kernel/drivers/gpu/drm/msm/disp/mdp4/mdp4_lcdc_encoder.c
2024-07-22 17:22:30 +08:00

446 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2014 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
* Author: Vinay Simha <vinaysimha@inforcecomputing.com>
*/
#include <linux/delay.h>
#include <drm/drm_crtc.h>
#include <drm/drm_probe_helper.h>
#include "mdp4_kms.h"
struct mdp4_lcdc_encoder {
struct drm_encoder base;
struct device_node *panel_node;
struct drm_panel *panel;
struct clk *lcdc_clk;
unsigned long int pixclock;
struct regulator *regs[3];
bool enabled;
uint32_t bsc;
};
#define to_mdp4_lcdc_encoder(x) container_of(x, struct mdp4_lcdc_encoder, base)
static struct mdp4_kms *get_kms(struct drm_encoder *encoder)
{
struct msm_drm_private *priv = encoder->dev->dev_private;
return to_mdp4_kms(to_mdp_kms(priv->kms));
}
static void mdp4_lcdc_encoder_destroy(struct drm_encoder *encoder)
{
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(mdp4_lcdc_encoder);
}
static const struct drm_encoder_funcs mdp4_lcdc_encoder_funcs = {
.destroy = mdp4_lcdc_encoder_destroy,
};
/* this should probably be a helper: */
static struct drm_connector *get_connector(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
if (connector->encoder == encoder)
return connector;
return NULL;
}
static void setup_phy(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector = get_connector(encoder);
struct mdp4_kms *mdp4_kms = get_kms(encoder);
uint32_t lvds_intf = 0, lvds_phy_cfg0 = 0;
int bpp, nchan, swap;
if (!connector)
return;
bpp = 3 * connector->display_info.bpc;
if (!bpp)
bpp = 18;
/* TODO, these should come from panel somehow: */
nchan = 1;
swap = 0;
switch (bpp) {
case 24:
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(0),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x08) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x05) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x04) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x03));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(0),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x02) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x01) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x00));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(1),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x11) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x10) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x0d) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0c));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(1),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0b) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x0a) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x09));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(2),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1a) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x19) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x18) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x15));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(2),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x14) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x13) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x12));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(3),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1b) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x17) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x16) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0f));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(3),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0e) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x07) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x06));
if (nchan == 2) {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE3_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE0_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE3_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
} else {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE3_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
}
break;
case 18:
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(0),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x0a) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x07) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x06) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x05));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(0),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x04) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x03) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x02));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(1),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x13) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x12) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x0f) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0e));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(1),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0d) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x0c) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x0b));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(2),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1a) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x19) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x18) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x17));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(2),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x16) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x15) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x14));
