kernel/drivers/infiniband/hw/hfi1/hfi.h
2024-07-22 17:22:30 +08:00

2649 lines
76 KiB
C

/* SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause */
/*
* Copyright(c) 2020 Cornelis Networks, Inc.
* Copyright(c) 2015-2020 Intel Corporation.
*/
#ifndef _HFI1_KERNEL_H
#define _HFI1_KERNEL_H
#include <linux/refcount.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/fs.h>
#include <linux/completion.h>
#include <linux/kref.h>
#include <linux/sched.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
#include <linux/xarray.h>
#include <rdma/ib_hdrs.h>
#include <rdma/opa_addr.h>
#include <linux/rhashtable.h>
#include <rdma/rdma_vt.h>
#include "chip_registers.h"
#include "common.h"
#include "opfn.h"
#include "verbs.h"
#include "pio.h"
#include "chip.h"
#include "mad.h"
#include "qsfp.h"
#include "platform.h"
#include "affinity.h"
#include "msix.h"
/* bumped 1 from s/w major version of TrueScale */
#define HFI1_CHIP_VERS_MAJ 3U
/* don't care about this except printing */
#define HFI1_CHIP_VERS_MIN 0U
/* The Organization Unique Identifier (Mfg code), and its position in GUID */
#define HFI1_OUI 0x001175
#define HFI1_OUI_LSB 40
#define DROP_PACKET_OFF 0
#define DROP_PACKET_ON 1
#define NEIGHBOR_TYPE_HFI 0
#define NEIGHBOR_TYPE_SWITCH 1
#define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
extern unsigned long hfi1_cap_mask;
#define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
#define HFI1_CAP_UGET_MASK(mask, cap) \
(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
#define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
#define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
#define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
#define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
#define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
HFI1_CAP_MISC_MASK)
/* Offline Disabled Reason is 4-bits */
#define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
/*
* Control context is always 0 and handles the error packets.
* It also handles the VL15 and multicast packets.
*/
#define HFI1_CTRL_CTXT 0
/*
* Driver context will store software counters for each of the events
* associated with these status registers
*/
#define NUM_CCE_ERR_STATUS_COUNTERS 41
#define NUM_RCV_ERR_STATUS_COUNTERS 64
#define NUM_MISC_ERR_STATUS_COUNTERS 13
#define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
#define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
#define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
#define NUM_SEND_ERR_STATUS_COUNTERS 3
#define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
#define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
/*
* per driver stats, either not device nor port-specific, or
* summed over all of the devices and ports.
* They are described by name via ipathfs filesystem, so layout
* and number of elements can change without breaking compatibility.
* If members are added or deleted hfi1_statnames[] in debugfs.c must
* change to match.
*/
struct hfi1_ib_stats {
__u64 sps_ints; /* number of interrupts handled */
__u64 sps_errints; /* number of error interrupts */
__u64 sps_txerrs; /* tx-related packet errors */
__u64 sps_rcverrs; /* non-crc rcv packet errors */
__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
__u64 sps_ctxts; /* number of contexts currently open */
__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
__u64 sps_buffull;
__u64 sps_hdrfull;
};
extern struct hfi1_ib_stats hfi1_stats;
extern const struct pci_error_handlers hfi1_pci_err_handler;
extern int num_driver_cntrs;
/*
* First-cut criterion for "device is active" is
* two thousand dwords combined Tx, Rx traffic per
* 5-second interval. SMA packets are 64 dwords,
* and occur "a few per second", presumably each way.
*/
#define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
/*
* Below contains all data related to a single context (formerly called port).
*/
struct hfi1_opcode_stats_perctx;
struct ctxt_eager_bufs {
struct eager_buffer {
void *addr;
dma_addr_t dma;
ssize_t len;
} *buffers;
struct {
void *addr;
dma_addr_t dma;
} *rcvtids;
u32 size; /* total size of eager buffers */
u32 rcvtid_size; /* size of each eager rcv tid */
u16 count; /* size of buffers array */
u16 numbufs; /* number of buffers allocated */
u16 alloced; /* number of rcvarray entries used */
u16 threshold; /* head update threshold */
};
struct exp_tid_set {
struct list_head list;
u32 count;
};
struct hfi1_ctxtdata;
typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data);
typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
struct tid_queue {
struct list_head queue_head;
/* queue head for QP TID resource waiters */
u32 enqueue; /* count of tid enqueues */
u32 dequeue; /* count of tid dequeues */
};
struct hfi1_ctxtdata {
/* rcvhdrq base, needs mmap before useful */
void *rcvhdrq;
/* kernel virtual address where hdrqtail is updated */
volatile __le64 *rcvhdrtail_kvaddr;
/* so functions that need physical port can get it easily */
struct hfi1_pportdata *ppd;
/* so file ops can get at unit */
struct hfi1_devdata *dd;
/* this receive context's assigned PIO ACK send context */
struct send_context *sc;
/* per context recv functions */
const rhf_rcv_function_ptr *rhf_rcv_function_map;
/*
* The interrupt handler for a particular receive context can vary
* throughout it's lifetime. This is not a lock protected data member so
* it must be updated atomically and the prev and new value must always
* be valid. Worst case is we process an extra interrupt and up to 64
* packets with the wrong interrupt handler.
*/
intr_handler do_interrupt;
/** fast handler after autoactive */
intr_handler fast_handler;
/** slow handler */
intr_handler slow_handler;
/* napi pointer assiociated with netdev */
struct napi_struct *napi;
/* verbs rx_stats per rcd */
struct hfi1_opcode_stats_perctx *opstats;
/* clear interrupt mask */
u64 imask;
/* ctxt rcvhdrq head offset */
u32 head;
/* number of rcvhdrq entries */
u16 rcvhdrq_cnt;
u8 ireg; /* clear interrupt register */
/* receive packet sequence counter */
u8 seq_cnt;
/* size of each of the rcvhdrq entries */
u8 rcvhdrqentsize;
/* offset of RHF within receive header entry */
u8 rhf_offset;
/* dynamic receive available interrupt timeout */
u8 rcvavail_timeout;
/* Indicates that this is vnic context */
bool is_vnic;
/* vnic queue index this context is mapped to */
u8 vnic_q_idx;
/* Is ASPM interrupt supported for this context */
bool aspm_intr_supported;
/* ASPM state (enabled/disabled) for this context */
bool aspm_enabled;
/* Is ASPM processing enabled for this context (in intr context) */
bool aspm_intr_enable;
struct ctxt_eager_bufs egrbufs;
/* QPs waiting for context processing */
struct list_head qp_wait_list;
/* tid allocation lists */
struct exp_tid_set tid_group_list;
struct exp_tid_set tid_used_list;
struct exp_tid_set tid_full_list;
/* Timer for re-enabling ASPM if interrupt activity quiets down */
struct timer_list aspm_timer;
/* per-context configuration flags */
unsigned long flags;
/* array of tid_groups */
struct tid_group *groups;
/* mmap of hdrq, must fit in 44 bits */
dma_addr_t rcvhdrq_dma;
dma_addr_t rcvhdrqtailaddr_dma;
/* Last interrupt timestamp */
ktime_t aspm_ts_last_intr;
/* Last timestamp at which we scheduled a timer for this context */
ktime_t aspm_ts_timer_sched;
/* Lock to serialize between intr, timer intr and user threads */
spinlock_t aspm_lock;
/* Reference count the base context usage */
struct kref kref;
/* numa node of this context */
int numa_id;
/* associated msix interrupt. */
s16 msix_intr;
/* job key */
u16 jkey;
/* number of RcvArray groups for this context. */
u16 rcv_array_groups;
/* index of first eager TID entry. */
u16 eager_base;
/* number of expected TID entries */
u16 expected_count;
/* index of first expected TID entry. */
u16 expected_base;
/* Device context index */
u8 ctxt;
/* PSM Specific fields */
/* lock protecting all Expected TID data */
struct mutex exp_mutex;
/* lock protecting all Expected TID data of kernel contexts */
spinlock_t exp_lock;
/* Queue for QP's waiting for HW TID flows */
struct tid_queue flow_queue;
/* Queue for QP's waiting for HW receive array entries */
struct tid_queue rarr_queue;
/* when waiting for rcv or pioavail */
wait_queue_head_t wait;
/* uuid from PSM */
u8 uuid[16];
/* same size as task_struct .comm[], command that opened context */
char comm[TASK_COMM_LEN];
/* Bitmask of in use context(s) */
DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
/* per-context event flags for fileops/intr communication */
unsigned long event_flags;
/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
void *subctxt_uregbase;
/* An array of pages for the eager receive buffers * N */
void *subctxt_rcvegrbuf;
/* An array of pages for the eager header queue entries * N */
void *subctxt_rcvhdr_base;
/* total number of polled urgent packets */
u32 urgent;
/* saved total number of polled urgent packets for poll edge trigger */
u32 urgent_poll;
/* Type of packets or conditions we want to poll for */
u16 poll_type;
/* non-zero if ctxt is being shared. */
u16 subctxt_id;
/* The version of the library which opened this ctxt */
u32 userversion;
/*
* non-zero if ctxt can be shared, and defines the maximum number of
* sub-contexts for this device context.
