,
.gr_cy = 256,
.b_mg = 256
},
.config_params = {
.datasft = 2,
.mfilt1 = CCDC_NO_MEDIAN_FILTER1,
.mfilt2 = CCDC_NO_MEDIAN_FILTER2,
.alaw = {
.gamma_wd = 2,
},
.blk_clamp = {
.sample_pixel = 1,
.dc_sub = 25
},
.col_pat_field0 = {
.olop = CCDC_GREEN_BLUE,
.olep = CCDC_BLUE,
.elop = CCDC_RED,
.elep = CCDC_GREEN_RED
},
.col_pat_field1 = {
.olop = CCDC_GREEN_BLUE,
.olep = CCDC_BLUE,
.elop = CCDC_RED,
.elep = CCDC_GREEN_RED
},
},
},
/* YCbCr configuration */
.ycbcr = {
.win = CCDC_WIN_PAL,
.pix_fmt = CCDC_PIXFMT_YCBCR_8BIT,
.frm_fmt = CCDC_FRMFMT_INTERLACED,
.fid_pol = VPFE_PINPOL_POSITIVE,
.vd_pol = VPFE_PINPOL_POSITIVE,
.hd_pol = VPFE_PINPOL_POSITIVE,
.bt656_enable = 1,
.pix_order = CCDC_PIXORDER_CBYCRY,
.buf_type = CCDC_BUFTYPE_FLD_INTERLEAVED
},
};
/* Raw Bayer formats */
static u32 ccdc_raw_bayer_pix_formats[] =
{V4L2_PIX_FMT_SBGGR8, V4L2_PIX_FMT_SBGGR16};
/* Raw YUV formats */
static u32 ccdc_raw_yuv_pix_formats[] =
{V4L2_PIX_FMT_UYVY, V4L2_PIX_FMT_YUYV};
/* register access routines */
static inline u32 regr(u32 offset)
{
return __raw_readl(ccdc_cfg.base_addr + offset);
}
static inline void regw(u32 val, u32 offset)
{
__raw_writel(val, ccdc_cfg.base_addr + offset);
}
static void ccdc_enable(int en)
{
unsigned int temp;
temp = regr(SYNCEN);
temp &= (~CCDC_SYNCEN_VDHDEN_MASK);
temp |= (en & CCDC_SYNCEN_VDHDEN_MASK);
regw(temp, SYNCEN);
}
static void ccdc_enable_output_to_sdram(int en)
{
unsigned int temp;
temp = regr(SYNCEN);
temp &= (~(CCDC_SYNCEN_WEN_MASK));
temp |= ((en << CCDC_SYNCEN_WEN_SHIFT) & CCDC_SYNCEN_WEN_MASK);
regw(temp, SYNCEN);
}
static void ccdc_config_gain_offset(void)
{
/* configure gain */
regw(ccdc_cfg.bayer.gain.r_ye, RYEGAIN);
regw(ccdc_cfg.bayer.gain.gr_cy, GRCYGAIN);
regw(ccdc_cfg.bayer.gain.gb_g, GBGGAIN);
regw(ccdc_cfg.bayer.gain.b_mg, BMGGAIN);
/* configure offset */
regw(ccdc_cfg.bayer.ccdc_offset, OFFSET);
}
/*
* ccdc_restore_defaults()
* This function restore power on defaults in the ccdc registers
*/
static int ccdc_restore_defaults(void)
{
int i;
dev_dbg(ccdc_cfg.dev, "\nstarting ccdc_restore_defaults...");
/* set all registers to zero */
for (i = 0; i <= CCDC_REG_LAST; i += 4)
regw(0, i);
/* now override the values with power on defaults in registers */
regw(MODESET_DEFAULT, MODESET);
/* no culling support */
regw(CULH_DEFAULT, CULH);
regw(CULV_DEFAULT, CULV);
/* Set default Gain and Offset */
ccdc_cfg.bayer.gain.r_ye = GAIN_DEFAULT;
ccdc_cfg.bayer.gain.gb_g = GAIN_DEFAULT;
ccdc_cfg.bayer.gain.gr_cy = GAIN_DEFAULT;
ccdc_cfg.bayer.gain.b_mg = GAIN_DEFAULT;
ccdc_config_gain_offset();
regw(OUTCLIP_DEFAULT, OUTCLIP);
regw(LSCCFG2_DEFAULT, LSCCFG2);
/* select ccdc input */
if (vpss_select_ccdc_source(VPSS_CCDCIN)) {
dev_dbg(ccdc_cfg.dev, "\ncouldn't select ccdc input source");
return -EFAULT;
}
/* select ccdc clock */
if (vpss_enable_clock(VPSS_CCDC_CLOCK, 1) < 0) {
dev_dbg(ccdc_cfg.dev, "\ncouldn't enable ccdc clock");
return -EFAULT;
}
dev_dbg(ccdc_cfg.dev, "\nEnd of ccdc_restore_defaults...");
return 0;
}
static int ccdc_open(struct device *device)
{
return ccdc_restore_defaults();
}
static int ccdc_close(struct device *device)
{
/* disable clock */
vpss_enable_clock(VPSS_CCDC_CLOCK, 0);
/* do nothing for now */
return 0;
}
/*
* ccdc_setwin()
* This function will configure the window size to
* be capture in CCDC reg.
