390 lines
8.9 KiB
C
390 lines
8.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright © 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/sort.h>
|
|
|
|
#include "i915_selftest.h"
|
|
#include "intel_gpu_commands.h"
|
|
#include "intel_gt_clock_utils.h"
|
|
#include "selftest_engine.h"
|
|
#include "selftest_engine_heartbeat.h"
|
|
#include "selftests/igt_atomic.h"
|
|
#include "selftests/igt_flush_test.h"
|
|
#include "selftests/igt_spinner.h"
|
|
|
|
#define COUNT 5
|
|
|
|
static int cmp_u64(const void *A, const void *B)
|
|
{
|
|
const u64 *a = A, *b = B;
|
|
|
|
return *a - *b;
|
|
}
|
|
|
|
static u64 trifilter(u64 *a)
|
|
{
|
|
sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
|
|
return (a[1] + 2 * a[2] + a[3]) >> 2;
|
|
}
|
|
|
|
static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
|
|
{
|
|
*cs++ = MI_SEMAPHORE_WAIT |
|
|
MI_SEMAPHORE_GLOBAL_GTT |
|
|
MI_SEMAPHORE_POLL |
|
|
op;
|
|
*cs++ = value;
|
|
*cs++ = offset;
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *emit_store(u32 *cs, u32 offset, u32 value)
|
|
{
|
|
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
|
|
*cs++ = offset;
|
|
*cs++ = 0;
|
|
*cs++ = value;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
|
|
{
|
|
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
|
|
*cs++ = i915_mmio_reg_offset(reg);
|
|
*cs++ = offset;
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static void write_semaphore(u32 *x, u32 value)
|
|
{
|
|
WRITE_ONCE(*x, value);
|
|
wmb();
|
|
}
|
|
|
|
static int __measure_timestamps(struct intel_context *ce,
|
|
u64 *dt, u64 *d_ring, u64 *d_ctx)
|
|
{
|
|
struct intel_engine_cs *engine = ce->engine;
|
|
u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
|
|
u32 offset = i915_ggtt_offset(engine->status_page.vma);
|
|
struct i915_request *rq;
|
|
u32 *cs;
|
|
|
|
rq = intel_context_create_request(ce);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
cs = intel_ring_begin(rq, 28);
|
|
if (IS_ERR(cs)) {
|
|
i915_request_add(rq);
|
|
return PTR_ERR(cs);
|
|
}
|
|
|
|
/* Signal & wait for start */
|
|
cs = emit_store(cs, offset + 4008, 1);
|
|
cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
|
|
|
|
cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
|
|
cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
|
|
|
|
/* Busy wait */
|
|
cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
|
|
|
|
cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
|
|
cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
|
|
|
|
intel_ring_advance(rq, cs);
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
intel_engine_flush_submission(engine);
|
|
|
|
/* Wait for the request to start executing, that then waits for us */
|
|
while (READ_ONCE(sema[2]) == 0)
|
|
cpu_relax();
|
|
|
|
/* Run the request for a 100us, sampling timestamps before/after */
|
|
local_irq_disable();
|
|
write_semaphore(&sema[2], 0);
|
|
while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
|
|
cpu_relax();
|
|
*dt = local_clock();
|
|
udelay(100);
|
|
*dt = local_clock() - *dt;
|
|
write_semaphore(&sema[2], 1);
|
|
local_irq_enable();
|
|
|
|
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
|
|
i915_request_put(rq);
|
|
return -ETIME;
|
|
}
|
|
i915_request_put(rq);
|
|
|
|
pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
|
|
engine->name, sema[1], sema[3], sema[0], sema[4]);
|
|
|
|
*d_ctx = sema[3] - sema[1];
|
|
*d_ring = sema[4] - sema[0];
|
|
return 0;
|
|
}
|
|
|
|
static int __live_engine_timestamps(struct intel_engine_cs *engine)
|
|
{
|
|
u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
|
|
struct intel_context *ce;
|
|
int i, err = 0;
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce))
|
|
return PTR_ERR(ce);
|
|
|
|
for (i = 0; i < COUNT; i++) {
|
|
err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
|
|
if (err)
|
|
break;
|
|
}
|
|
intel_context_put(ce);
|
|
if (err)
|
|
return err;
|
|
|
|
dt = trifilter(st);
|
|
d_ring = trifilter(s_ring);
|
|
d_ctx = trifilter(s_ctx);
|
|
|
|
pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
|
|
engine->name, dt,
|
|
intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
|
|
intel_gt_clock_interval_to_ns(engine->gt, d_ring));
|
|
|
|
d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
|
|
if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
|
|
pr_err("%s Mismatch between ring timestamp and walltime!\n",
|
|
engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
d_ring = trifilter(s_ring);
|
|
d_ctx = trifilter(s_ctx);
|
|
|
|
d_ctx *= engine->gt->clock_frequency;
|
|
if (GRAPHICS_VER(engine->i915) == 11)
|
|
d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
|
|
else
|
|
d_ring *= engine->gt->clock_frequency;
|
|
|
|
if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
|
|
pr_err("%s Mismatch between ring and context timestamps!\n",
|
|
engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int live_engine_timestamps(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
/*
|
|
* Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
|
|
* the same CS clock.