*/
u8 subctxt_cnt;
/* Bit mask to track free TID RDMA HW flows */
unsigned long flow_mask;
struct tid_flow_state flows[RXE_NUM_TID_FLOWS];
};
/**
* rcvhdrq_size - return total size in bytes for header queue
* @rcd: the receive context
*
* rcvhdrqentsize is in DWs, so we have to convert to bytes
*
*/
static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd)
{
return PAGE_ALIGN(rcd->rcvhdrq_cnt *
rcd->rcvhdrqentsize * sizeof(u32));
}
/*
* Represents a single packet at a high level. Put commonly computed things in
* here so we do not have to keep doing them over and over. The rule of thumb is
* if something is used one time to derive some value, store that something in
* here. If it is used multiple times, then store the result of that derivation
* in here.
*/
struct hfi1_packet {
void *ebuf;
void *hdr;
void *payload;
struct hfi1_ctxtdata *rcd;
__le32 *rhf_addr;
struct rvt_qp *qp;
struct ib_other_headers *ohdr;
struct ib_grh *grh;
struct opa_16b_mgmt *mgmt;
u64 rhf;
u32 maxcnt;
u32 rhqoff;
u32 dlid;
u32 slid;
int numpkt;
u16 tlen;
s16 etail;
u16 pkey;
u8 hlen;
u8 rsize;
u8 updegr;
u8 etype;
u8 extra_byte;
u8 pad;
u8 sc;
u8 sl;
u8 opcode;
bool migrated;
};
/* Packet types */
#define HFI1_PKT_TYPE_9B 0
#define HFI1_PKT_TYPE_16B 1
/*
* OPA 16B Header
*/
#define OPA_16B_L4_MASK 0xFFull
#define OPA_16B_SC_MASK 0x1F00000ull
#define OPA_16B_SC_SHIFT 20
#define OPA_16B_LID_MASK 0xFFFFFull
#define OPA_16B_DLID_MASK 0xF000ull
#define OPA_16B_DLID_SHIFT 20
#define OPA_16B_DLID_HIGH_SHIFT 12
#define OPA_16B_SLID_MASK 0xF00ull
#define OPA_16B_SLID_SHIFT 20
#define OPA_16B_SLID_HIGH_SHIFT 8
#define OPA_16B_BECN_MASK 0x80000000ull
#define OPA_16B_BECN_SHIFT 31
#define OPA_16B_FECN_MASK 0x10000000ull
#define OPA_16B_FECN_SHIFT 28
#define OPA_16B_L2_MASK 0x60000000ull
#define OPA_16B_L2_SHIFT 29
#define OPA_16B_PKEY_MASK 0xFFFF0000ull
#define OPA_16B_PKEY_SHIFT 16
#define OPA_16B_LEN_MASK 0x7FF00000ull
#define OPA_16B_LEN_SHIFT 20
#define OPA_16B_RC_MASK 0xE000000ull
#define OPA_16B_RC_SHIFT 25
#define OPA_16B_AGE_MASK 0xFF0000ull
#define OPA_16B_AGE_SHIFT 16
#define OPA_16B_ENTROPY_MASK 0xFFFFull
/*
* OPA 16B L2/L4 Encodings
*/
#define OPA_16B_L4_9B 0x00
#define OPA_16B_L2_TYPE 0x02
#define OPA_16B_L4_FM 0x08
#define OPA_16B_L4_IB_LOCAL 0x09
#define OPA_16B_L4_IB_GLOBAL 0x0A
#define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR
/*
* OPA 16B Management
*/
#define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */
#define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */
static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
{
return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
}
static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
{
return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
}
static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
{
return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
(((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
}
static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
{
return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
(((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
}
static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
{
return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
}
static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
{
return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
}
static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
{
return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
}
static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
{
return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
}
static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
{
return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
}
static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
{
return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
}
static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
{
return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
}
static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
{
return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
}
#define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
/*
* BTH
*/
#define OPA_16B_BTH_PAD_MASK 7
static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
{
return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
OPA_16B_BTH_PAD_MASK);
}
/*
* 16B Management
*/
#define OPA_16B_MGMT_QPN_MASK 0xFFFFFF
static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt)
{
return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK;
}
static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt)
{
return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK;
}
static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt,
u32 dest_qp, u32 src_qp)
{
mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK);
mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK);
}
/**
* hfi1_get_rc_ohdr - get extended header
* @opah - the opaheader
*/
static inline struct ib_other_headers *
hfi1_get_rc_ohdr(struct hfi1_opa_header *opah)
{
struct ib_other_headers *ohdr;
struct ib_header *hdr = NULL;
struct hfi1_16b_header *hdr_16b = NULL;
/* Find out where the BTH is */
if (opah->hdr_type == HFI1_PKT_TYPE_9B) {
hdr = &opah->ibh;
if (ib_get_lnh(hdr) == HFI1_LRH_BTH)
ohdr = &hdr->u.oth;
else
ohdr = &hdr->u.l.oth;
} else {
u8 l4;
hdr_16b = &opah->opah;
l4 = hfi1_16B_get_l4(hdr_16b);
if (l4 == OPA_16B_L4_IB_LOCAL)
ohdr = &hdr_16b->u.oth;
else
ohdr = &hdr_16b->u.l.oth;
}
return ohdr;
}
struct rvt_sge_state;
/*
* Get/Set IB link-level config parameters for f_get/set_ib_cfg()
* Mostly for MADs that set or query link parameters, also ipath
* config interfaces
*/
#define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
#define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
#define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
#define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
#define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
#define HFI1_IB_CFG_SPD 5 /* current Link spd */
#define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
#define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
#define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
#define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
#define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
#define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
#define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
#define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
#define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
#define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
#define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
#define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
#define HFI1_IB_CFG_VL_HIGH_LIMIT 19
#define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
#define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
/*
* HFI or Host Link States
*
* These describe the states the driver thinks the logical and physical
* states are in. Used as an argument to set_link_state(). Implemented
* as bits for easy multi-state checking. The actual state can only be
* one.
*/
#define __HLS_UP_INIT_BP 0
#define __HLS_UP_ARMED_BP 1
#define __HLS_UP_ACTIVE_BP 2
#define __HLS_DN_DOWNDEF_BP 3 /* link down default */
#define __HLS_DN_POLL_BP 4
#define __HLS_DN_DISABLE_BP 5
#define __HLS_DN_OFFLINE_BP 6
#define __HLS_VERIFY_CAP_BP 7
#define __HLS_GOING_UP_BP 8
#define __HLS_GOING_OFFLINE_BP 9
#define __HLS_LINK_COOLDOWN_BP 10
#define HLS_UP_INIT BIT(__HLS_UP_INIT_BP)
#define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP)
#define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP)
#define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
#define HLS_DN_POLL BIT(__HLS_DN_POLL_BP)
#define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP)
#define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP)
#define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP)
#define HLS_GOING_UP BIT(__HLS_GOING_UP_BP)
#define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
#define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
#define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
#define HLS_DOWN ~(HLS_UP)
#define HLS_DEFAULT HLS_DN_POLL
/* use this MTU size if none other is given */
#define HFI1_DEFAULT_ACTIVE_MTU 10240
/* use this MTU size as the default maximum */
#define HFI1_DEFAULT_MAX_MTU 10240
/* default partition key */
#define DEFAULT_PKEY 0xffff
/*
* Possible fabric manager config parameters for fm_{get,set}_table()
*/
#define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */
#define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */
#define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */
#define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */
#define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */
#define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */
/*
* Possible "operations" for f_rcvctrl(ppd, op, ctxt)
* these are bits so they can be combined, e.g.
* HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
*/
#define HFI1_RCVCTRL_TAILUPD_ENB 0x01
#define HFI1_RCVCTRL_TAILUPD_DIS 0x02
#define HFI1_RCVCTRL_CTXT_ENB 0x04
#define HFI1_RCVCTRL_CTXT_DIS 0x08
#define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
#define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
#define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */
#define HFI1_RCVCTRL_PKEY_DIS 0x80
#define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
#define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
#define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
#define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
#define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
#define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
#define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
#define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
#define HFI1_RCVCTRL_URGENT_ENB 0x40000
#define HFI1_RCVCTRL_URGENT_DIS 0x80000
/* partition enforcement flags */
#define HFI1_PART_ENFORCE_IN 0x1
#define HFI1_PART_ENFORCE_OUT 0x2
/* how often we check for synthetic counter wrap around */
#define SYNTH_CNT_TIME 3
/* Counter flags */
#define CNTR_NORMAL 0x0 /* Normal counters, just read register */
#define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */
#define CNTR_DISABLED 0x2 /* Disable this counter */
#define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */
#define CNTR_VL 0x8 /* Per VL counter */
#define CNTR_SDMA 0x10
#define CNTR_INVALID_VL -1 /* Specifies invalid VL */
#define CNTR_MODE_W 0x0
#define CNTR_MODE_R 0x1
/* VLs Supported/Operational */
#define HFI1_MIN_VLS_SUPPORTED 1
#define HFI1_MAX_VLS_SUPPORTED 8
#define HFI1_GUIDS_PER_PORT 5
#define HFI1_PORT_GUID_INDEX 0
static inline void incr_cntr64(u64 *cntr)
{
if (*cntr < (u64)-1LL)
(*cntr)++;
}
#define MAX_NAME_SIZE 64
struct hfi1_msix_entry {
enum irq_type type;
int irq;
void *arg;
cpumask_t mask;
struct irq_affinity_notify notify;
};
struct hfi1_msix_info {
/* lock to synchronize in_use_msix access */
spinlock_t msix_lock;
DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS);
struct hfi1_msix_entry *msix_entries;
u16 max_requested;
};
/* per-SL CCA information */
struct cca_timer {
struct hrtimer hrtimer;
struct hfi1_pportdata *ppd; /* read-only */
int sl; /* read-only */
u16 ccti; /* read/write - current value of CCTI */
};
struct link_down_reason {
/*
* SMA-facing value. Should be set from .latest when
* HLS_UP_* -> HLS_DN_* transition actually occurs.
*/
u8 sma;
u8 latest;
};
enum {
LO_PRIO_TABLE,
HI_PRIO_TABLE,
MAX_PRIO_TABLE
};
struct vl_arb_cache {
/* protect vl arb cache */
spinlock_t lock;
struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
};
/*
* The structure below encapsulates data relevant to a physical IB Port.
* Current chips support only one such port, but the separation
* clarifies things a bit. Note that to conform to IB conventions,
* port-numbers are one-based. The first or only port is port1.
*/
struct hfi1_pportdata {
struct hfi1_ibport ibport_data;
struct hfi1_devdata *dd;
/* PHY support */
struct qsfp_data qsfp_info;
/* Values for SI tuning of SerDes */
u32 port_type;
u32 tx_preset_eq;
u32 tx_preset_noeq;
u32 rx_preset;
u8 local_atten;
u8 remote_atten;
u8 default_atten;
u8 max_power_class;
/* did we read platform config from scratch registers? */
bool config_from_scratch;
/* GUIDs for this interface, in host order, guids[0] is a port guid */
u64 guids[HFI1_GUIDS_PER_PORT];
/* GUID for peer interface, in host order */
u64 neighbor_guid;
/* up or down physical link state */
u32 linkup;
/*
* this address is mapped read-only into user processes so they can
* get status cheaply, whenever they want. One qword of status per port
*/
u64 *statusp;
/* SendDMA related entries */
struct workqueue_struct *hfi1_wq;
struct workqueue_struct *link_wq;
/* move out of interrupt context */
struct work_struct link_vc_work;
struct work_struct link_up_work;
struct work_struct link_down_work;
struct work_struct sma_message_work;
struct work_struct freeze_work;
struct work_struct link_downgrade_work;
struct work_struct link_bounce_work;
struct delayed_work start_link_work;
/* host link state variables */
struct mutex hls_lock;
u32 host_link_state;
/* these are the "32 bit" regs */
u32 ibmtu; /* The MTU programmed for this unit */
/*
* Current max size IB packet (in bytes) including IB headers, that
* we can send. Changes when ibmtu changes.
*/
u32 ibmaxlen;
u32 current_egress_rate; /* units [10^6 bits/sec] */
/* LID programmed for this instance */
u32 lid;
/* list of pkeys programmed; 0 if not set */
u16 pkeys[MAX_PKEY_VALUES];
u16 link_width_supported;
u16 link_width_downgrade_supported;
u16 link_speed_supported;
u16 link_width_enabled;
u16 link_width_downgrade_enabled;
u16 link_speed_enabled;
u16 link_width_active;
u16 link_width_downgrade_tx_active;
u16 link_width_downgrade_rx_active;
u16 link_speed_active;
u8 vls_supported;
u8 vls_operational;
u8 actual_vls_operational;
/* LID mask control */
u8 lmc;
/* Rx Polarity inversion (compensate for ~tx on partner) */
u8 rx_pol_inv;
u8 hw_pidx; /* physical port index */
u32 port; /* IB port number and index into dd->pports - 1 */
/* type of neighbor node */
u8 neighbor_type;
u8 neighbor_normal;
u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
u8 neighbor_port_number;
u8 is_sm_config_started;
u8 offline_disabled_reason;
u8 is_active_optimize_enabled;
u8 driver_link_ready; /* driver ready for active link */
u8 link_enabled; /* link enabled? */
u8 linkinit_reason;
u8 local_tx_rate; /* rate given to 8051 firmware */
u8 qsfp_retry_count;
/* placeholders for IB MAD packet settings */
u8 overrun_threshold;
u8 phy_error_threshold;
unsigned int is_link_down_queued;
/* Used to override LED behavior for things like maintenance beaconing*/
/*
* Alternates per phase of blink
* [0] holds LED off duration, [1] holds LED on duration
*/
unsigned long led_override_vals[2];
u8 led_override_phase; /* LSB picks from vals[] */
atomic_t led_override_timer_active;
/* Used to flash LEDs in override mode */
struct timer_list led_override_timer;
u32 sm_trap_qp;
u32 sa_qp;
/*
* cca_timer_lock protects access to the per-SL cca_timer
* structures (specifically the ccti member).
*/
spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
struct cca_timer cca_timer[OPA_MAX_SLS];
/* List of congestion control table entries */
struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
/* congestion entries, each entry corresponding to a SL */
struct opa_congestion_setting_entry_shadow
congestion_entries[OPA_MAX_SLS];
/*
* cc_state_lock protects (write) access to the per-port
* struct cc_state.
*/
spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
struct cc_state __rcu *cc_state;
/* Total number of congestion control table entries */
u16 total_cct_entry;
/* Bit map identifying service level */
u32 cc_sl_control_map;
/* CA's max number of 64 entry units in the congestion control table */
u8 cc_max_table_entries;
/*
* begin congestion log related entries
* cc_log_lock protects all congestion log related data
*/
spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
u16 threshold_event_counter;
struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
int cc_log_idx; /* index for logging events */
int cc_mad_idx; /* index for reporting events */
/* end congestion log related entries */
struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
/* port relative counter buffer */
u64 *cntrs;
/* port relative synthetic counter buffer */
u64 *scntrs;
/* port_xmit_discards are synthesized from different egress errors */
u64 port_xmit_discards;
u64 port_xmit_discards_vl[C_VL_COUNT];
u64 port_xmit_constraint_errors;
u64 port_rcv_constraint_errors;
/* count of 'link_err' interrupts from DC */
u64 link_downed;
/* number of times link retrained successfully */
u64 link_up;
/* number of times a link unknown frame was reported */
u64 unknown_frame_count;
/* port_ltp_crc_mode is returned in 'portinfo' MADs */
u16 port_ltp_crc_mode;
/* port_crc_mode_enabled is the crc we support */
u8 port_crc_mode_enabled;
/* mgmt_allowed is also returned in 'portinfo' MADs */
u8 mgmt_allowed;
u8 part_enforce; /* partition enforcement flags */
struct link_down_reason local_link_down_reason;
struct link_down_reason neigh_link_down_reason;
/* Value to be sent to link peer on LinkDown .*/
u8 remote_link_down_reason;
/* Error events that will cause a port bounce. */
u32 port_error_action;
struct work_struct linkstate_active_work;
/* Does this port need to prescan for FECNs */
bool cc_prescan;
/*
* Sample sendWaitCnt & sendWaitVlCnt during link transition
* and counter request.