*/
static void ccdc_setwin(struct v4l2_rect *image_win,
enum ccdc_frmfmt frm_fmt, int ppc)
{
int horz_start, horz_nr_pixels;
int vert_start, vert_nr_lines;
int mid_img = 0;
dev_dbg(ccdc_cfg.dev, "\nStarting ccdc_setwin...");
/*
* ppc - per pixel count. indicates how many pixels per cell
* output to SDRAM. example, for ycbcr, it is one y and one c, so 2.
* raw capture this is 1
*/
horz_start = image_win->left << (ppc - 1);
horz_nr_pixels = ((image_win->width) << (ppc - 1)) - 1;
/* Writing the horizontal info into the registers */
regw(horz_start, SPH);
regw(horz_nr_pixels, NPH);
vert_start = image_win->top;
if (frm_fmt == CCDC_FRMFMT_INTERLACED) {
vert_nr_lines = (image_win->height >> 1) - 1;
vert_start >>= 1;
/* Since first line doesn't have any data */
vert_start += 1;
/* configure VDINT0 and VDINT1 */
regw(vert_start, VDINT0);
} else {
/* Since first line doesn't have any data */
vert_start += 1;
vert_nr_lines = image_win->height - 1;
/* configure VDINT0 and VDINT1 */
mid_img = vert_start + (image_win->height / 2);
regw(vert_start, VDINT0);
regw(mid_img, VDINT1);
}
regw(vert_start & CCDC_START_VER_ONE_MASK, SLV0);
regw(vert_start & CCDC_START_VER_TWO_MASK, SLV1);
regw(vert_nr_lines & CCDC_NUM_LINES_VER, NLV);
dev_dbg(ccdc_cfg.dev, "\nEnd of ccdc_setwin...");
}
/* This function will configure CCDC for YCbCr video capture */
static void ccdc_config_ycbcr(void)
{
struct ccdc_params_ycbcr *params = &ccdc_cfg.ycbcr;
u32 temp;
/* first set the CCDC power on defaults values in all registers */
dev_dbg(ccdc_cfg.dev, "\nStarting ccdc_config_ycbcr...");
ccdc_restore_defaults();
/* configure pixel format & video frame format */
temp = (((params->pix_fmt & CCDC_INPUT_MODE_MASK) <<
CCDC_INPUT_MODE_SHIFT) |
((params->frm_fmt & CCDC_FRM_FMT_MASK) <<
CCDC_FRM_FMT_SHIFT));
/* setup BT.656 sync mode */
if (params->bt656_enable) {
regw(CCDC_REC656IF_BT656_EN, REC656IF);
/*
* configure the FID, VD, HD pin polarity fld,hd pol positive,
* vd negative, 8-bit pack mode
*/
temp |= CCDC_VD_POL_NEGATIVE;
} else { /* y/c external sync mode */
temp |= (((params->fid_pol & CCDC_FID_POL_MASK) <<
CCDC_FID_POL_SHIFT) |
