kernel/drivers/gpu/drm/nouveau/nvkm/engine/gr/ctxnv40.c
2024-07-22 17:22:30 +08:00

694 lines
20 KiB
C

/*
* Copyright 2009 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
/* NVIDIA context programs handle a number of other conditions which are
* not implemented in our versions. It's not clear why NVIDIA context
* programs have this code, nor whether it's strictly necessary for
* correct operation. We'll implement additional handling if/when we
* discover it's necessary.
*
* - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
* flag is set, this gets saved into the context.
* - On context save, the context program for all cards load nsource
* into a flag register and check for ILLEGAL_MTHD. If it's set,
* opcode 0x60000d is called before resuming normal operation.
* - Some context programs check more conditions than the above. NV44
* checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
* and calls 0x60000d before resuming normal operation.
* - At the very beginning of NVIDIA's context programs, flag 9 is checked
* and if true 0x800001 is called with count=0, pos=0, the flag is cleared
* and then the ctxprog is aborted. It looks like a complicated NOP,
* its purpose is unknown.
* - In the section of code that loads the per-vs state, NVIDIA check
* flag 10. If it's set, they only transfer the small 0x300 byte block
* of state + the state for a single vs as opposed to the state for
* all vs units. It doesn't seem likely that it'll occur in normal
* operation, especially seeing as it appears NVIDIA may have screwed
* up the ctxprogs for some cards and have an invalid instruction
* rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
* - There's a number of places where context offset 0 (where we place
* the PRAMIN offset of the context) is loaded into either 0x408000,
* 0x408004 or 0x408008. Not sure what's up there either.
* - The ctxprogs for some cards save 0x400a00 again during the cleanup
* path for auto-loadctx.
*/
#define CP_FLAG_CLEAR 0
#define CP_FLAG_SET 1
#define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0)
#define CP_FLAG_SWAP_DIRECTION_LOAD 0
#define CP_FLAG_SWAP_DIRECTION_SAVE 1
#define CP_FLAG_USER_SAVE ((0 * 32) + 5)
#define CP_FLAG_USER_SAVE_NOT_PENDING 0
#define CP_FLAG_USER_SAVE_PENDING 1
#define CP_FLAG_USER_LOAD ((0 * 32) + 6)
#define CP_FLAG_USER_LOAD_NOT_PENDING 0
#define CP_FLAG_USER_LOAD_PENDING 1
#define CP_FLAG_STATUS ((3 * 32) + 0)
#define CP_FLAG_STATUS_IDLE 0
#define CP_FLAG_STATUS_BUSY 1
#define CP_FLAG_AUTO_SAVE ((3 * 32) + 4)
#define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
#define CP_FLAG_AUTO_SAVE_PENDING 1
#define CP_FLAG_AUTO_LOAD ((3 * 32) + 5)
#define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
#define CP_FLAG_AUTO_LOAD_PENDING 1
#define CP_FLAG_UNK54 ((3 * 32) + 6)
#define CP_FLAG_UNK54_CLEAR 0
#define CP_FLAG_UNK54_SET 1
#define CP_FLAG_ALWAYS ((3 * 32) + 8)
#define CP_FLAG_ALWAYS_FALSE 0
#define CP_FLAG_ALWAYS_TRUE 1
#define CP_FLAG_UNK57 ((3 * 32) + 9)