*/
u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
u16 prev_link_width;
u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
};
typedef void (*opcode_handler)(struct hfi1_packet *packet);
typedef void (*hfi1_make_req)(struct rvt_qp *qp,
struct hfi1_pkt_state *ps,
struct rvt_swqe *wqe);
extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[];
extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[];
/* return values for the RHF receive functions */
#define RHF_RCV_CONTINUE 0 /* keep going */
#define RHF_RCV_DONE 1 /* stop, this packet processed */
#define RHF_RCV_REPROCESS 2 /* stop. retain this packet */
struct rcv_array_data {
u16 ngroups;
u16 nctxt_extra;
u8 group_size;
};
struct per_vl_data {
u16 mtu;
struct send_context *sc;
};
/* 16 to directly index */
#define PER_VL_SEND_CONTEXTS 16
struct err_info_rcvport {
u8 status_and_code;
u64 packet_flit1;
u64 packet_flit2;
};
struct err_info_constraint {
u8 status;
u16 pkey;
u32 slid;
};
struct hfi1_temp {
unsigned int curr; /* current temperature */
unsigned int lo_lim; /* low temperature limit */
unsigned int hi_lim; /* high temperature limit */
unsigned int crit_lim; /* critical temperature limit */
u8 triggers; /* temperature triggers */
};
struct hfi1_i2c_bus {
struct hfi1_devdata *controlling_dd; /* current controlling device */
struct i2c_adapter adapter; /* bus details */
struct i2c_algo_bit_data algo; /* bus algorithm details */
int num; /* bus number, 0 or 1 */
};
/* common data between shared ASIC HFIs */
struct hfi1_asic_data {
struct hfi1_devdata *dds[2]; /* back pointers */
struct mutex asic_resource_mutex;
struct hfi1_i2c_bus *i2c_bus0;
struct hfi1_i2c_bus *i2c_bus1;
};
/* sizes for both the QP and RSM map tables */
#define NUM_MAP_ENTRIES 256
#define NUM_MAP_REGS 32
/* Virtual NIC information */
struct hfi1_vnic_data {
struct kmem_cache *txreq_cache;
u8 num_vports;
};
struct hfi1_vnic_vport_info;
/* device data struct now contains only "general per-device" info.
* fields related to a physical IB port are in a hfi1_pportdata struct.
*/
struct sdma_engine;
struct sdma_vl_map;
#define BOARD_VERS_MAX 96 /* how long the version string can be */
#define SERIAL_MAX 16 /* length of the serial number */
typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
struct hfi1_netdev_rx;
struct hfi1_devdata {
struct hfi1_ibdev verbs_dev; /* must be first */
/* pointers to related structs for this device */
/* pci access data structure */
struct pci_dev *pcidev;
struct cdev user_cdev;
struct cdev diag_cdev;
struct cdev ui_cdev;
struct device *user_device;
struct device *diag_device;
struct device *ui_device;
/* first mapping up to RcvArray */
u8 __iomem *kregbase1;
resource_size_t physaddr;
/* second uncached mapping from RcvArray to pio send buffers */
u8 __iomem *kregbase2;
/* for detecting offset above kregbase2 address */
u32 base2_start;
/* Per VL data. Enough for all VLs but not all elements are set/used. */
struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
/* send context data */
struct send_context_info *send_contexts;
/* map hardware send contexts to software index */
u8 *hw_to_sw;
/* spinlock for allocating and releasing send context resources */
spinlock_t sc_lock;
/* lock for pio_map */
spinlock_t pio_map_lock;
/* Send Context initialization lock. */
spinlock_t sc_init_lock;
/* lock for sdma_map */
spinlock_t sde_map_lock;
/* array of kernel send contexts */
struct send_context **kernel_send_context;
/* array of vl maps */
struct pio_vl_map __rcu *pio_map;
/* default flags to last descriptor */
u64 default_desc1;
/* fields common to all SDMA engines */
volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */
dma_addr_t sdma_heads_phys;
void *sdma_pad_dma; /* DMA'ed by chip */
dma_addr_t sdma_pad_phys;
/* for deallocation */
size_t sdma_heads_size;
/* num used */
u32 num_sdma;
/* array of engines sized by num_sdma */
struct sdma_engine *per_sdma;
/* array of vl maps */
struct sdma_vl_map __rcu *sdma_map;
/* SPC freeze waitqueue and variable */
wait_queue_head_t sdma_unfreeze_wq;
atomic_t sdma_unfreeze_count;
u32 lcb_access_count; /* count of LCB users */
/* common data between shared ASIC HFIs in this OS */
struct hfi1_asic_data *asic_data;
/* mem-mapped pointer to base of PIO buffers */
void __iomem *piobase;
/*
* write-combining mem-mapped pointer to base of RcvArray
* memory.
*/
void __iomem *rcvarray_wc;
/*
* credit return base - a per-NUMA range of DMA address that
* the chip will use to update the per-context free counter
*/
struct credit_return_base *cr_base;
/* send context numbers and sizes for each type */
struct sc_config_sizes sc_sizes[SC_MAX];
char *boardname; /* human readable board info */
u64 ctx0_seq_drop;
/* reset value */
u64 z_int_counter;
u64 z_rcv_limit;
u64 z_send_schedule;
u64 __percpu *send_schedule;
/* number of reserved contexts for netdev usage */
u16 num_netdev_contexts;
/* number of receive contexts in use by the driver */
u32 num_rcv_contexts;
/* number of pio send contexts in use by the driver */
u32 num_send_contexts;
/*
* number of ctxts available for PSM open
*/
u32 freectxts;
/* total number of available user/PSM contexts */
u32 num_user_contexts;
/* base receive interrupt timeout, in CSR units */
u32 rcv_intr_timeout_csr;
spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
spinlock_t uctxt_lock; /* protect rcd changes */
struct mutex dc8051_lock; /* exclusive access to 8051 */
struct workqueue_struct *update_cntr_wq;
struct work_struct update_cntr_work;
/* exclusive access to 8051 memory */
spinlock_t dc8051_memlock;
int dc8051_timed_out; /* remember if the 8051 timed out */
/*
* A page that will hold event notification bitmaps for all
* contexts. This page will be mapped into all processes.
*/
unsigned long *events;
/*
* per unit status, see also portdata statusp
* mapped read-only into user processes so they can get unit and
* IB link status cheaply
*/
struct hfi1_status *status;
/* revision register shadow */
u64 revision;
/* Base GUID for device (network order) */
u64 base_guid;
/* both sides of the PCIe link are gen3 capable */
u8 link_gen3_capable;
u8 dc_shutdown;
/* localbus width (1, 2,4,8,16,32) from config space */
u32 lbus_width;
/* localbus speed in MHz */
u32 lbus_speed;
int unit; /* unit # of this chip */
int node; /* home node of this chip */
/* save these PCI fields to restore after a reset */
u32 pcibar0;
u32 pcibar1;
u32 pci_rom;
u16 pci_command;
u16 pcie_devctl;
u16 pcie_lnkctl;
u16 pcie_devctl2;
u32 pci_msix0;
u32 pci_tph2;
/*
* ASCII serial number, from flash, large enough for original
* all digit strings, and longer serial number format
*/
u8 serial[SERIAL_MAX];
/* human readable board version */
u8 boardversion[BOARD_VERS_MAX];
u8 lbus_info[32]; /* human readable localbus info */
/* chip major rev, from CceRevision */
u8 majrev;
/* chip minor rev, from CceRevision */
u8 minrev;
/* hardware ID */
u8 hfi1_id;
/* implementation code */
u8 icode;
/* vAU of this device */
u8 vau;
/* vCU of this device */
u8 vcu;
/* link credits of this device */
u16 link_credits;
/* initial vl15 credits to use */
u16 vl15_init;
/*
* Cached value for vl15buf, read during verify cap interrupt. VL15
* credits are to be kept at 0 and set when handling the link-up
* interrupt. This removes the possibility of receiving VL15 MAD
* packets before this HFI is ready.
