266 lines
6.8 KiB
C
266 lines
6.8 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2016-2019 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include "gt/intel_gt.h"
|
|
#include "intel_huc.h"
|
|
#include "i915_drv.h"
|
|
|
|
/**
|
|
* DOC: HuC
|
|
*
|
|
* The HuC is a dedicated microcontroller for usage in media HEVC (High
|
|
* Efficiency Video Coding) operations. Userspace can directly use the firmware
|
|
* capabilities by adding HuC specific commands to batch buffers.
|
|
*
|
|
* The kernel driver is only responsible for loading the HuC firmware and
|
|
* triggering its security authentication, which is performed by the GuC. For
|
|
* The GuC to correctly perform the authentication, the HuC binary must be
|
|
* loaded before the GuC one. Loading the HuC is optional; however, not using
|
|
* the HuC might negatively impact power usage and/or performance of media
|
|
* workloads, depending on the use-cases.
|
|
*
|
|
* See https://github.com/intel/media-driver for the latest details on HuC
|
|
* functionality.
|
|
*/
|
|
|
|
/**
|
|
* DOC: HuC Memory Management
|
|
*
|
|
* Similarly to the GuC, the HuC can't do any memory allocations on its own,
|
|
* with the difference being that the allocations for HuC usage are handled by
|
|
* the userspace driver instead of the kernel one. The HuC accesses the memory
|
|
* via the PPGTT belonging to the context loaded on the VCS executing the
|
|
* HuC-specific commands.
|
|
*/
|
|
|
|
void intel_huc_init_early(struct intel_huc *huc)
|
|
{
|
|
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
|
|
|
|
intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC);
|
|
|
|
if (GRAPHICS_VER(i915) >= 11) {
|
|
huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO;
|
|
huc->status.mask = HUC_LOAD_SUCCESSFUL;
|
|
huc->status.value = HUC_LOAD_SUCCESSFUL;
|
|
} else {
|
|
huc->status.reg = HUC_STATUS2;
|
|
huc->status.mask = HUC_FW_VERIFIED;
|
|
huc->status.value = HUC_FW_VERIFIED;
|
|
}
|
|
}
|
|
|
|
static int intel_huc_rsa_data_create(struct intel_huc *huc)
|
|
{
|
|
struct intel_gt *gt = huc_to_gt(huc);
|
|
struct intel_guc *guc = >->uc.guc;
|
|
struct i915_vma *vma;
|
|
size_t copied;
|
|
void *vaddr;
|
|
int err;
|
|
|
|
err = i915_inject_probe_error(gt->i915, -ENXIO);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* HuC firmware will sit above GUC_GGTT_TOP and will not map
|
|
* through GTT. Unfortunately, this means GuC cannot perform
|
|
* the HuC auth. as the rsa offset now falls within the GuC
|
|
* inaccessible range. We resort to perma-pinning an additional
|
|
* vma within the accessible range that only contains the rsa
|
|
* signature. The GuC can use this extra pinning to perform
|
|
* the authentication since its GGTT offset will be GuC
|
|
* accessible.
|
|
*/
|
|
GEM_BUG_ON(huc->fw.rsa_size > PAGE_SIZE);
|
|
vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
|
|
vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
|
|
i915_coherent_map_type(gt->i915,
|
|
vma->obj, true));
|
|
if (IS_ERR(vaddr)) {
|
|
i915_vma_unpin_and_release(&vma, 0);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
copied = intel_uc_fw_copy_rsa(&huc->fw, vaddr, vma->size);
|
|
GEM_BUG_ON(copied < huc->fw.rsa_size);
|
|
|
|
i915_gem_object_unpin_map(vma->obj);
|
|
|
|
huc->rsa_data = vma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_huc_rsa_data_destroy(struct intel_huc *huc)
|
|
{
|
|
i915_vma_unpin_and_release(&huc->rsa_data, 0);
|
|
}
|
|
|
|
int intel_huc_init(struct intel_huc *huc)
|
|
{
|
|
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
|
|
int err;
|
|
|
|
err = intel_uc_fw_init(&huc->fw);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* HuC firmware image is outside GuC accessible range.