((params->hd_pol & CCDC_HD_POL_MASK) <<
CCDC_HD_POL_SHIFT) |
((params->vd_pol & CCDC_VD_POL_MASK) <<
CCDC_VD_POL_SHIFT));
}
/* pack the data to 8-bit */
temp |= CCDC_DATA_PACK_ENABLE;
regw(temp, MODESET);
/* configure video window */
ccdc_setwin(&params->win, params->frm_fmt, 2);
/* configure the order of y cb cr in SD-RAM */
temp = (params->pix_order << CCDC_Y8POS_SHIFT);
temp |= CCDC_LATCH_ON_VSYNC_DISABLE | CCDC_CCDCFG_FIDMD_NO_LATCH_VSYNC;
regw(temp, CCDCFG);
/*
* configure the horizontal line offset. This is done by rounding up
* width to a multiple of 16 pixels and multiply by two to account for
* y:cb:cr 4:2:2 data
*/
regw(((params->win.width * 2 + 31) >> 5), HSIZE);
/* configure the memory line offset */
if (params->buf_type == CCDC_BUFTYPE_FLD_INTERLEAVED) {
/* two fields are interleaved in memory */
regw(CCDC_SDOFST_FIELD_INTERLEAVED, SDOFST);
}
dev_dbg(ccdc_cfg.dev, "\nEnd of ccdc_config_ycbcr...\n");
}
/*
* ccdc_config_black_clamp()
* configure parameters for Optical Black Clamp
*/
static void ccdc_config_black_clamp(struct ccdc_black_clamp *bclamp)
{
u32 val;
if (!bclamp->b_clamp_enable) {
/* configure DCSub */
regw(bclamp->dc_sub & CCDC_BLK_DC_SUB_MASK, DCSUB);
regw(0x0000, CLAMP);
return;
}
/* Enable the Black clamping, set sample lines and pixels */
val = (bclamp->start_pixel & CCDC_BLK_ST_PXL_MASK) |
((bclamp->sample_pixel & CCDC_BLK_SAMPLE_LN_MASK) <<
CCDC_BLK_SAMPLE_LN_SHIFT) | CCDC_BLK_CLAMP_ENABLE;
regw(val, CLAMP);
/* If Black clamping is enable then make dcsub 0 */
val = (bclamp->sample_ln & CCDC_NUM_LINE_CALC_MASK)
<< CCDC_NUM_LINE_CALC_SHIFT;
regw(val, DCSUB);
}
/*
* ccdc_config_black_compense()
* configure parameters for Black Compensation
*/
static void ccdc_config_black_compense(struct ccdc_black_compensation *bcomp)
{
u32 val;
val = (bcomp->b & CCDC_BLK_COMP_MASK) |
((bcomp->gb & CCDC_BLK_COMP_MASK) <<
CCDC_BLK_COMP_GB_COMP_SHIFT);
regw(val, BLKCMP1);
val = ((bcomp->gr & CCDC_BLK_COMP_MASK) <<
CCDC_BLK_COMP_GR_COMP_SHIFT) |
((bcomp->r & CCDC_BLK_COMP_MASK) <<
CCDC_BLK_COMP_R_COMP_SHIFT);
regw(val, BLKCMP0);
}
/*
* ccdc_write_dfc_entry()
* write an entry in the dfc table.