*/
u16 vl15buf_cached;
/* Misc small ints */
u8 n_krcv_queues;
u8 qos_shift;
u16 irev; /* implementation revision */
u32 dc8051_ver; /* 8051 firmware version */
spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
struct platform_config platform_config;
struct platform_config_cache pcfg_cache;
struct diag_client *diag_client;
/* general interrupt: mask of handled interrupts */
u64 gi_mask[CCE_NUM_INT_CSRS];
struct rcv_array_data rcv_entries;
/* cycle length of PS* counters in HW (in picoseconds) */
u16 psxmitwait_check_rate;
/*
* 64 bit synthetic counters
*/
struct timer_list synth_stats_timer;
/* MSI-X information */
struct hfi1_msix_info msix_info;
/*
* device counters
*/
char *cntrnames;
size_t cntrnameslen;
size_t ndevcntrs;
u64 *cntrs;
u64 *scntrs;
/*
* remembered values for synthetic counters
*/
u64 last_tx;
u64 last_rx;
/*
* per-port counters
*/
size_t nportcntrs;
char *portcntrnames;
size_t portcntrnameslen;
struct err_info_rcvport err_info_rcvport;
struct err_info_constraint err_info_rcv_constraint;
struct err_info_constraint err_info_xmit_constraint;
atomic_t drop_packet;
bool do_drop;
u8 err_info_uncorrectable;
u8 err_info_fmconfig;
/*
* Software counters for the status bits defined by the
* associated error status registers
*/
u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
/* Software counter that spans all contexts */
u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
/* Software counter that spans all DMA engines */
u64 sw_send_dma_eng_err_status_cnt[
NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
/* Software counter that aggregates all cce_err_status errors */
u64 sw_cce_err_status_aggregate;
/* Software counter that aggregates all bypass packet rcv errors */
u64 sw_rcv_bypass_packet_errors;
/* Save the enabled LCB error bits */
u64 lcb_err_en;
struct cpu_mask_set *comp_vect;
int *comp_vect_mappings;
u32 comp_vect_possible_cpus;
/*
* Capability to have different send engines simply by changing a
* pointer value.
*/
send_routine process_pio_send ____cacheline_aligned_in_smp;
send_routine process_dma_send;
void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
u64 pbc, const void *from, size_t count);
int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
struct hfi1_vnic_vport_info *vinfo,
struct sk_buff *skb, u64 pbc, u8 plen);
/* hfi1_pportdata, points to array of (physical) port-specific
* data structs, indexed by pidx (0..n-1)
*/
struct hfi1_pportdata *pport;
/* receive context data */
struct hfi1_ctxtdata **rcd;
u64 __percpu *int_counter;
/* verbs tx opcode stats */
struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
/* device (not port) flags, basically device capabilities */
u16 flags;
/* Number of physical ports available */
u8 num_pports;
/* Lowest context number which can be used by user processes or VNIC */
u8 first_dyn_alloc_ctxt;
/* adding a new field here would make it part of this cacheline */
/* seqlock for sc2vl */
seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
u64 sc2vl[4];
u64 __percpu *rcv_limit;
/* adding a new field here would make it part of this cacheline */
/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
u8 oui1;
u8 oui2;
u8 oui3;
/* Timer and counter used to detect RcvBufOvflCnt changes */
struct timer_list rcverr_timer;
wait_queue_head_t event_queue;
/* receive context tail dummy address */
__le64 *rcvhdrtail_dummy_kvaddr;
dma_addr_t rcvhdrtail_dummy_dma;
u32 rcv_ovfl_cnt;
/* Serialize ASPM enable/disable between multiple verbs contexts */
spinlock_t aspm_lock;
/* Number of verbs contexts which have disabled ASPM */
atomic_t aspm_disabled_cnt;
/* Keeps track of user space clients */
refcount_t user_refcount;
/* Used to wait for outstanding user space clients before dev removal */
struct completion user_comp;
bool eprom_available; /* true if EPROM is available for this device */
bool aspm_supported; /* Does HW support ASPM */
bool aspm_enabled; /* ASPM state: enabled/disabled */
struct rhashtable *sdma_rht;
/* vnic data */
struct hfi1_vnic_data vnic;
/* Lock to protect IRQ SRC register access */
spinlock_t irq_src_lock;
int vnic_num_vports;
struct hfi1_netdev_rx *netdev_rx;
struct hfi1_affinity_node *affinity_entry;
/* Keeps track of IPoIB RSM rule users */
atomic_t ipoib_rsm_usr_num;
};
/* 8051 firmware version helper */
#define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
#define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
#define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
#define dc8051_ver_patch(a) ((a) & 0x0000ff)
/* f_put_tid types */
#define PT_EXPECTED 0
#define PT_EAGER 1
#define PT_INVALID_FLUSH 2
#define PT_INVALID 3
struct tid_rb_node;
struct mmu_rb_node;
struct mmu_rb_handler;
/* Private data for file operations */
struct hfi1_filedata {
struct srcu_struct pq_srcu;
struct hfi1_devdata *dd;
struct hfi1_ctxtdata *uctxt;
struct hfi1_user_sdma_comp_q *cq;
/* update side lock for SRCU */
spinlock_t pq_rcu_lock;
struct hfi1_user_sdma_pkt_q __rcu *pq;
u16 subctxt;
/* for cpu affinity; -1 if none */
int rec_cpu_num;
u32 tid_n_pinned;
bool use_mn;
struct tid_rb_node **entry_to_rb;
spinlock_t tid_lock; /* protect tid_[limit,used] counters */
u32 tid_limit;
u32 tid_used;
u32 *invalid_tids;
u32 invalid_tid_idx;
/* protect invalid_tids array and invalid_tid_idx */
spinlock_t invalid_lock;
};
extern struct xarray hfi1_dev_table;
struct hfi1_devdata *hfi1_lookup(int unit);
static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
{
return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
HFI1_MAX_SHARED_CTXTS;
}
int hfi1_init(struct hfi1_devdata *dd, int reinit);
int hfi1_count_active_units(void);
int hfi1_diag_add(struct hfi1_devdata *dd);
void hfi1_diag_remove(struct hfi1_devdata *dd);
void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
int hfi1_create_kctxts(struct hfi1_devdata *dd);
int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
struct hfi1_ctxtdata **rcd);
void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
struct hfi1_devdata *dd, u8 hw_pidx, u32 port);
void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
int hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
u16 ctxt);
struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget);
int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget);
void set_all_slowpath(struct hfi1_devdata *dd);
extern const struct pci_device_id hfi1_pci_tbl[];
void hfi1_make_ud_req_9B(struct rvt_qp *qp,
struct hfi1_pkt_state *ps,
struct rvt_swqe *wqe);
void hfi1_make_ud_req_16B(struct rvt_qp *qp,
struct hfi1_pkt_state *ps,
struct rvt_swqe *wqe);
/* receive packet handler dispositions */
#define RCV_PKT_OK 0x0 /* keep going */
#define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */
#define RCV_PKT_DONE 0x2 /* stop, no more packets detected */
/**
* hfi1_rcd_head - add accessor for rcd head
* @rcd: the context
*/
static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd)
{
return rcd->head;
}
/**
* hfi1_set_rcd_head - add accessor for rcd head
* @rcd: the context
* @head: the new head
*/
static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head)
{
rcd->head = head;
}
/* calculate the current RHF address */
static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
{
return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset;
}
/* return DMA_RTAIL configuration */
static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd)
{
return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL);
}
/**
* hfi1_seq_incr_wrap - wrapping increment for sequence
* @seq: the current sequence number
*
* Returns: the incremented seq
*/
static inline u8 hfi1_seq_incr_wrap(u8 seq)
{
if (++seq > RHF_MAX_SEQ)
seq = 1;
return seq;
}
/**
* hfi1_seq_cnt - return seq_cnt member