|
|
* Copy the RSA signature out of the image into
|
|
* a perma-pinned region set aside for it
|
|
*/
|
|
err = intel_huc_rsa_data_create(huc);
|
|
if (err)
|
|
goto out_fini;
|
|
|
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
|
|
|
|
return 0;
|
|
|
|
out_fini:
|
|
intel_uc_fw_fini(&huc->fw);
|
|
out:
|
|
i915_probe_error(i915, "failed with %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
void intel_huc_fini(struct intel_huc *huc)
|
|
{
|
|
if (!intel_uc_fw_is_loadable(&huc->fw))
|
|
return;
|
|
|
|
intel_huc_rsa_data_destroy(huc);
|
|
intel_uc_fw_fini(&huc->fw);
|
|
}
|
|
|
|
/**
|
|
* intel_huc_auth() - Authenticate HuC uCode
|
|
* @huc: intel_huc structure
|
|
*
|
|
* Called after HuC and GuC firmware loading during intel_uc_init_hw().
|
|
*
|
|
* This function invokes the GuC action to authenticate the HuC firmware,
|
|
* passing the offset of the RSA signature to intel_guc_auth_huc(). It then
|
|
* waits for up to 50ms for firmware verification ACK.
|
|
*/
|
|
int intel_huc_auth(struct intel_huc *huc)
|
|
{
|
|
struct intel_gt *gt = huc_to_gt(huc);
|
|
struct intel_guc *guc = >->uc.guc;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(intel_huc_is_authenticated(huc));
|
|
|
|
if (!intel_uc_fw_is_loaded(&huc->fw))
|
|
return -ENOEXEC;
|
|
|
|
ret = i915_inject_probe_error(gt->i915, -ENXIO);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = intel_guc_auth_huc(guc,
|
|
intel_guc_ggtt_offset(guc, huc->rsa_data));
|
|
if (ret) {
|
|
DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret);
|
|
goto fail;
|
|
}
|
|
|
|
/* Check authentication status, it should be done by now */
|
|
ret = __intel_wait_for_register(gt->uncore,
|
|
huc->status.reg,
|
|
huc->status.mask,
|
|
huc->status.value,
|
|
2, 50, NULL);
|
|
if (ret) {
|
|
DRM_ERROR("HuC: Firmware not verified %d\n", ret);
|
|
goto fail;
|
|
}
|
|
|
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
|
|
return 0;
|
|
|
|
fail:
|
|
i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret);
|
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_huc_check_status() - check HuC status
|
|
* @huc: intel_huc structure
|
|
*
|
|
* This function reads status register to verify if HuC
|
|
* firmware was successfully loaded.
|
|
*
|
|
* Returns:
|
|
* * -ENODEV if HuC is not present on this platform,
|
|
* * -EOPNOTSUPP if HuC firmware is disabled,
|
|
* * -ENOPKG if HuC firmware was not installed,
|
|
* * -ENOEXEC if HuC firmware is invalid or mismatched,
|
|
* * 0 if HuC firmware is not running,
|
|
* * 1 if HuC firmware is authenticated and running.
|
|
*/
|
|
int intel_huc_check_status(struct intel_huc *huc)
|
|
{
|
|
struct intel_gt *gt = huc_to_gt(huc);
|
|
intel_wakeref_t wakeref;
|
|
u32 status = 0;
|
|
|
|
switch (__intel_uc_fw_status(&huc->fw)) {
|
|
case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
|
|
return -ENODEV;
|
|
case INTEL_UC_FIRMWARE_DISABLED:
|
|
return -EOPNOTSUPP;
|
|
case INTEL_UC_FIRMWARE_MISSING:
|
|
return -ENOPKG;
|
|
case INTEL_UC_FIRMWARE_ERROR:
|
|
return -ENOEXEC;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
|
|
status = intel_uncore_read(gt->uncore, huc->status.reg);
|
|
|
|
return (status & huc->status.mask) == huc->status.value;
|
|
}
|
|
|
|
/**
|
|
* intel_huc_load_status - dump information about HuC load status
|
|
* @huc: the HuC
|
|
* @p: the &drm_printer
|
|
*
|
|
* Pretty printer for HuC load status.
|
|
*/
|
|
void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
|
|
{
|
|
struct intel_gt *gt = huc_to_gt(huc);
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_huc_is_supported(huc)) {
|
|
drm_printf(p, "HuC not supported\n");
|
|
return;
|
|
}
|
|
|
|
if (!intel_huc_is_wanted(huc)) {
|
|
drm_printf(p, "HuC disabled\n");
|
|
return;
|
|
}
|
|
|
|
intel_uc_fw_dump(&huc->fw, p);
|
|
|
|
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
|
|
drm_printf(p, "HuC status: 0x%08x\n",
|
|
intel_uncore_read(gt->uncore, huc->status.reg));
|
|
}
|