*/
static int ccdc_write_dfc_entry(int index, struct ccdc_vertical_dft *dfc)
{
/* TODO This is to be re-visited and adjusted */
#define DFC_WRITE_WAIT_COUNT 1000
u32 val, count = DFC_WRITE_WAIT_COUNT;
regw(dfc->dft_corr_vert[index], DFCMEM0);
regw(dfc->dft_corr_horz[index], DFCMEM1);
regw(dfc->dft_corr_sub1[index], DFCMEM2);
regw(dfc->dft_corr_sub2[index], DFCMEM3);
regw(dfc->dft_corr_sub3[index], DFCMEM4);
/* set WR bit to write */
val = regr(DFCMEMCTL) | CCDC_DFCMEMCTL_DFCMWR_MASK;
regw(val, DFCMEMCTL);
/*
* Assume, it is very short. If we get an error, we need to
* adjust this value
*/
while (regr(DFCMEMCTL) & CCDC_DFCMEMCTL_DFCMWR_MASK)
count--;
/*
* TODO We expect the count to be non-zero to be successful. Adjust
* the count if write requires more time
*/
if (count) {
dev_err(ccdc_cfg.dev, "defect table write timeout !!!\n");
return -1;
}
return 0;
}
/*
* ccdc_config_vdfc()
* configure parameters for Vertical Defect Correction
*/
static int ccdc_config_vdfc(struct ccdc_vertical_dft *dfc)
{
u32 val;
int i;
/* Configure General Defect Correction. The table used is from IPIPE */
val = dfc->gen_dft_en & CCDC_DFCCTL_GDFCEN_MASK;
/* Configure Vertical Defect Correction if needed */
if (!dfc->ver_dft_en) {
/* Enable only General Defect Correction */
regw(val, DFCCTL);
return 0;
}
if (dfc->table_size > CCDC_DFT_TABLE_SIZE)
return -EINVAL;
val |= CCDC_DFCCTL_VDFC_DISABLE;
val |= (dfc->dft_corr_ctl.vdfcsl & CCDC_DFCCTL_VDFCSL_MASK) <<
CCDC_DFCCTL_VDFCSL_SHIFT;
val |= (dfc->dft_corr_ctl.vdfcuda & CCDC_DFCCTL_VDFCUDA_MASK) <<
CCDC_DFCCTL_VDFCUDA_SHIFT;
val |= (dfc->dft_corr_ctl.vdflsft & CCDC_DFCCTL_VDFLSFT_MASK) <<
CCDC_DFCCTL_VDFLSFT_SHIFT;
regw(val , DFCCTL);
/* clear address ptr to offset 0 */
val = CCDC_DFCMEMCTL_DFCMARST_MASK << CCDC_DFCMEMCTL_DFCMARST_SHIFT;
/* write defect table entries */
for (i = 0; i < dfc->table_size; i++) {
/* increment address for non zero index */
if (i != 0)
val = CCDC_DFCMEMCTL_INC_ADDR;
regw(val, DFCMEMCTL);
if (ccdc_write_dfc_entry(i, dfc) < 0)
return -EFAULT;
}
/* update saturation level and enable dfc */
regw(dfc->saturation_ctl & CCDC_VDC_DFCVSAT_MASK, DFCVSAT);
val = regr(DFCCTL) | (CCDC_DFCCTL_VDFCEN_MASK <<
CCDC_DFCCTL_VDFCEN_SHIFT);
regw(val, DFCCTL);
return 0;
}
/*
* ccdc_config_csc()
* configure parameters for color space conversion
* Each register CSCM0-7 has two values in S8Q5 format.
*/
static void ccdc_config_csc(struct ccdc_csc *csc)
{
u32 val1 = 0, val2;
int i;
if (!csc->enable)
return;
/* Enable the CSC sub-module */
regw(CCDC_CSC_ENABLE, CSCCTL);
/* Converting the co-eff as per the format of the register */
for (i = 0; i < CCDC_CSC_COEFF_TABLE_SIZE; i++) {
if ((i % 2) == 0) {
/* CSCM - LSB */
val1 = (csc->coeff[i].integer &
CCDC_CSC_COEF_INTEG_MASK)
<< CCDC_CSC_COEF_INTEG_SHIFT;
/*
* convert decimal part to binary. Use 2 decimal
* precision, user values range from .00 - 0.99
*/
val1 |= (((csc->coeff[i].decimal &
CCDC_CSC_COEF_DECIMAL_MASK) *