* @rcd: the receive context
*
* Return seq_cnt member
*/
static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd)
{
return rcd->seq_cnt;
}
/**
* hfi1_set_seq_cnt - return seq_cnt member
* @rcd: the receive context
*
* Return seq_cnt member
*/
static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt)
{
rcd->seq_cnt = cnt;
}
/**
* last_rcv_seq - is last
* @rcd: the receive context
* @seq: sequence
*
* return true if last packet
*/
static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq)
{
return seq != rcd->seq_cnt;
}
/**
* rcd_seq_incr - increment context sequence number
* @rcd: the receive context
* @seq: the current sequence number
*
* Returns: true if the this was the last packet
*/
static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq)
{
rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt);
return last_rcv_seq(rcd, seq);
}
/**
* get_hdrqentsize - return hdrq entry size
* @rcd: the receive context
*/
static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd)
{
return rcd->rcvhdrqentsize;
}
/**
* get_hdrq_cnt - return hdrq count
* @rcd: the receive context
*/
static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd)
{
return rcd->rcvhdrq_cnt;
}
/**
* hfi1_is_slowpath - check if this context is slow path
* @rcd: the receive context
*/
static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd)
{
return rcd->do_interrupt == rcd->slow_handler;
}
/**
* hfi1_is_fastpath - check if this context is fast path
* @rcd: the receive context
*/
static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd)
{
if (rcd->ctxt == HFI1_CTRL_CTXT)
return false;
return rcd->do_interrupt == rcd->fast_handler;
}
/**
* hfi1_set_fast - change to the fast handler
* @rcd: the receive context
*/
static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd)
{
if (unlikely(!rcd))
return;
if (unlikely(!hfi1_is_fastpath(rcd)))
rcd->do_interrupt = rcd->fast_handler;
}
int hfi1_reset_device(int);
void receive_interrupt_work(struct work_struct *work);
/* extract service channel from header and rhf */
static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
{
return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
}
#define HFI1_JKEY_WIDTH 16
#define HFI1_JKEY_MASK (BIT(16) - 1)
#define HFI1_ADMIN_JKEY_RANGE 32
/*
* J_KEYs are split and allocated in the following groups:
* 0 - 31 - users with administrator privileges
* 32 - 63 - kernel protocols using KDETH packets
* 64 - 65535 - all other users using KDETH packets
*/
static inline u16 generate_jkey(kuid_t uid)
{
u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
if (capable(CAP_SYS_ADMIN))
jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
else if (jkey < 64)
jkey |= BIT(HFI1_JKEY_WIDTH - 1);
return jkey;
}
/*
* active_egress_rate
*
* returns the active egress rate in units of [10^6 bits/sec]
*/
static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
{
u16 link_speed = ppd->link_speed_active;
u16 link_width = ppd->link_width_active;
u32 egress_rate;
if (link_speed == OPA_LINK_SPEED_25G)
egress_rate = 25000;
else /* assume OPA_LINK_SPEED_12_5G */
egress_rate = 12500;
switch (link_width) {
case OPA_LINK_WIDTH_4X:
egress_rate *= 4;
break;
case OPA_LINK_WIDTH_3X:
egress_rate *= 3;
break;
case OPA_LINK_WIDTH_2X:
egress_rate *= 2;
break;
default:
/* assume IB_WIDTH_1X */
break;
}
return egress_rate;
}
/*
* egress_cycles
*
* Returns the number of 'fabric clock cycles' to egress a packet
* of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
* rate is (approximately) 805 MHz, the units of the returned value
* are (1/805 MHz).
*/
static inline u32 egress_cycles(u32 len, u32 rate)
{
u32 cycles;
/*
* cycles is:
*
* (length) [bits] / (rate) [bits/sec]
* ---------------------------------------------------
* fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
*/
cycles = len * 8; /* bits */
cycles *= 805;
cycles /= rate;
return cycles;
}
void set_link_ipg(struct hfi1_pportdata *ppd);
void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
u32 rqpn, u8 svc_type);
void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
u16 pkey, u32 slid, u32 dlid, u8 sc5,
const struct ib_grh *old_grh);
void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
u8 sc5, const struct ib_grh *old_grh);
typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
u8 sc5, const struct ib_grh *old_grh);
#define PKEY_CHECK_INVALID -1
int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
u8 sc5, int8_t s_pkey_index);
#define PACKET_EGRESS_TIMEOUT 350
static inline void pause_for_credit_return(struct hfi1_devdata *dd)
{
/* Pause at least 1us, to ensure chip returns all credits */
u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
udelay(usec ? usec : 1);
}
/**
* sc_to_vlt() - reverse lookup sc to vl
* @dd - devdata
* @sc5 - 5 bit sc
*/
static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
{
unsigned seq;
u8 rval;
if (sc5 >= OPA_MAX_SCS)
return (u8)(0xff);
do {
seq = read_seqbegin(&dd->sc2vl_lock);
rval = *(((u8 *)dd->sc2vl) + sc5);
} while (read_seqretry(&dd->sc2vl_lock, seq));
return rval;
}
#define PKEY_MEMBER_MASK 0x8000
#define PKEY_LOW_15_MASK 0x7fff
/*
* ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
* being an entry from the ingress partition key table), return 0
* otherwise. Use the matching criteria for ingress partition keys
* specified in the OPAv1 spec., section 9.10.14.
*/
static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
{
u16 mkey = pkey & PKEY_LOW_15_MASK;
u16 ment = ent & PKEY_LOW_15_MASK;
if (mkey == ment) {
/*
* If pkey[15] is clear (limited partition member),
* is bit 15 in the corresponding table element
* clear (limited member)?
*/
if (!(pkey & PKEY_MEMBER_MASK))
return !!(ent & PKEY_MEMBER_MASK);
return 1;
}
return 0;
}
/*
* ingress_pkey_table_search - search the entire pkey table for
* an entry which matches 'pkey'. return 0 if a match is found,
* and 1 otherwise.
*/
static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
{
int i;
for (i = 0; i < MAX_PKEY_VALUES; i++) {
if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
return 0;
}
return 1;
}
/*
* ingress_pkey_table_fail - record a failure of ingress pkey validation,
* i.e., increment port_rcv_constraint_errors for the port, and record
* the 'error info' for this failure.
*/
static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
u32 slid)
{
struct hfi1_devdata *dd = ppd->dd;
incr_cntr64(&ppd->port_rcv_constraint_errors);
if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
dd->err_info_rcv_constraint.slid = slid;
dd->err_info_rcv_constraint.pkey = pkey;
}
}
/*
* ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
* otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
* is a hint as to the best place in the partition key table to begin
* searching. This function should not be called on the data path because
* of performance reasons. On datapath pkey check is expected to be done
* by HW and rcv_pkey_check function should be called instead.
*/
static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
u8 sc5, u8 idx, u32 slid, bool force)
{
if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
/* Is the pkey = 0x0, or 0x8000? */
if ((pkey & PKEY_LOW_15_MASK) == 0)
goto bad;
/* The most likely matching pkey has index 'idx' */
if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
return 0;
/* no match - try the whole table */
if (!ingress_pkey_table_search(ppd, pkey))
return 0;
bad:
ingress_pkey_table_fail(ppd, pkey, slid);
return 1;
}
/*
* rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
* otherwise. It only ensures pkey is vlid for QP0. This function
* should be called on the data path instead of ingress_pkey_check
* as on data path, pkey check is done by HW (except for QP0).