|
|
*/
|
|
|
|
if (GRAPHICS_VER(gt->i915) < 8)
|
|
return 0;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
int err;
|
|
|
|
st_engine_heartbeat_disable(engine);
|
|
err = __live_engine_timestamps(engine);
|
|
st_engine_heartbeat_enable(engine);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int live_engine_busy_stats(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct igt_spinner spin;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Check that if an engine supports busy-stats, they tell the truth.
|
|
*/
|
|
|
|
if (igt_spinner_init(&spin, gt))
|
|
return -ENOMEM;
|
|
|
|
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
ktime_t de, dt;
|
|
ktime_t t[2];
|
|
|
|
if (!intel_engine_supports_stats(engine))
|
|
continue;
|
|
|
|
if (!intel_engine_can_store_dword(engine))
|
|
continue;
|
|
|
|
if (intel_gt_pm_wait_for_idle(gt)) {
|
|
err = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
st_engine_heartbeat_disable(engine);
|
|
|
|
ENGINE_TRACE(engine, "measuring idle time\n");
|
|
preempt_disable();
|
|
de = intel_engine_get_busy_time(engine, &t[0]);
|
|
udelay(100);
|
|
de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
|
|
preempt_enable();
|
|
dt = ktime_sub(t[1], t[0]);
|
|
if (de < 0 || de > 10) {
|
|
pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
|
|
engine->name,
|
|
de, (int)div64_u64(100 * de, dt), dt);
|
|
GEM_TRACE_DUMP();
|
|
err = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
/* 100% busy */
|
|
rq = igt_spinner_create_request(&spin,
|
|
engine->kernel_context,
|
|
MI_NOOP);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto end;
|
|
}
|
|
i915_request_add(rq);
|
|
|
|
if (!igt_wait_for_spinner(&spin, rq)) {
|
|
intel_gt_set_wedged(engine->gt);
|
|
err = -ETIME;
|
|
goto end;
|
|
}
|
|
|
|
ENGINE_TRACE(engine, "measuring busy time\n");
|
|
preempt_disable();
|
|
de = intel_engine_get_busy_time(engine, &t[0]);
|
|
udelay(100);
|
|
de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
|
|
preempt_enable();
|
|
dt = ktime_sub(t[1], t[0]);
|
|
if (100 * de < 95 * dt || 95 * de > 100 * dt) {
|
|
pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
|
|
engine->name,
|
|
de, (int)div64_u64(100 * de, dt), dt);
|
|
GEM_TRACE_DUMP();
|
|
err = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
end:
|
|
st_engine_heartbeat_enable(engine);
|
|
igt_spinner_end(&spin);
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
igt_spinner_fini(&spin);
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
static int live_engine_pm(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
/*
|
|
* Check we can call intel_engine_pm_put from any context. No
|
|
* failures are reported directly, but if we mess up lockdep should
|
|
* tell us.
|
|
*/
|
|
if (intel_gt_pm_wait_for_idle(gt)) {
|
|
pr_err("Unable to flush GT pm before test\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
|
|
for_each_engine(engine, gt, id) {
|
|
const typeof(*igt_atomic_phases) *p;
|
|
|
|
for (p = igt_atomic_phases; p->name; p++) {
|
|
/*
|
|
* Acquisition is always synchronous, except if we
|
|
* know that the engine is already awake, in which
|
|
* case we should use intel_engine_pm_get_if_awake()
|
|
* to atomically grab the wakeref.
|
|
*
|
|
* In practice,
|
|
* intel_engine_pm_get();
|
|
* intel_engine_pm_put();
|
|
* occurs in one thread, while simultaneously
|
|
* intel_engine_pm_get_if_awake();
|
|
* intel_engine_pm_put();
|
|
* occurs from atomic context in another.
|
|
*/
|
|
GEM_BUG_ON(intel_engine_pm_is_awake(engine));
|
|
intel_engine_pm_get(engine);
|
|
|
|
p->critical_section_begin();
|
|
if (!intel_engine_pm_get_if_awake(engine))
|
|
pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
|
|
engine->name, p->name);
|
|
else
|
|
intel_engine_pm_put_async(engine);
|
|
intel_engine_pm_put_async(engine);
|
|
p->critical_section_end();
|
|
|
|
intel_engine_pm_flush(engine);
|
|
|
|
if (intel_engine_pm_is_awake(engine)) {
|
|
pr_err("%s is still awake after flushing pm\n",
|
|
engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* gt wakeref is async (deferred to workqueue) */
|
|
if (intel_gt_pm_wait_for_idle(gt)) {
|
|
pr_err("GT failed to idle\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int live_engine_pm_selftests(struct intel_gt *gt)
|
|
{
|
|
static const struct i915_subtest tests[] = {
|
|
SUBTEST(live_engine_timestamps),
|
|
SUBTEST(live_engine_busy_stats),
|
|
SUBTEST(live_engine_pm),
|
|
};
|
|
|
|
return intel_gt_live_subtests(tests, gt);
|
|
}
|