kernel/drivers/gpu/drm/i915/gt/intel_gtt.c
2024-07-22 17:22:30 +08:00

584 lines
16 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/slab.h> /* fault-inject.h is not standalone! */
#include <linux/fault-inject.h>
#include "gem/i915_gem_lmem.h"
#include "i915_trace.h"
#include "intel_gt.h"
#include "intel_gtt.h"
struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
{
struct drm_i915_gem_object *obj;
/*
* To avoid severe over-allocation when dealing with min_page_size
* restrictions, we override that behaviour here by allowing an object
* size and page layout which can be smaller. In practice this should be
* totally fine, since GTT paging structures are not typically inserted
* into the GTT.
*
* Note that we also hit this path for the scratch page, and for this
* case it might need to be 64K, but that should work fine here since we
* used the passed in size for the page size, which should ensure it
* also has the same alignment.
*/
obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 0);
/*
* Ensure all paging structures for this vm share the same dma-resv
* object underneath, with the idea that one object_lock() will lock
* them all at once.
*/
if (!IS_ERR(obj)) {
obj->base.resv = i915_vm_resv_get(vm);
obj->shares_resv_from = vm;
}
return obj;
}
struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
{
struct drm_i915_gem_object *obj;
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
i915_gem_shrink_all(vm->i915);
obj = i915_gem_object_create_internal(vm->i915, sz);
/*
* Ensure all paging structures for this vm share the same dma-resv
* object underneath, with the idea that one object_lock() will lock
* them all at once.
*/
if (!IS_ERR(obj)) {
obj->base.resv = i915_vm_resv_get(vm);
obj->shares_resv_from = vm;
}
return obj;
}
int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
{
enum i915_map_type type;
void *vaddr;
type = i915_coherent_map_type(vm->i915, obj, true);
vaddr = i915_gem_object_pin_map_unlocked(obj, type);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
i915_gem_object_make_unshrinkable(obj);
return 0;
}
int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
{
enum i915_map_type type;
void *vaddr;
type = i915_coherent_map_type(vm->i915, obj, true);
vaddr = i915_gem_object_pin_map(obj, type);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
i915_gem_object_make_unshrinkable(obj);
return 0;
}
void __i915_vm_close(struct i915_address_space *vm)
{
struct i915_vma *vma, *vn;
if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
return;
list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
/* Keep the obj (and hence the vma) alive as _we_ destroy it */
if (!kref_get_unless_zero(&obj->base.refcount))
continue;
atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
WARN_ON(__i915_vma_unbind(vma));
__i915_vma_put(vma);
i915_gem_object_put(obj);
}
GEM_BUG_ON(!list_empty(&vm->bound_list));
mutex_unlock(&vm->mutex);
}
/* lock the vm into the current ww, if we lock one, we lock all */
int i915_vm_lock_objects(struct i915_address_space *vm,
struct i915_gem_ww_ctx *ww)
{
if (vm->scratch[0]->base.resv == &vm->_resv) {
return i915_gem_object_lock(vm->scratch[0], ww);
} else {
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
/* We borrowed the scratch page from ggtt, take the top level object */
return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
}
}
void i915_address_space_fini(struct i915_address_space *vm)
{
drm_mm_takedown(&vm->mm);
mutex_destroy(&vm->mutex);
}
/**
* i915_vm_resv_release - Final struct i915_address_space destructor
* @kref: Pointer to the &i915_address_space.resv_ref member.
*
* This function is called when the last lock sharer no longer shares the
* &i915_address_space._resv lock.
*/
void i915_vm_resv_release(struct kref *kref)
{
struct i915_address_space *vm =
container_of(kref, typeof(*vm), resv_ref);
dma_resv_fini(&vm->_resv);
kfree(vm);
}
static void __i915_vm_release(struct work_struct *work)
{
struct i915_address_space *vm =
container_of(work, struct i915_address_space, rcu.work);
vm->cleanup(vm);
i915_address_space_fini(vm);
i915_vm_resv_put(vm);
}
void i915_vm_release(struct kref *kref)
{
struct i915_address_space *vm =
container_of(kref, struct i915_address_space, ref);
GEM_BUG_ON(i915_is_ggtt(vm));
trace_i915_ppgtt_release(vm);
queue_rcu_work(vm->i915->wq, &vm->rcu);
}
void i915_address_space_init(struct i915_address_space *vm, int subclass)
{
kref_init(&vm->ref);
/*
* Special case for GGTT that has already done an early
* kref_init here.