if (nchan == 2) {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE0_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
} else {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
}
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_RGB_OUT;
break;
default:
DRM_DEV_ERROR(dev->dev, "unknown bpp: %d\n", bpp);
return;
}
switch (nchan) {
case 1:
lvds_phy_cfg0 = MDP4_LVDS_PHY_CFG0_CHANNEL0;
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_CLK_LANE_EN |
MDP4_LCDC_LVDS_INTF_CTL_MODE_SEL;
break;
case 2:
lvds_phy_cfg0 = MDP4_LVDS_PHY_CFG0_CHANNEL0 |
MDP4_LVDS_PHY_CFG0_CHANNEL1;
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_CLK_LANE_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_CLK_LANE_EN;
break;
default:
DRM_DEV_ERROR(dev->dev, "unknown # of channels: %d\n", nchan);
return;
}
if (swap)
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH_SWAP;
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_ENABLE;
mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG0, lvds_phy_cfg0);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_INTF_CTL, lvds_intf);
mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG2, 0x30);
mb();
udelay(1);
lvds_phy_cfg0 |= MDP4_LVDS_PHY_CFG0_SERIALIZATION_ENBLE;
mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG0, lvds_phy_cfg0);
}
static void mdp4_lcdc_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
struct mdp4_kms *mdp4_kms = get_kms(encoder);
uint32_t lcdc_hsync_skew, vsync_period, vsync_len, ctrl_pol;
uint32_t display_v_start, display_v_end;
uint32_t hsync_start_x, hsync_end_x;
mode = adjusted_mode;
DBG("set mode: " DRM_MODE_FMT, DRM_MODE_ARG(mode));
mdp4_lcdc_encoder->pixclock = mode->clock * 1000;
DBG("pixclock=%lu", mdp4_lcdc_encoder->pixclock);
ctrl_pol = 0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
ctrl_pol |= MDP4_LCDC_CTRL_POLARITY_HSYNC_LOW;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
ctrl_pol |= MDP4_LCDC_CTRL_POLARITY_VSYNC_LOW;
/* probably need to get DATA_EN polarity from panel.. */
lcdc_hsync_skew = 0; /* get this from panel? */
hsync_start_x = (mode->htotal - mode->hsync_start);
hsync_end_x = mode->htotal - (mode->hsync_start - mode->hdisplay) - 1;
vsync_period = mode->vtotal * mode->htotal;
vsync_len = (mode->vsync_end - mode->vsync_start) * mode->htotal;
display_v_start = (mode->vtotal - mode->vsync_start) * mode->htotal + lcdc_hsync_skew;
display_v_end = vsync_period - ((mode->vsync_start - mode->vdisplay) * mode->htotal) + lcdc_hsync_skew - 1;
mdp4_write(mdp4_kms, REG_MDP4_LCDC_HSYNC_CTRL,
MDP4_LCDC_HSYNC_CTRL_PULSEW(mode->hsync_end - mode->hsync_start) |
MDP4_LCDC_HSYNC_CTRL_PERIOD(mode->htotal));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_VSYNC_PERIOD, vsync_period);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_VSYNC_LEN, vsync_len);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_HCTRL,
MDP4_LCDC_DISPLAY_HCTRL_START(hsync_start_x) |
MDP4_LCDC_DISPLAY_HCTRL_END(hsync_end_x));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_VSTART, display_v_start);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_VEND, display_v_end);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_BORDER_CLR, 0);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_UNDERFLOW_CLR,
MDP4_LCDC_UNDERFLOW_CLR_ENABLE_RECOVERY |
MDP4_LCDC_UNDERFLOW_CLR_COLOR(0xff));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_HSYNC_SKEW, lcdc_hsync_skew);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_CTRL_POLARITY, ctrl_pol);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_HCTL,
MDP4_LCDC_ACTIVE_HCTL_START(0) |
MDP4_LCDC_ACTIVE_HCTL_END(0));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_VSTART, 0);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_VEND, 0);
}
static void mdp4_lcdc_encoder_disable(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
struct mdp4_kms *mdp4_kms = get_kms(encoder);
struct drm_panel *panel;
int i, ret;
if (WARN_ON(!mdp4_lcdc_encoder->enabled))
return;
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 0);
panel = of_drm_find_panel(mdp4_lcdc_encoder->panel_node);
if (!IS_ERR(panel)) {
drm_panel_disable(panel);
drm_panel_unprepare(panel);
}
/*
* Wait for a vsync so we know the ENABLE=0 latched before
* the (connector) source of the vsync's gets disabled,
* otherwise we end up in a funny state if we re-enable
* before the disable latches, which results that some of
* the settings changes for the new modeset (like new
* scanout buffer) don't latch properly..