CCDC_CSC_DEC_MAX) / 100);
} else {
/* CSCM - MSB */
val2 = (csc->coeff[i].integer &
CCDC_CSC_COEF_INTEG_MASK)
<< CCDC_CSC_COEF_INTEG_SHIFT;
val2 |= (((csc->coeff[i].decimal &
CCDC_CSC_COEF_DECIMAL_MASK) *
CCDC_CSC_DEC_MAX) / 100);
val2 <<= CCDC_CSCM_MSB_SHIFT;
val2 |= val1;
regw(val2, (CSCM0 + ((i - 1) << 1)));
}
}
}
/*
* ccdc_config_color_patterns()
* configure parameters for color patterns
*/
static void ccdc_config_color_patterns(struct ccdc_col_pat *pat0,
struct ccdc_col_pat *pat1)
{
u32 val;
val = (pat0->olop | (pat0->olep << 2) | (pat0->elop << 4) |
(pat0->elep << 6) | (pat1->olop << 8) | (pat1->olep << 10) |
(pat1->elop << 12) | (pat1->elep << 14));
regw(val, COLPTN);
}
/* This function will configure CCDC for Raw mode image capture */
static int ccdc_config_raw(void)
{
struct ccdc_params_raw *params = &ccdc_cfg.bayer;
struct ccdc_config_params_raw *config_params =
&ccdc_cfg.bayer.config_params;
unsigned int val;
dev_dbg(ccdc_cfg.dev, "\nStarting ccdc_config_raw...");
/* restore power on defaults to register */
ccdc_restore_defaults();
/* CCDCFG register:
* set CCD Not to swap input since input is RAW data
* set FID detection function to Latch at V-Sync
* set WENLOG - ccdc valid area to AND
* set TRGSEL to WENBIT
* set EXTRG to DISABLE
* disable latching function on VSYNC - shadowed registers
*/
regw(CCDC_YCINSWP_RAW | CCDC_CCDCFG_FIDMD_LATCH_VSYNC |
CCDC_CCDCFG_WENLOG_AND | CCDC_CCDCFG_TRGSEL_WEN |
CCDC_CCDCFG_EXTRG_DISABLE | CCDC_LATCH_ON_VSYNC_DISABLE, CCDCFG);
/*
* Set VDHD direction to input, input type to raw input
* normal data polarity, do not use external WEN
*/
val = (CCDC_VDHDOUT_INPUT | CCDC_RAW_IP_MODE | CCDC_DATAPOL_NORMAL |
CCDC_EXWEN_DISABLE);
/*
* Configure the vertical sync polarity (MODESET.VDPOL), horizontal
* sync polarity (MODESET.HDPOL), field id polarity (MODESET.FLDPOL),
* frame format(progressive or interlace), & pixel format (Input mode)
*/
val |= (((params->vd_pol & CCDC_VD_POL_MASK) << CCDC_VD_POL_SHIFT) |
((params->hd_pol & CCDC_HD_POL_MASK) << CCDC_HD_POL_SHIFT) |
((params->fid_pol & CCDC_FID_POL_MASK) << CCDC_FID_POL_SHIFT) |
((params->frm_fmt & CCDC_FRM_FMT_MASK) << CCDC_FRM_FMT_SHIFT) |
((params->pix_fmt & CCDC_PIX_FMT_MASK) << CCDC_PIX_FMT_SHIFT));
/* set pack for alaw compression */
if ((config_params->data_sz == CCDC_DATA_8BITS) ||
config_params->alaw.enable)
val |= CCDC_DATA_PACK_ENABLE;
/* Configure for LPF */
if (config_params->lpf_enable)
val |= (config_params->lpf_enable & CCDC_LPF_MASK) <<
CCDC_LPF_SHIFT;
/* Configure the data shift */
val |= (config_params->datasft & CCDC_DATASFT_MASK) <<
CCDC_DATASFT_SHIFT;
regw(val , MODESET);
dev_dbg(ccdc_cfg.dev, "\nWriting 0x%x to MODESET...\n", val);
/* Configure the Median Filter threshold */
regw((config_params->med_filt_thres) & CCDC_MED_FILT_THRESH, MEDFILT);
/* Configure GAMMAWD register. defaur 11-2, and Mosaic cfa pattern */
val = CCDC_GAMMA_BITS_11_2 << CCDC_GAMMAWD_INPUT_SHIFT |
CCDC_CFA_MOSAIC;