*/
if (!kref_read(&vm->resv_ref))
kref_init(&vm->resv_ref);
INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
atomic_set(&vm->open, 1);
/*
* The vm->mutex must be reclaim safe (for use in the shrinker).
* Do a dummy acquire now under fs_reclaim so that any allocation
* attempt holding the lock is immediately reported by lockdep.
*/
mutex_init(&vm->mutex);
lockdep_set_subclass(&vm->mutex, subclass);
if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
} else {
/*
* CHV + BXT VTD workaround use stop_machine(),
* which is allowed to allocate memory. This means &vm->mutex
* is the outer lock, and in theory we can allocate memory inside
* it through stop_machine().
*
* Add the annotation for this, we use trylock in shrinker.
*/
mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
might_alloc(GFP_KERNEL);
mutex_release(&vm->mutex.dep_map, _THIS_IP_);
}
dma_resv_init(&vm->_resv);
GEM_BUG_ON(!vm->total);
drm_mm_init(&vm->mm, 0, vm->total);
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
INIT_LIST_HEAD(&vm->bound_list);
}
void clear_pages(struct i915_vma *vma)
{
GEM_BUG_ON(!vma->pages);
if (vma->pages != vma->obj->mm.pages) {
sg_free_table(vma->pages);
kfree(vma->pages);
}
vma->pages = NULL;
memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
}
void *__px_vaddr(struct drm_i915_gem_object *p)
{
enum i915_map_type type;
GEM_BUG_ON(!i915_gem_object_has_pages(p));
return page_unpack_bits(p->mm.mapping, &type);
}
dma_addr_t __px_dma(struct drm_i915_gem_object *p)
{
GEM_BUG_ON(!i915_gem_object_has_pages(p));
return sg_dma_address(p->mm.pages->sgl);
}
struct page *__px_page(struct drm_i915_gem_object *p)
{
GEM_BUG_ON(!i915_gem_object_has_pages(p));
return sg_page(p->mm.pages->sgl);
}
void
fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
{
void *vaddr = __px_vaddr(p);
memset64(vaddr, val, count);
clflush_cache_range(vaddr, PAGE_SIZE);
}
static void poison_scratch_page(struct drm_i915_gem_object *scratch)
{
void *vaddr = __px_vaddr(scratch);
u8 val;
val = 0;
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
val = POISON_FREE;
memset(vaddr, val, scratch->base.size);
}
int setup_scratch_page(struct i915_address_space *vm)
{
unsigned long size;
/*
* In order to utilize 64K pages for an object with a size < 2M, we will
* need to support a 64K scratch page, given that every 16th entry for a
* page-table operating in 64K mode must point to a properly aligned 64K
* region, including any PTEs which happen to point to scratch.
*
* This is only relevant for the 48b PPGTT where we support
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
* scratch (read-only) between all vm, we create one 64k scratch page
* for all.
*/
size = I915_GTT_PAGE_SIZE_4K;
if (i915_vm_is_4lvl(vm) &&
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
size = I915_GTT_PAGE_SIZE_64K;
do {
struct drm_i915_gem_object *obj;
obj = vm->alloc_pt_dma(vm, size);
if (IS_ERR(obj))
goto skip;
if (map_pt_dma(vm, obj))
goto skip_obj;
/* We need a single contiguous page for our scratch */
if (obj->mm.page_sizes.sg < size)
goto skip_obj;
/* And it needs to be correspondingly aligned */
if (__px_dma(obj) & (size - 1))
goto skip_obj;
/*
* Use a non-zero scratch page for debugging.
*
* We want a value that should be reasonably obvious
* to spot in the error state, while also causing a GPU hang
* if executed. We prefer using a clear page in production, so
* should it ever be accidentally used, the effect should be
* fairly benign.