#define CP_FLAG_UNK57_CLEAR 0
#define CP_FLAG_UNK57_SET 1
#define CP_CTX 0x00100000
#define CP_CTX_COUNT 0x000fc000
#define CP_CTX_COUNT_SHIFT 14
#define CP_CTX_REG 0x00003fff
#define CP_LOAD_SR 0x00200000
#define CP_LOAD_SR_VALUE 0x000fffff
#define CP_BRA 0x00400000
#define CP_BRA_IP 0x0000ff00
#define CP_BRA_IP_SHIFT 8
#define CP_BRA_IF_CLEAR 0x00000080
#define CP_BRA_FLAG 0x0000007f
#define CP_WAIT 0x00500000
#define CP_WAIT_SET 0x00000080
#define CP_WAIT_FLAG 0x0000007f
#define CP_SET 0x00700000
#define CP_SET_1 0x00000080
#define CP_SET_FLAG 0x0000007f
#define CP_NEXT_TO_SWAP 0x00600007
#define CP_NEXT_TO_CURRENT 0x00600009
#define CP_SET_CONTEXT_POINTER 0x0060000a
#define CP_END 0x0060000e
#define CP_LOAD_MAGIC_UNK01 0x00800001 /* unknown */
#define CP_LOAD_MAGIC_NV44TCL 0x00800029 /* per-vs state (0x4497) */
#define CP_LOAD_MAGIC_NV40TCL 0x00800041 /* per-vs state (0x4097) */
#include "ctxnv40.h"
#include "nv40.h"
/* TODO:
* - get vs count from 0x1540
*/
static int
nv40_gr_vs_count(struct nvkm_device *device)
{
switch (device->chipset) {
case 0x47:
case 0x49:
case 0x4b:
return 8;
case 0x40:
return 6;
case 0x41:
case 0x42:
return 5;
case 0x43:
case 0x44:
case 0x46:
case 0x4a:
return 3;
case 0x4c:
case 0x4e:
case 0x67:
default:
return 1;
}
}
enum cp_label {
cp_check_load = 1,
cp_setup_auto_load,
cp_setup_load,
cp_setup_save,
cp_swap_state,
cp_swap_state3d_3_is_save,
cp_prepare_exit,
cp_exit,
};
static void
nv40_gr_construct_general(struct nvkm_grctx *ctx)
{
struct nvkm_device *device = ctx->device;
int i;
cp_ctx(ctx, 0x4000a4, 1);
gr_def(ctx, 0x4000a4, 0x00000008);
cp_ctx(ctx, 0x400144, 58);
gr_def(ctx, 0x400144, 0x00000001);
cp_ctx(ctx, 0x400314, 1);
gr_def(ctx, 0x400314, 0x00000000);
cp_ctx(ctx, 0x400400, 10);
cp_ctx(ctx, 0x400480, 10);
cp_ctx(ctx, 0x400500, 19);
gr_def(ctx, 0x400514, 0x00040000);
gr_def(ctx, 0x400524, 0x55555555);
gr_def(ctx, 0x400528, 0x55555555);
gr_def(ctx, 0x40052c, 0x55555555);
gr_def(ctx, 0x400530, 0x55555555);
cp_ctx(ctx, 0x400560, 6);
gr_def(ctx, 0x400568, 0x0000ffff);
gr_def(ctx, 0x40056c, 0x0000ffff);
cp_ctx(ctx, 0x40057c, 5);
cp_ctx(ctx, 0x400710, 3);
gr_def(ctx, 0x400710, 0x20010001);
gr_def(ctx, 0x400714, 0x0f73ef00);
cp_ctx(ctx, 0x400724, 1);
gr_def(ctx, 0x400724, 0x02008821);
cp_ctx(ctx, 0x400770, 3);
if (device->chipset == 0x40) {
cp_ctx(ctx, 0x400814, 4);
cp_ctx(ctx, 0x400828, 5);
cp_ctx(ctx, 0x400840, 5);
gr_def(ctx, 0x400850, 0x00000040);
cp_ctx(ctx, 0x400858, 4);
gr_def(ctx, 0x400858, 0x00000040);
gr_def(ctx, 0x40085c, 0x00000040);
gr_def(ctx, 0x400864, 0x80000000);
cp_ctx(ctx, 0x40086c, 9);
gr_def(ctx, 0x40086c, 0x80000000);
gr_def(ctx, 0x400870, 0x80000000);
gr_def(ctx, 0x400874, 0x80000000);
gr_def(ctx, 0x400878, 0x80000000);
gr_def(ctx, 0x400888, 0x00000040);
gr_def(ctx, 0x40088c, 0x80000000);
cp_ctx(ctx, 0x4009c0, 8);
gr_def(ctx, 0x4009cc, 0x80000000);
gr_def(ctx, 0x4009dc, 0x80000000);
} else {
cp_ctx(ctx, 0x400840, 20);
if (nv44_gr_class(ctx->device)) {