/* Enable and configure aLaw register if needed */
if (config_params->alaw.enable) {
val |= (CCDC_ALAW_ENABLE |
((config_params->alaw.gamma_wd &
CCDC_ALAW_GAMMA_WD_MASK) <<
CCDC_GAMMAWD_INPUT_SHIFT));
}
/* Configure Median filter1 & filter2 */
val |= ((config_params->mfilt1 << CCDC_MFILT1_SHIFT) |
(config_params->mfilt2 << CCDC_MFILT2_SHIFT));
regw(val, GAMMAWD);
dev_dbg(ccdc_cfg.dev, "\nWriting 0x%x to GAMMAWD...\n", val);
/* configure video window */
ccdc_setwin(&params->win, params->frm_fmt, 1);
/* Optical Clamp Averaging */
ccdc_config_black_clamp(&config_params->blk_clamp);
/* Black level compensation */
ccdc_config_black_compense(&config_params->blk_comp);
/* Vertical Defect Correction if needed */
if (ccdc_config_vdfc(&config_params->vertical_dft) < 0)
return -EFAULT;
/* color space conversion */
ccdc_config_csc(&config_params->csc);
/* color pattern */
ccdc_config_color_patterns(&config_params->col_pat_field0,
&config_params->col_pat_field1);
/* Configure the Gain & offset control */
ccdc_config_gain_offset();
dev_dbg(ccdc_cfg.dev, "\nWriting %x to COLPTN...\n", val);
/* Configure DATAOFST register */
val = (config_params->data_offset.horz_offset & CCDC_DATAOFST_MASK) <<
CCDC_DATAOFST_H_SHIFT;
val |= (config_params->data_offset.vert_offset & CCDC_DATAOFST_MASK) <<
CCDC_DATAOFST_V_SHIFT;
regw(val, DATAOFST);
/* configuring HSIZE register */
val = (params->horz_flip_enable & CCDC_HSIZE_FLIP_MASK) <<
CCDC_HSIZE_FLIP_SHIFT;
/* If pack 8 is enable then 1 pixel will take 1 byte */
if ((config_params->data_sz == CCDC_DATA_8BITS) ||
config_params->alaw.enable) {
val |= (((params->win.width) + 31) >> 5) &
CCDC_HSIZE_VAL_MASK;
/* adjust to multiple of 32 */
dev_dbg(ccdc_cfg.dev, "\nWriting 0x%x to HSIZE...\n",
(((params->win.width) + 31) >> 5) &
CCDC_HSIZE_VAL_MASK);
} else {
/* else one pixel will take 2 byte */
val |= (((params->win.width * 2) + 31) >> 5) &
CCDC_HSIZE_VAL_MASK;
dev_dbg(ccdc_cfg.dev, "\nWriting 0x%x to HSIZE...\n",
(((params->win.width * 2) + 31) >> 5) &
CCDC_HSIZE_VAL_MASK);
}
regw(val, HSIZE);
/* Configure SDOFST register */
if (params->frm_fmt == CCDC_FRMFMT_INTERLACED) {
if (params->image_invert_enable) {
/* For interlace inverse mode */
regw(CCDC_SDOFST_INTERLACE_INVERSE, SDOFST);
dev_dbg(ccdc_cfg.dev, "\nWriting %x to SDOFST...\n",
CCDC_SDOFST_INTERLACE_INVERSE);
} else {
/* For interlace non inverse mode */
regw(CCDC_SDOFST_INTERLACE_NORMAL, SDOFST);
dev_dbg(ccdc_cfg.dev, "\nWriting %x to SDOFST...\n",
CCDC_SDOFST_INTERLACE_NORMAL);
}
} else if (params->frm_fmt == CCDC_FRMFMT_PROGRESSIVE) {
if (params->image_invert_enable) {
/* For progessive inverse mode */
regw(CCDC_SDOFST_PROGRESSIVE_INVERSE, SDOFST);
dev_dbg(ccdc_cfg.dev, "\nWriting %x to SDOFST...\n",
CCDC_SDOFST_PROGRESSIVE_INVERSE);
} else {
/* For progessive non inverse mode */
regw(CCDC_SDOFST_PROGRESSIVE_NORMAL, SDOFST);
dev_dbg(ccdc_cfg.dev, "\nWriting %x to SDOFST...\n",
CCDC_SDOFST_PROGRESSIVE_NORMAL);
}
}