*/
static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
u8 sc5, u16 slid)
{
if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
return 0;
/* If SC15, pkey[0:14] must be 0x7fff */
if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
goto bad;
return 0;
bad:
ingress_pkey_table_fail(ppd, pkey, slid);
return 1;
}
/* MTU handling */
/* MTU enumeration, 256-4k match IB */
#define OPA_MTU_0 0
#define OPA_MTU_256 1
#define OPA_MTU_512 2
#define OPA_MTU_1024 3
#define OPA_MTU_2048 4
#define OPA_MTU_4096 5
u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
int mtu_to_enum(u32 mtu, int default_if_bad);
u16 enum_to_mtu(int mtu);
static inline int valid_ib_mtu(unsigned int mtu)
{
return mtu == 256 || mtu == 512 ||
mtu == 1024 || mtu == 2048 ||
mtu == 4096;
}
static inline int valid_opa_max_mtu(unsigned int mtu)
{
return mtu >= 2048 &&
(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
}
int set_mtu(struct hfi1_pportdata *ppd);
int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
void hfi1_disable_after_error(struct hfi1_devdata *dd);
int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
void set_up_vau(struct hfi1_devdata *dd, u8 vau);
void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
void reset_link_credits(struct hfi1_devdata *dd);
void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
{
return ppd->dd;
}
static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
{
return container_of(dev, struct hfi1_devdata, verbs_dev);
}
static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
{
return dd_from_dev(to_idev(ibdev));
}
static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
{
return container_of(ibp, struct hfi1_pportdata, ibport_data);
}
static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
{
return container_of(rdi, struct hfi1_ibdev, rdi);
}
static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u32 port)
{
struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
u32 pidx = port - 1; /* IB number port from 1, hdw from 0 */
WARN_ON(pidx >= dd->num_pports);
return &dd->pport[pidx].ibport_data;
}
static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
{
return &rcd->ppd->ibport_data;
}
/**
* hfi1_may_ecn - Check whether FECN or BECN processing should be done
* @pkt: the packet to be evaluated
*
* Check whether the FECN or BECN bits in the packet's header are
* enabled, depending on packet type.
*
* This function only checks for FECN and BECN bits. Additional checks
* are done in the slowpath (hfi1_process_ecn_slowpath()) in order to
* ensure correct handling.
*/
static inline bool hfi1_may_ecn(struct hfi1_packet *pkt)
{
bool fecn, becn;
if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
fecn = hfi1_16B_get_fecn(pkt->hdr);
becn = hfi1_16B_get_becn(pkt->hdr);
} else {
fecn = ib_bth_get_fecn(pkt->ohdr);
becn = ib_bth_get_becn(pkt->ohdr);
}
return fecn || becn;
}
bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
bool prescan);
static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt)
{
bool do_work;
do_work = hfi1_may_ecn(pkt);
if (unlikely(do_work))
return hfi1_process_ecn_slowpath(qp, pkt, false);
return false;
}
/*
* Return the indexed PKEY from the port PKEY table.
*/
static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u16 ret;
if (index >= ARRAY_SIZE(ppd->pkeys))
ret = 0;
else
ret = ppd->pkeys[index];
return ret;
}
/*
* Return the indexed GUID from the port GUIDs table.
*/
static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
{
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
WARN_ON(index >= HFI1_GUIDS_PER_PORT);
return cpu_to_be64(ppd->guids[index]);
}
/*
* Called by readers of cc_state only, must call under rcu_read_lock().
*/
static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
{
return rcu_dereference(ppd->cc_state);
}
/*
* Called by writers of cc_state only, must call under cc_state_lock.
*/
static inline
struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
{
return rcu_dereference_protected(ppd->cc_state,
lockdep_is_held(&ppd->cc_state_lock));
}
/*
* values for dd->flags (_device_ related flags)
*/
#define HFI1_INITTED 0x1 /* chip and driver up and initted */
#define HFI1_PRESENT 0x2 /* chip accesses can be done */
#define HFI1_FROZEN 0x4 /* chip in SPC freeze */
#define HFI1_HAS_SDMA_TIMEOUT 0x8
#define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */
#define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */
#define HFI1_SHUTDOWN 0x100 /* device is shutting down */
/* IB dword length mask in PBC (lower 11 bits); same for all chips */
#define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1)
/* ctxt_flag bit offsets */
/* base context has not finished initializing */
#define HFI1_CTXT_BASE_UNINIT 1
/* base context initaliation failed */
#define HFI1_CTXT_BASE_FAILED 2
/* waiting for a packet to arrive */
#define HFI1_CTXT_WAITING_RCV 3
/* waiting for an urgent packet to arrive */
#define HFI1_CTXT_WAITING_URG 4
/* free up any allocated data at closes */
int hfi1_init_dd(struct hfi1_devdata *dd);
void hfi1_free_devdata(struct hfi1_devdata *dd);
/* LED beaconing functions */
void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
unsigned int timeoff);
void shutdown_led_override(struct hfi1_pportdata *ppd);
#define HFI1_CREDIT_RETURN_RATE (100)
/*
* The number of words for the KDETH protocol field. If this is
* larger then the actual field used, then part of the payload
* will be in the header.
*
* Optimally, we want this sized so that a typical case will
* use full cache lines. The typical local KDETH header would
* be:
*
* Bytes Field
* 8 LRH
* 12 BHT
* ?? KDETH
* 8 RHF
* ---
* 28 + KDETH
*
* For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
*/
#define DEFAULT_RCVHDRSIZE 9
/*
* Maximal header byte count:
*
* Bytes Field
* 8 LRH
* 40 GRH (optional)
* 12 BTH
* ?? KDETH
* 8 RHF
* ---
* 68 + KDETH
*
* We also want to maintain a cache line alignment to assist DMA'ing
* of the header bytes. Round up to a good size.
*/
#define DEFAULT_RCVHDR_ENTSIZE 32
bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
u32 nlocked, u32 npages);
int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
size_t npages, bool writable, struct page **pages);
void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
size_t npages, bool dirty);
/**
* hfi1_rcvhdrtail_kvaddr - return tail kvaddr
* @rcd - the receive context
*/
static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd)
{
return (__le64 *)rcd->rcvhdrtail_kvaddr;
}
static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
{
u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd);
if (kv)
*kv = 0ULL;
}
static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
{
/*
* volatile because it's a DMA target from the chip, routine is
* inlined, and don't want register caching or reordering.
*/
return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd));
}
static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd)
{
if (likely(!rcd->rcvhdrtail_kvaddr)) {
u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)));
return !last_rcv_seq(rcd, seq);
}
return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd);
}
/*
* sysfs interface.
*/
extern const char ib_hfi1_version[];
extern const struct attribute_group ib_hfi1_attr_group;
extern const struct attribute_group *hfi1_attr_port_groups[];
int hfi1_device_create(struct hfi1_devdata *dd);
void hfi1_device_remove(struct hfi1_devdata *dd);
int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
/* Hook for sysfs read of QSFP */
int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
int hfi1_pcie_init(struct hfi1_devdata *dd);
void hfi1_pcie_cleanup(struct pci_dev *pdev);
int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
int pcie_speeds(struct hfi1_devdata *dd);
int restore_pci_variables(struct hfi1_devdata *dd);
int save_pci_variables(struct hfi1_devdata *dd);
int do_pcie_gen3_transition(struct hfi1_devdata *dd);
void tune_pcie_caps(struct hfi1_devdata *dd);
int parse_platform_config(struct hfi1_devdata *dd);
int get_platform_config_field(struct hfi1_devdata *dd,
enum platform_config_table_type_encoding
table_type, int table_index, int field_index,
u32 *data, u32 len);
struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
/*
* Flush write combining store buffers (if present) and perform a write
* barrier.