for (i = 0; i < 8; i++)
gr_def(ctx, 0x400860 + (i * 4), 0x00000001);
}
gr_def(ctx, 0x400880, 0x00000040);
gr_def(ctx, 0x400884, 0x00000040);
gr_def(ctx, 0x400888, 0x00000040);
cp_ctx(ctx, 0x400894, 11);
gr_def(ctx, 0x400894, 0x00000040);
if (!nv44_gr_class(ctx->device)) {
for (i = 0; i < 8; i++)
gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000);
}
cp_ctx(ctx, 0x4008e0, 2);
cp_ctx(ctx, 0x4008f8, 2);
if (device->chipset == 0x4c ||
(device->chipset & 0xf0) == 0x60)
cp_ctx(ctx, 0x4009f8, 1);
}
cp_ctx(ctx, 0x400a00, 73);
gr_def(ctx, 0x400b0c, 0x0b0b0b0c);
cp_ctx(ctx, 0x401000, 4);
cp_ctx(ctx, 0x405004, 1);
switch (device->chipset) {
case 0x47:
case 0x49:
case 0x4b:
cp_ctx(ctx, 0x403448, 1);
gr_def(ctx, 0x403448, 0x00001010);
break;
default:
cp_ctx(ctx, 0x403440, 1);
switch (device->chipset) {
case 0x40:
gr_def(ctx, 0x403440, 0x00000010);
break;
case 0x44:
case 0x46:
case 0x4a:
gr_def(ctx, 0x403440, 0x00003010);
break;
case 0x41:
case 0x42:
case 0x43:
case 0x4c:
case 0x4e:
case 0x67:
default:
gr_def(ctx, 0x403440, 0x00001010);
break;
}
break;
}
}
static void
nv40_gr_construct_state3d(struct nvkm_grctx *ctx)
{
struct nvkm_device *device = ctx->device;
int i;
if (device->chipset == 0x40) {
cp_ctx(ctx, 0x401880, 51);
gr_def(ctx, 0x401940, 0x00000100);
} else
if (device->chipset == 0x46 || device->chipset == 0x47 ||
device->chipset == 0x49 || device->chipset == 0x4b) {
cp_ctx(ctx, 0x401880, 32);
for (i = 0; i < 16; i++)
gr_def(ctx, 0x401880 + (i * 4), 0x00000111);
if (device->chipset == 0x46)
cp_ctx(ctx, 0x401900, 16);
cp_ctx(ctx, 0x401940, 3);
}
cp_ctx(ctx, 0x40194c, 18);
gr_def(ctx, 0x401954, 0x00000111);
gr_def(ctx, 0x401958, 0x00080060);
gr_def(ctx, 0x401974, 0x00000080);
gr_def(ctx, 0x401978, 0xffff0000);
gr_def(ctx, 0x40197c, 0x00000001);
gr_def(ctx, 0x401990, 0x46400000);
if (device->chipset == 0x40) {
cp_ctx(ctx, 0x4019a0, 2);
cp_ctx(ctx, 0x4019ac, 5);
} else {
cp_ctx(ctx, 0x4019a0, 1);
cp_ctx(ctx, 0x4019b4, 3);
}
gr_def(ctx, 0x4019bc, 0xffff0000);
switch (device->chipset) {
case 0x46:
case 0x47:
case 0x49:
case 0x4b:
cp_ctx(ctx, 0x4019c0, 18);
for (i = 0; i < 16; i++)
gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888);
break;
}
cp_ctx(ctx, 0x401a08, 8);
gr_def(ctx, 0x401a10, 0x0fff0000);
gr_def(ctx, 0x401a14, 0x0fff0000);
gr_def(ctx, 0x401a1c, 0x00011100);
cp_ctx(ctx, 0x401a2c, 4);
cp_ctx(ctx, 0x401a44, 26);
for (i = 0; i < 16; i++)
gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000);
gr_def(ctx, 0x401a8c, 0x4b7fffff);
if (device->chipset == 0x40) {
cp_ctx(ctx, 0x401ab8, 3);
} else {
cp_ctx(ctx, 0x401ab8, 1);
cp_ctx(ctx, 0x401ac0, 1);
}
cp_ctx(ctx, 0x401ad0, 8);
gr_def(ctx, 0x401ad0, 0x30201000);
gr_def(ctx, 0x401ad4, 0x70605040);
gr_def(ctx, 0x401ad8, 0xb8a89888);
gr_def(ctx, 0x401adc, 0xf8e8d8c8);
cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1);
gr_def(ctx, 0x401b10, 0x40100000);
cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5);
gr_def(ctx, 0x401b28, device->chipset == 0x40 ?