dev_dbg(ccdc_cfg.dev, "\nend of ccdc_config_raw...");
return 0;
}
static int ccdc_configure(void)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
return ccdc_config_raw();
else
ccdc_config_ycbcr();
return 0;
}
static int ccdc_set_buftype(enum ccdc_buftype buf_type)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
ccdc_cfg.bayer.buf_type = buf_type;
else
ccdc_cfg.ycbcr.buf_type = buf_type;
return 0;
}
static enum ccdc_buftype ccdc_get_buftype(void)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
return ccdc_cfg.bayer.buf_type;
return ccdc_cfg.ycbcr.buf_type;
}
static int ccdc_enum_pix(u32 *pix, int i)
{
int ret = -EINVAL;
if (ccdc_cfg.if_type == VPFE_RAW_BAYER) {
if (i < ARRAY_SIZE(ccdc_raw_bayer_pix_formats)) {
*pix = ccdc_raw_bayer_pix_formats[i];
ret = 0;
}
} else {
if (i < ARRAY_SIZE(ccdc_raw_yuv_pix_formats)) {
*pix = ccdc_raw_yuv_pix_formats[i];
ret = 0;
}
}
return ret;
}
static int ccdc_set_pixel_format(u32 pixfmt)
{
struct ccdc_a_law *alaw = &ccdc_cfg.bayer.config_params.alaw;
if (ccdc_cfg.if_type == VPFE_RAW_BAYER) {
ccdc_cfg.bayer.pix_fmt = CCDC_PIXFMT_RAW;
if (pixfmt == V4L2_PIX_FMT_SBGGR8)
alaw->enable = 1;
else if (pixfmt != V4L2_PIX_FMT_SBGGR16)
return -EINVAL;
} else {
if (pixfmt == V4L2_PIX_FMT_YUYV)
ccdc_cfg.ycbcr.pix_order = CCDC_PIXORDER_YCBYCR;
else if (pixfmt == V4L2_PIX_FMT_UYVY)
ccdc_cfg.ycbcr.pix_order = CCDC_PIXORDER_CBYCRY;
else
return -EINVAL;
}
return 0;
}
static u32 ccdc_get_pixel_format(void)
{
struct ccdc_a_law *alaw = &ccdc_cfg.bayer.config_params.alaw;
u32 pixfmt;
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
if (alaw->enable)
pixfmt = V4L2_PIX_FMT_SBGGR8;
else
pixfmt = V4L2_PIX_FMT_SBGGR16;
else {
if (ccdc_cfg.ycbcr.pix_order == CCDC_PIXORDER_YCBYCR)
pixfmt = V4L2_PIX_FMT_YUYV;
else
pixfmt = V4L2_PIX_FMT_UYVY;
}
return pixfmt;
}
static int ccdc_set_image_window(struct v4l2_rect *win)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
ccdc_cfg.bayer.win = *win;
else
ccdc_cfg.ycbcr.win = *win;
return 0;
}
static void ccdc_get_image_window(struct v4l2_rect *win)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
*win = ccdc_cfg.bayer.win;
else
*win = ccdc_cfg.ycbcr.win;
}
static unsigned int ccdc_get_line_length(void)
{
struct ccdc_config_params_raw *config_params =
&ccdc_cfg.bayer.config_params;
unsigned int len;
if (ccdc_cfg.if_type == VPFE_RAW_BAYER) {
if ((config_params->alaw.enable) ||
(config_params->data_sz == CCDC_DATA_8BITS))
len = ccdc_cfg.bayer.win.width;
else
len = ccdc_cfg.bayer.win.width * 2;
} else
len = ccdc_cfg.ycbcr.win.width * 2;
return ALIGN(len, 32);
}
static int ccdc_set_frame_format(enum ccdc_frmfmt frm_fmt)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
ccdc_cfg.bayer.frm_fmt = frm_fmt;
else
ccdc_cfg.ycbcr.frm_fmt = frm_fmt;
return 0;
}
static enum ccdc_frmfmt ccdc_get_frame_format(void)
{
if (ccdc_cfg.if_type == VPFE_RAW_BAYER)
return ccdc_cfg.bayer.frm_fmt;
else
return ccdc_cfg.ycbcr.frm_fmt;
}
static int ccdc_getfid(void)