*/
mdp_irq_wait(&mdp4_kms->base, MDP4_IRQ_PRIMARY_VSYNC);
clk_disable_unprepare(mdp4_lcdc_encoder->lcdc_clk);
for (i = 0; i < ARRAY_SIZE(mdp4_lcdc_encoder->regs); i++) {
ret = regulator_disable(mdp4_lcdc_encoder->regs[i]);
if (ret)
DRM_DEV_ERROR(dev->dev, "failed to disable regulator: %d\n", ret);
}
mdp4_lcdc_encoder->enabled = false;
}
static void mdp4_lcdc_encoder_enable(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
unsigned long pc = mdp4_lcdc_encoder->pixclock;
struct mdp4_kms *mdp4_kms = get_kms(encoder);
struct drm_panel *panel;
uint32_t config;
int i, ret;
if (WARN_ON(mdp4_lcdc_encoder->enabled))
return;
/* TODO: hard-coded for 18bpp: */
config =
MDP4_DMA_CONFIG_R_BPC(BPC6) |
MDP4_DMA_CONFIG_G_BPC(BPC6) |
MDP4_DMA_CONFIG_B_BPC(BPC6) |
MDP4_DMA_CONFIG_PACK(0x21) |
MDP4_DMA_CONFIG_DEFLKR_EN |
MDP4_DMA_CONFIG_DITHER_EN;
if (!of_property_read_bool(dev->dev->of_node, "qcom,lcdc-align-lsb"))
config |= MDP4_DMA_CONFIG_PACK_ALIGN_MSB;
mdp4_crtc_set_config(encoder->crtc, config);
mdp4_crtc_set_intf(encoder->crtc, INTF_LCDC_DTV, 0);
for (i = 0; i < ARRAY_SIZE(mdp4_lcdc_encoder->regs); i++) {
ret = regulator_enable(mdp4_lcdc_encoder->regs[i]);
if (ret)
DRM_DEV_ERROR(dev->dev, "failed to enable regulator: %d\n", ret);
}
DBG("setting lcdc_clk=%lu", pc);
ret = clk_set_rate(mdp4_lcdc_encoder->lcdc_clk, pc);
if (ret)
DRM_DEV_ERROR(dev->dev, "failed to configure lcdc_clk: %d\n", ret);
ret = clk_prepare_enable(mdp4_lcdc_encoder->lcdc_clk);
if (ret)
DRM_DEV_ERROR(dev->dev, "failed to enable lcdc_clk: %d\n", ret);
panel = of_drm_find_panel(mdp4_lcdc_encoder->panel_node);
if (!IS_ERR(panel)) {
drm_panel_prepare(panel);
drm_panel_enable(panel);
}
setup_phy(encoder);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 1);
mdp4_lcdc_encoder->enabled = true;
}
static const struct drm_encoder_helper_funcs mdp4_lcdc_encoder_helper_funcs = {
.mode_set = mdp4_lcdc_encoder_mode_set,
.disable = mdp4_lcdc_encoder_disable,
.enable = mdp4_lcdc_encoder_enable,
};
long mdp4_lcdc_round_pixclk(struct drm_encoder *encoder, unsigned long rate)
{
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
return clk_round_rate(mdp4_lcdc_encoder->lcdc_clk, rate);
}
/* initialize encoder */
struct drm_encoder *mdp4_lcdc_encoder_init(struct drm_device *dev,
struct device_node *panel_node)
{
struct drm_encoder *encoder = NULL;
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder;
struct regulator *reg;
int ret;
mdp4_lcdc_encoder = kzalloc(sizeof(*mdp4_lcdc_encoder), GFP_KERNEL);
if (!mdp4_lcdc_encoder) {
ret = -ENOMEM;
goto fail;
}
mdp4_lcdc_encoder->panel_node = panel_node;
encoder = &mdp4_lcdc_encoder->base;
drm_encoder_init(dev, encoder, &mdp4_lcdc_encoder_funcs,
DRM_MODE_ENCODER_LVDS, NULL);
drm_encoder_helper_add(encoder, &mdp4_lcdc_encoder_helper_funcs);
/* TODO: do we need different pll in other cases? */
mdp4_lcdc_encoder->lcdc_clk = mpd4_lvds_pll_init(dev);
if (IS_ERR(mdp4_lcdc_encoder->lcdc_clk)) {
DRM_DEV_ERROR(dev->dev, "failed to get lvds_clk\n");
ret = PTR_ERR(mdp4_lcdc_encoder->lcdc_clk);
goto fail;
}
/* TODO: different regulators in other cases? */
reg = devm_regulator_get(dev->dev, "lvds-vccs-3p3v");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
DRM_DEV_ERROR(dev->dev, "failed to get lvds-vccs-3p3v: %d\n", ret);
goto fail;
}
mdp4_lcdc_encoder->regs[0] = reg;
reg = devm_regulator_get(dev->dev, "lvds-pll-vdda");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
DRM_DEV_ERROR(dev->dev, "failed to get lvds-pll-vdda: %d\n", ret);
goto fail;
}
mdp4_lcdc_encoder->regs[1] = reg;
reg = devm_regulator_get(dev->dev, "lvds-vdda");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
DRM_DEV_ERROR(dev->dev, "failed to get lvds-vdda: %d\n", ret);
goto fail;
}
mdp4_lcdc_encoder->regs[2] = reg;
return encoder;
fail:
if (encoder)
mdp4_lcdc_encoder_destroy(encoder);
return ERR_PTR(ret);
}