0x00000004 : 0x00000000);
cp_ctx(ctx, 0x401b30, 25);
gr_def(ctx, 0x401b34, 0x0000ffff);
gr_def(ctx, 0x401b68, 0x435185d6);
gr_def(ctx, 0x401b6c, 0x2155b699);
gr_def(ctx, 0x401b70, 0xfedcba98);
gr_def(ctx, 0x401b74, 0x00000098);
gr_def(ctx, 0x401b84, 0xffffffff);
gr_def(ctx, 0x401b88, 0x00ff7000);
gr_def(ctx, 0x401b8c, 0x0000ffff);
if (device->chipset != 0x44 && device->chipset != 0x4a &&
device->chipset != 0x4e)
cp_ctx(ctx, 0x401b94, 1);
cp_ctx(ctx, 0x401b98, 8);
gr_def(ctx, 0x401b9c, 0x00ff0000);
cp_ctx(ctx, 0x401bc0, 9);
gr_def(ctx, 0x401be0, 0x00ffff00);
cp_ctx(ctx, 0x401c00, 192);
for (i = 0; i < 16; i++) { /* fragment texture units */
gr_def(ctx, 0x401c40 + (i * 4), 0x00018488);
gr_def(ctx, 0x401c80 + (i * 4), 0x00028202);
gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4);
gr_def(ctx, 0x401d40 + (i * 4), 0x01012000);
gr_def(ctx, 0x401d80 + (i * 4), 0x00080008);
gr_def(ctx, 0x401e00 + (i * 4), 0x00100008);
}
for (i = 0; i < 4; i++) { /* vertex texture units */
gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80);
gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202);
gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008);
gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008);
}
cp_ctx(ctx, 0x400f5c, 3);
gr_def(ctx, 0x400f5c, 0x00000002);
cp_ctx(ctx, 0x400f84, 1);
}
static void
nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx)
{
struct nvkm_device *device = ctx->device;
int i;
cp_ctx(ctx, 0x402000, 1);
cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2);
switch (device->chipset) {
case 0x40:
gr_def(ctx, 0x402404, 0x00000001);
break;
case 0x4c:
case 0x4e:
case 0x67:
gr_def(ctx, 0x402404, 0x00000020);
break;
case 0x46:
case 0x49:
case 0x4b:
gr_def(ctx, 0x402404, 0x00000421);
break;
default:
gr_def(ctx, 0x402404, 0x00000021);
}
if (device->chipset != 0x40)
gr_def(ctx, 0x402408, 0x030c30c3);
switch (device->chipset) {
case 0x44:
case 0x46:
case 0x4a:
case 0x4c:
case 0x4e:
case 0x67:
cp_ctx(ctx, 0x402440, 1);
gr_def(ctx, 0x402440, 0x00011001);
break;
default:
break;
}
cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9);
gr_def(ctx, 0x402488, 0x3e020200);
gr_def(ctx, 0x40248c, 0x00ffffff);
switch (device->chipset) {
case 0x40:
gr_def(ctx, 0x402490, 0x60103f00);
break;
case 0x47:
gr_def(ctx, 0x402490, 0x40103f00);
break;
case 0x41:
case 0x42:
case 0x49:
case 0x4b:
gr_def(ctx, 0x402490, 0x20103f00);
break;
default:
gr_def(ctx, 0x402490, 0x0c103f00);
break;
}
gr_def(ctx, 0x40249c, device->chipset <= 0x43 ?