{
return (regr(MODESET) >> 15) & 1;
}
/* misc operations */
static inline void ccdc_setfbaddr(unsigned long addr)
{
regw((addr >> 21) & 0x007f, STADRH);
regw((addr >> 5) & 0x0ffff, STADRL);
}
static int ccdc_set_hw_if_params(struct vpfe_hw_if_param *params)
{
ccdc_cfg.if_type = params->if_type;
switch (params->if_type) {
case VPFE_BT656:
case VPFE_YCBCR_SYNC_16:
case VPFE_YCBCR_SYNC_8:
ccdc_cfg.ycbcr.vd_pol = params->vdpol;
ccdc_cfg.ycbcr.hd_pol = params->hdpol;
break;
default:
/* TODO add support for raw bayer here */
return -EINVAL;
}
return 0;
}
static const struct ccdc_hw_device ccdc_hw_dev = {
.name = "DM355 CCDC",
.owner = THIS_MODULE,
.hw_ops = {
.open = ccdc_open,
.close = ccdc_close,
.enable = ccdc_enable,
.enable_out_to_sdram = ccdc_enable_output_to_sdram,
.set_hw_if_params = ccdc_set_hw_if_params,
.configure = ccdc_configure,
.set_buftype = ccdc_set_buftype,
.get_buftype = ccdc_get_buftype,
.enum_pix = ccdc_enum_pix,
.set_pixel_format = ccdc_set_pixel_format,
.get_pixel_format = ccdc_get_pixel_format,
.set_frame_format = ccdc_set_frame_format,
.get_frame_format = ccdc_get_frame_format,
.set_image_window = ccdc_set_image_window,
.get_image_window = ccdc_get_image_window,
.get_line_length = ccdc_get_line_length,
.setfbaddr = ccdc_setfbaddr,
.getfid = ccdc_getfid,
},
};
static int dm355_ccdc_probe(struct platform_device *pdev)
{
void (*setup_pinmux)(void);
struct resource *res;
int status = 0;
/*
* first try to register with vpfe. If not correct platform, then we
* don't have to iomap
*/
status = vpfe_register_ccdc_device(&ccdc_hw_dev);
if (status < 0)
return status;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
status = -ENODEV;
goto fail_nores;
}
res = request_mem_region(res->start, resource_size(res), res->name);
if (!res) {
status = -EBUSY;
goto fail_nores;
}
ccdc_cfg.base_addr = ioremap(res->start, resource_size(res));
if (!ccdc_cfg.base_addr) {
status = -ENOMEM;
goto fail_nomem;
}
/* Platform data holds setup_pinmux function ptr */
if (NULL == pdev->dev.platform_data) {
status = -ENODEV;
goto fail_nomap;
}
setup_pinmux = pdev->dev.platform_data;
/*
* setup Mux configuration for ccdc which may be different for
* different SoCs using this CCDC
*/
setup_pinmux();
ccdc_cfg.dev = &pdev->dev;
printk(KERN_NOTICE "%s is registered with vpfe.\n", ccdc_hw_dev.name);
return 0;
fail_nomap:
iounmap(ccdc_cfg.base_addr);
fail_nomem:
release_mem_region(res->start, resource_size(res));
fail_nores:
vpfe_unregister_ccdc_device(&ccdc_hw_dev);
return status;
}
static int dm355_ccdc_remove(struct platform_device *pdev)
{
struct resource *res;
iounmap(ccdc_cfg.base_addr);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, resource_size(res));
vpfe_unregister_ccdc_device(&ccdc_hw_dev);
return 0;
}
static struct platform_driver dm355_ccdc_driver = {
.driver = {
.name = "dm355_ccdc",
},
.remove = dm355_ccdc_remove,
.probe = dm355_ccdc_probe,
};
module_platform_driver(dm355_ccdc_driver);