*/
static inline void flush_wc(void)
{
asm volatile("sfence" : : : "memory");
}
void handle_eflags(struct hfi1_packet *packet);
void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
/* global module parameter variables */
extern unsigned int hfi1_max_mtu;
extern unsigned int hfi1_cu;
extern unsigned int user_credit_return_threshold;
extern int num_user_contexts;
extern unsigned long n_krcvqs;
extern uint krcvqs[];
extern int krcvqsset;
extern uint loopback;
extern uint quick_linkup;
extern uint rcv_intr_timeout;
extern uint rcv_intr_count;
extern uint rcv_intr_dynamic;
extern ushort link_crc_mask;
extern struct mutex hfi1_mutex;
/* Number of seconds before our card status check... */
#define STATUS_TIMEOUT 60
#define DRIVER_NAME "hfi1"
#define HFI1_USER_MINOR_BASE 0
#define HFI1_TRACE_MINOR 127
#define HFI1_NMINORS 255
#define PCI_VENDOR_ID_INTEL 0x8086
#define PCI_DEVICE_ID_INTEL0 0x24f0
#define PCI_DEVICE_ID_INTEL1 0x24f1
#define HFI1_PKT_USER_SC_INTEGRITY \
(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \
| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
#define HFI1_PKT_KERNEL_SC_INTEGRITY \
(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
u16 ctxt_type)
{
u64 base_sc_integrity;
/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
return 0;
base_sc_integrity =
SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
#ifndef CONFIG_FAULT_INJECTION
| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
#endif
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
if (ctxt_type == SC_USER)
base_sc_integrity |=
#ifndef CONFIG_FAULT_INJECTION
SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
#endif
HFI1_PKT_USER_SC_INTEGRITY;
else if (ctxt_type != SC_KERNEL)
base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
/* turn on send-side job key checks if !A0 */
if (!is_ax(dd))
base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
return base_sc_integrity;
}
static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
{
u64 base_sdma_integrity;
/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
return 0;
base_sdma_integrity =
SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
base_sdma_integrity |=
SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
/* turn on send-side job key checks if !A0 */
if (!is_ax(dd))
base_sdma_integrity |=
SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
return base_sdma_integrity;
}
#define dd_dev_emerg(dd, fmt, ...) \
dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
#define dd_dev_err(dd, fmt, ...) \
dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
#define dd_dev_err_ratelimited(dd, fmt, ...) \
dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
##__VA_ARGS__)
#define dd_dev_warn(dd, fmt, ...) \
dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
#define dd_dev_warn_ratelimited(dd, fmt, ...) \
dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
##__VA_ARGS__)
#define dd_dev_info(dd, fmt, ...) \
dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
#define dd_dev_info_ratelimited(dd, fmt, ...) \
dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
##__VA_ARGS__)
#define dd_dev_dbg(dd, fmt, ...) \
dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
#define hfi1_dev_porterr(dd, port, fmt, ...) \
dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
/*
* this is used for formatting hw error messages...
*/
struct hfi1_hwerror_msgs {
u64 mask;
const char *msg;
size_t sz;
};
/* in intr.c... */
void hfi1_format_hwerrors(u64 hwerrs,
const struct hfi1_hwerror_msgs *hwerrmsgs,
size_t nhwerrmsgs, char *msg, size_t lmsg);
#define USER_OPCODE_CHECK_VAL 0xC0
#define USER_OPCODE_CHECK_MASK 0xC0
#define OPCODE_CHECK_VAL_DISABLED 0x0
#define OPCODE_CHECK_MASK_DISABLED 0x0
static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
int i;
dd->z_int_counter = get_all_cpu_total(dd->int_counter);
dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
ppd->ibport_data.rvp.z_rc_acks =
get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
ppd->ibport_data.rvp.z_rc_qacks =
get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
}
}
/* Control LED state */
static inline void setextled(struct hfi1_devdata *dd, u32 on)
{
if (on)
write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
else
write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
}
/* return the i2c resource given the target */
static inline u32 i2c_target(u32 target)
{
return target ? CR_I2C2 : CR_I2C1;
}
/* return the i2c chain chip resource that this HFI uses for QSFP */
static inline u32 qsfp_resource(struct hfi1_devdata *dd)
{
return i2c_target(dd->hfi1_id);
}
/* Is this device integrated or discrete? */
static inline bool is_integrated(struct hfi1_devdata *dd)
{
return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
}
/**
* hfi1_need_drop - detect need for drop
* @dd: - the device
*
* In some cases, the first packet needs to be dropped.
*
* Return true is the current packet needs to be dropped and false otherwise.
*/
static inline bool hfi1_need_drop(struct hfi1_devdata *dd)
{
if (unlikely(dd->do_drop &&
atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
DROP_PACKET_ON)) {
dd->do_drop = false;
return true;
}
return false;
}
int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
#define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev))
#define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev))
static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
struct rdma_ah_attr *attr)
{
struct hfi1_pportdata *ppd;
struct hfi1_ibport *ibp;
u32 dlid = rdma_ah_get_dlid(attr);
/*
* Kernel clients may not have setup GRH information
* Set that here.
*/
ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
ppd = ppd_from_ibp(ibp);
if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
(ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
(dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
(dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
(!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
(rdma_ah_get_make_grd(attr))) {
rdma_ah_set_ah_flags(attr, IB_AH_GRH);
rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
}
}
/*
* hfi1_check_mcast- Check if the given lid is
* in the OPA multicast range.
*
* The LID might either reside in ah.dlid or might be
* in the GRH of the address handle as DGID if extended
* addresses are in use.
*/
static inline bool hfi1_check_mcast(u32 lid)
{
return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
(lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
}
#define opa_get_lid(lid, format) \
__opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
/* Convert a lid to a specific lid space */
static inline u32 __opa_get_lid(u32 lid, u8 format)
{
bool is_mcast = hfi1_check_mcast(lid);
switch (format) {
case OPA_PORT_PACKET_FORMAT_8B:
case OPA_PORT_PACKET_FORMAT_10B:
if (is_mcast)
return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
0xF0000);
return lid & 0xFFFFF;
case OPA_PORT_PACKET_FORMAT_16B:
if (is_mcast)
return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
0xF00000);
return lid & 0xFFFFFF;
case OPA_PORT_PACKET_FORMAT_9B:
if (is_mcast)
return (lid -
opa_get_mcast_base(OPA_MCAST_NR) +
be16_to_cpu(IB_MULTICAST_LID_BASE));
else
return lid & 0xFFFF;
default:
return lid;
}
}
/* Return true if the given lid is the OPA 16B multicast range */
static inline bool hfi1_is_16B_mcast(u32 lid)
{
return ((lid >=
opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
(lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
}
static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
{
const struct ib_global_route *grh = rdma_ah_read_grh(attr);
u32 dlid = rdma_ah_get_dlid(attr);
/* Modify ah_attr.dlid to be in the 32 bit LID space.
* This is how the address will be laid out:
* Assuming MCAST_NR to be 4,
* 32 bit permissive LID = 0xFFFFFFFF
* Multicast LID range = 0xFFFFFFFE to 0xF0000000
* Unicast LID range = 0xEFFFFFFF to 1
* Invalid LID = 0
*/
if (ib_is_opa_gid(&grh->dgid))
dlid = opa_get_lid_from_gid(&grh->dgid);
else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
(dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
(dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
opa_get_mcast_base(OPA_MCAST_NR);
else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
rdma_ah_set_dlid(attr, dlid);
}
static inline u8 hfi1_get_packet_type(u32 lid)
{
/* 9B if lid > 0xF0000000 */
if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
return HFI1_PKT_TYPE_9B;
/* 16B if lid > 0xC000 */
if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
return HFI1_PKT_TYPE_16B;
return HFI1_PKT_TYPE_9B;
}
static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
{
/*
* If there was an incoming 16B packet with permissive
* LIDs, OPA GIDs would have been programmed when those
* packets were received. A 16B packet will have to
* be sent in response to that packet. Return a 16B
* header type if that's the case.
*/
if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
/*
* Return a 16B header type if either the destination
* or source lid is extended.
*/
if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
return HFI1_PKT_TYPE_16B;
return hfi1_get_packet_type(lid);
}
static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
struct ib_grh *grh, u32 slid,
u32 dlid)
{
struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
if (!ibp)
return;
grh->hop_limit = 1;
grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
grh->sgid.global.interface_id =
OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
else
grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
/*
* Upper layers (like mad) may compare the dgid in the
* wc that is obtained here with the sgid_index in
* the wr. Since sgid_index in wr is always 0 for
* extended lids, set the dgid here to the default
* IB gid.
*/
grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
grh->dgid.global.interface_id =
cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
}
static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
{
return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
SIZE_OF_LT) & 0x7;
}
static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
u16 lrh0, u16 len,
u16 dlid, u16 slid)
{
hdr->lrh[0] = cpu_to_be16(lrh0);
hdr->lrh[1] = cpu_to_be16(dlid);
hdr->lrh[2] = cpu_to_be16(len);
hdr->lrh[3] = cpu_to_be16(slid);
}
static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
u32 slid, u32 dlid,
u16 len, u16 pkey,
bool becn, bool fecn, u8 l4,
u8 sc)
{
u32 lrh0 = 0;
u32 lrh1 = 0x40000000;
u32 lrh2 = 0;
u32 lrh3 = 0;
lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK);
lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
hdr->lrh[0] = lrh0;
hdr->lrh[1] = lrh1;
hdr->lrh[2] = lrh2;
hdr->lrh[3] = lrh3;
}
#endif /* _HFI1_KERNEL_H */