0x00020000 : 0x00040000);
cp_ctx(ctx, 0x402500, 31);
gr_def(ctx, 0x402530, 0x00008100);
if (device->chipset == 0x40)
cp_ctx(ctx, 0x40257c, 6);
cp_ctx(ctx, 0x402594, 16);
cp_ctx(ctx, 0x402800, 17);
gr_def(ctx, 0x402800, 0x00000001);
switch (device->chipset) {
case 0x47:
case 0x49:
case 0x4b:
cp_ctx(ctx, 0x402864, 1);
gr_def(ctx, 0x402864, 0x00001001);
cp_ctx(ctx, 0x402870, 3);
gr_def(ctx, 0x402878, 0x00000003);
if (device->chipset != 0x47) { /* belong at end!! */
cp_ctx(ctx, 0x402900, 1);
cp_ctx(ctx, 0x402940, 1);
cp_ctx(ctx, 0x402980, 1);
cp_ctx(ctx, 0x4029c0, 1);
cp_ctx(ctx, 0x402a00, 1);
cp_ctx(ctx, 0x402a40, 1);
cp_ctx(ctx, 0x402a80, 1);
cp_ctx(ctx, 0x402ac0, 1);
}
break;
case 0x40:
cp_ctx(ctx, 0x402844, 1);
gr_def(ctx, 0x402844, 0x00000001);
cp_ctx(ctx, 0x402850, 1);
break;
default:
cp_ctx(ctx, 0x402844, 1);
gr_def(ctx, 0x402844, 0x00001001);
cp_ctx(ctx, 0x402850, 2);
gr_def(ctx, 0x402854, 0x00000003);
break;
}
cp_ctx(ctx, 0x402c00, 4);
gr_def(ctx, 0x402c00, device->chipset == 0x40 ?
0x80800001 : 0x00888001);
switch (device->chipset) {
case 0x47:
case 0x49:
case 0x4b:
cp_ctx(ctx, 0x402c20, 40);
for (i = 0; i < 32; i++)
gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff);
cp_ctx(ctx, 0x4030b8, 13);
gr_def(ctx, 0x4030dc, 0x00000005);
gr_def(ctx, 0x4030e8, 0x0000ffff);
break;
default:
cp_ctx(ctx, 0x402c10, 4);
if (device->chipset == 0x40)
cp_ctx(ctx, 0x402c20, 36);
else
if (device->chipset <= 0x42)
cp_ctx(ctx, 0x402c20, 24);
else
if (device->chipset <= 0x4a)
cp_ctx(ctx, 0x402c20, 16);
else
cp_ctx(ctx, 0x402c20, 8);
cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13);
gr_def(ctx, 0x402cd4, 0x00000005);
if (device->chipset != 0x40)
gr_def(ctx, 0x402ce0, 0x0000ffff);
break;
}
cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3);
cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3);
cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device));
for (i = 0; i < nv40_gr_vs_count(ctx->device); i++)
gr_def(ctx, 0x403420 + (i * 4), 0x00005555);
if (device->chipset != 0x40) {
cp_ctx(ctx, 0x403600, 1);
gr_def(ctx, 0x403600, 0x00000001);
}
cp_ctx(ctx, 0x403800, 1);
cp_ctx(ctx, 0x403c18, 1);
gr_def(ctx, 0x403c18, 0x00000001);
switch (device->chipset) {
case 0x46:
case 0x47:
case 0x49:
case 0x4b:
cp_ctx(ctx, 0x405018, 1);
gr_def(ctx, 0x405018, 0x08e00001);
cp_ctx(ctx, 0x405c24, 1);
gr_def(ctx, 0x405c24, 0x000e3000);
break;
}
if (device->chipset != 0x4e)
cp_ctx(ctx, 0x405800, 11);
cp_ctx(ctx, 0x407000, 1);
}
static void
nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx)
{
int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684;
cp_out (ctx, 0x300000);
cp_lsr (ctx, len - 4);
cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save);
cp_lsr (ctx, len);
cp_name(ctx, cp_swap_state3d_3_is_save);
cp_out (ctx, 0x800001);
ctx->ctxvals_pos += len;
}
static void
nv40_gr_construct_shader(struct nvkm_grctx *ctx)
{
struct nvkm_device *device = ctx->device;
struct nvkm_gpuobj *obj = ctx->data;
int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset;
int offset, i;
vs_nr = nv40_gr_vs_count(ctx->device);
vs_nr_b0 = 363;
vs_nr_b1 = device->chipset == 0x40 ? 128 : 64;
if (device->chipset == 0x40) {
b0_offset = 0x2200/4; /* 33a0 */