*/
poison_scratch_page(obj);
vm->scratch[0] = obj;
vm->scratch_order = get_order(size);
return 0;
skip_obj:
i915_gem_object_put(obj);
skip:
if (size == I915_GTT_PAGE_SIZE_4K)
return -ENOMEM;
size = I915_GTT_PAGE_SIZE_4K;
} while (1);
}
void free_scratch(struct i915_address_space *vm)
{
int i;
if (!vm->scratch[0])
return;
for (i = 0; i <= vm->top; i++)
i915_gem_object_put(vm->scratch[i]);
}
void gtt_write_workarounds(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
/*
* This function is for gtt related workarounds. This function is
* called on driver load and after a GPU reset, so you can place
* workarounds here even if they get overwritten by GPU reset.
*/
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
if (IS_BROADWELL(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
else if (IS_CHERRYVIEW(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
else if (IS_GEN9_LP(i915))
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
intel_uncore_write(uncore,
GEN8_L3_LRA_1_GPGPU,
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
/*
* To support 64K PTEs we need to first enable the use of the
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
* shouldn't be needed after GEN10.
*
* 64K pages were first introduced from BDW+, although technically they
* only *work* from gen9+. For pre-BDW we instead have the option for
* 32K pages, but we don't currently have any support for it in our
* driver.
*/
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
GRAPHICS_VER(i915) <= 10)
intel_uncore_rmw(uncore,
GEN8_GAMW_ECO_DEV_RW_IA,
0,
GAMW_ECO_ENABLE_64K_IPS_FIELD);
if (IS_GRAPHICS_VER(i915, 8, 11)) {
bool can_use_gtt_cache = true;
/*
* According to the BSpec if we use 2M/1G pages then we also
* need to disable the GTT cache. At least on BDW we can see
* visual corruption when using 2M pages, and not disabling the
* GTT cache.
*/
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
can_use_gtt_cache = false;
/* WaGttCachingOffByDefault */
intel_uncore_write(uncore,
HSW_GTT_CACHE_EN,
can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
intel_uncore_read(uncore,
HSW_GTT_CACHE_EN) == 0);
}
}
static void tgl_setup_private_ppat(struct intel_uncore *uncore)
{
/* TGL doesn't support LLC or AGE settings */
intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
}
static void icl_setup_private_ppat(struct intel_uncore *uncore)
{
intel_uncore_write(uncore,
GEN10_PAT_INDEX(0),
GEN8_PPAT_WB | GEN8_PPAT_LLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(1),
GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(2),
GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(3),
GEN8_PPAT_UC);
intel_uncore_write(uncore,
GEN10_PAT_INDEX(4),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(5),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(6),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
intel_uncore_write(uncore,
GEN10_PAT_INDEX(7),
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
}
/*
* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases.
*/
static void bdw_setup_private_ppat(struct intel_uncore *uncore)
{
struct drm_i915_private *i915 = uncore->i915;
u64 pat;
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
/* for scanout with eLLC */
if (GRAPHICS_VER(i915) >= 9)
pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
else
pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
static void chv_setup_private_ppat(struct intel_uncore *uncore)
{
u64 pat;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
GEN8_PPAT(1, 0) |
GEN8_PPAT(2, 0) |
GEN8_PPAT(3, 0) |
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
GEN8_PPAT(7, CHV_PPAT_SNOOP);
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
void setup_private_pat(struct intel_uncore *uncore)
{
struct drm_i915_private *i915 = uncore->i915;
GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
if (GRAPHICS_VER(i915) >= 12)
tgl_setup_private_ppat(uncore);
else if (GRAPHICS_VER(i915) >= 11)
icl_setup_private_ppat(uncore);
else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
chv_setup_private_ppat(uncore);
else
bdw_setup_private_ppat(uncore);
}
struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
if (IS_ERR(obj))
return ERR_CAST(obj);
i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
return vma;
}
struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
{
struct i915_vma *vma;
int err;
vma = __vm_create_scratch_for_read(vm, size);
if (IS_ERR(vma))
return vma;
err = i915_vma_pin(vma, 0, 0,
i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
if (err) {
i915_vma_put(vma);
return ERR_PTR(err);
}
return vma;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
#endif