b1_offset = 0x55a0/4; /* 1500 */
vs_len = 0x6aa0/4;
} else
if (device->chipset == 0x41 || device->chipset == 0x42) {
b0_offset = 0x2200/4; /* 2200 */
b1_offset = 0x4400/4; /* 0b00 */
vs_len = 0x4f00/4;
} else {
b0_offset = 0x1d40/4; /* 2200 */
b1_offset = 0x3f40/4; /* 0b00 : 0a40 */
vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4;
}
cp_lsr(ctx, vs_len * vs_nr + 0x300/4);
cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041);
offset = ctx->ctxvals_pos;
ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len));
if (ctx->mode != NVKM_GRCTX_VALS)
return;
offset += 0x0280/4;
for (i = 0; i < 16; i++, offset += 2)
nvkm_wo32(obj, offset * 4, 0x3f800000);
for (vs = 0; vs < vs_nr; vs++, offset += vs_len) {
for (i = 0; i < vs_nr_b0 * 6; i += 6)
nvkm_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001);
for (i = 0; i < vs_nr_b1 * 4; i += 4)
nvkm_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000);
}
}
static void
nv40_grctx_generate(struct nvkm_grctx *ctx)
{
/* decide whether we're loading/unloading the context */
cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
cp_name(ctx, cp_check_load);
cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
cp_bra (ctx, ALWAYS, TRUE, cp_exit);
/* setup for context load */
cp_name(ctx, cp_setup_auto_load);
cp_wait(ctx, STATUS, IDLE);
cp_out (ctx, CP_NEXT_TO_SWAP);
cp_name(ctx, cp_setup_load);
cp_wait(ctx, STATUS, IDLE);
cp_set (ctx, SWAP_DIRECTION, LOAD);
cp_out (ctx, 0x00910880); /* ?? */
cp_out (ctx, 0x00901ffe); /* ?? */
cp_out (ctx, 0x01940000); /* ?? */
cp_lsr (ctx, 0x20);
cp_out (ctx, 0x0060000b); /* ?? */
cp_wait(ctx, UNK57, CLEAR);
cp_out (ctx, 0x0060000c); /* ?? */
cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
/* setup for context save */
cp_name(ctx, cp_setup_save);
cp_set (ctx, SWAP_DIRECTION, SAVE);
/* general PGRAPH state */
cp_name(ctx, cp_swap_state);
cp_pos (ctx, 0x00020/4);
nv40_gr_construct_general(ctx);
cp_wait(ctx, STATUS, IDLE);
/* 3D state, block 1 */
cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit);
nv40_gr_construct_state3d(ctx);
cp_wait(ctx, STATUS, IDLE);
/* 3D state, block 2 */
nv40_gr_construct_state3d_2(ctx);
/* Some other block of "random" state */
nv40_gr_construct_state3d_3(ctx);
/* Per-vertex shader state */
cp_pos (ctx, ctx->ctxvals_pos);
nv40_gr_construct_shader(ctx);
/* pre-exit state updates */
cp_name(ctx, cp_prepare_exit);
cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
cp_out (ctx, CP_NEXT_TO_CURRENT);
cp_name(ctx, cp_exit);
cp_set (ctx, USER_SAVE, NOT_PENDING);
cp_set (ctx, USER_LOAD, NOT_PENDING);
cp_out (ctx, CP_END);
}
void
nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem)
{
nv40_grctx_generate(&(struct nvkm_grctx) {
.device = device,
.mode = NVKM_GRCTX_VALS,
.data = mem,
});
}
int
nv40_grctx_init(struct nvkm_device *device, u32 *size)
{
u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i;
struct nvkm_grctx ctx = {
.device = device,
.mode = NVKM_GRCTX_PROG,
.ucode = ctxprog,
.ctxprog_max = 256,
};
if (!ctxprog)
return -ENOMEM;
nv40_grctx_generate(&ctx);
nvkm_wr32(device, 0x400324, 0);
for (i = 0; i < ctx.ctxprog_len; i++)
nvkm_wr32(device, 0x400328, ctxprog[i]);
*size = ctx.ctxvals_pos * 4;
kfree(ctxprog);
return 0;
}