kernel/drivers/gpu/drm/i915/display/intel_bw.c
2024-07-22 17:22:30 +08:00

882 lines
23 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <drm/drm_atomic_state_helper.h>
#include "intel_atomic.h"
#include "intel_bw.h"
#include "intel_cdclk.h"
#include "intel_display_types.h"
#include "intel_pm.h"
#include "intel_sideband.h"
/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};
struct intel_psf_gv_point {
u8 clk; /* clock in multiples of 16.6666 MHz */
};
struct intel_qgv_info {
struct intel_qgv_point points[I915_NUM_QGV_POINTS];
struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
u8 num_points;
u8 num_psf_points;
u8 t_bl;
};
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
u32 dclk_ratio, dclk_reference;
u32 val;
val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
if (val & DG1_QCLK_REFERENCE)
dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
else
dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
sp->dclk = dclk_ratio * dclk_reference;
val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
if (val & DG1_GEAR_TYPE)
sp->dclk *= 2;
if (sp->dclk == 0)
return -EINVAL;
val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
u32 val = 0, val2 = 0;
int ret;
ret = sandybridge_pcode_read(dev_priv,
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
&val, &val2);
if (ret)
return ret;
sp->dclk = val & 0xffff;
sp->t_rp = (val & 0xff0000) >> 16;
sp->t_rcd = (val & 0xff000000) >> 24;
sp->t_rdpre = val2 & 0xff;
sp->t_ras = (val2 & 0xff00) >> 8;
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
struct intel_psf_gv_point *points)
{
u32 val = 0;
int ret;
int i;
ret = sandybridge_pcode_read(dev_priv,
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ADL_PCODE_MEM_SS_READ_PSF_GV_INFO,
&val, NULL);
if (ret)
return ret;
for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
points[i].clk = val & 0xff;
val >>= 8;
}
return 0;
}
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
u32 points_mask)
{
int ret;
/* bspec says to keep retrying for at least 1 ms */
ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
points_mask,
ICL_PCODE_POINTS_RESTRICTED_MASK,
ICL_PCODE_POINTS_RESTRICTED,
1);
if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
return ret;
}
return 0;
}
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
struct intel_qgv_info *qi)
{
const struct dram_info *dram_info = &dev_priv->dram_info;
int i, ret;
qi->num_points = dram_info->num_qgv_points;
qi->num_psf_points = dram_info->num_psf_gv_points;
if (DISPLAY_VER(dev_priv) == 12)
switch (dram_info->type) {
case INTEL_DRAM_DDR4:
qi->t_bl = 4;
break;
case INTEL_DRAM_DDR5:
qi->t_bl = 8;
break;
default:
qi->t_bl = 16;
break;
}
else if (DISPLAY_VER(dev_priv) == 11)
qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
if (drm_WARN_ON(&dev_priv->drm,
qi->num_points > ARRAY_SIZE(qi->points)))
qi->num_points = ARRAY_SIZE(qi->points);
for (i = 0; i < qi->num_points; i++) {
struct intel_qgv_point *sp = &qi->points[i];
if (IS_DG1(dev_priv))
ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
else
ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
if (ret)
return ret;
drm_dbg_kms(&dev_priv->drm,
"QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
sp->t_rcd, sp->t_rc);
}
if (qi->num_psf_points > 0) {
ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
if (ret) {
drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
qi->num_psf_points = 0;
}
for (i = 0; i < qi->num_psf_points; i++)
drm_dbg_kms(&dev_priv->drm,
"PSF GV %d: CLK=%d \n",
i, qi->psf_points[i].clk);
}
return 0;
}
static int icl_calc_bw(int dclk, int num, int den)
{
/* multiples of 16.666MHz (100/6) */
return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
}
static int adl_calc_psf_bw(int clk)
{
/*
* clk is multiples of 16.666MHz (100/6)
* According to BSpec PSF GV bandwidth is
* calculated as BW = 64 * clk * 16.666Mhz
*/
return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
}
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
u16 dclk = 0;
int i;
for (i = 0; i < qi->num_points; i++)
dclk = max(dclk, qi->points[i].dclk);
return dclk;
}
struct intel_sa_info {
u16 displayrtids;
u8 deburst, deprogbwlimit, derating;
};
static const struct intel_sa_info icl_sa_info = {
.deburst = 8,
.deprogbwlimit = 25, /* GB/s */
.displayrtids = 128,
.derating = 10,
};
static const struct intel_sa_info tgl_sa_info = {
.deburst = 16,
.deprogbwlimit = 34, /* GB/s */
.displayrtids = 256,
.derating = 10,
};
static const struct intel_sa_info rkl_sa_info = {
.deburst = 16,
.deprogbwlimit = 20, /* GB/s */
.displayrtids = 128,
.derating = 10,
};
static const struct intel_sa_info adls_sa_info = {
.deburst = 16,
.deprogbwlimit = 38, /* GB/s */
.displayrtids = 256,
.derating = 10,
};
static const struct intel_sa_info adlp_sa_info = {
.deburst = 16,
.deprogbwlimit = 38, /* GB/s */
.displayrtids = 256,
.derating = 20,
};
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
struct intel_qgv_info qi = {};
bool is_y_tile = true; /* assume y tile may be used */
int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
int deinterleave;
int ipqdepth, ipqdepthpch;
int dclk_max;
int maxdebw;
int i, ret;
ret = icl_get_qgv_points(dev_priv, &qi);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"Failed to get memory subsystem information, ignoring bandwidth limits");
return ret;
}
deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
dclk_max = icl_sagv_max_dclk(&qi);
ipqdepthpch = 16;
maxdebw = min(sa->deprogbwlimit * 1000,
icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
struct intel_bw_info *bi = &dev_priv->max_bw[i];
int clpchgroup;
int j;
clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
bi->num_qgv_points = qi.num_points;
bi->num_psf_gv_points = qi.num_psf_points;
for (j = 0; j < qi.num_points; j++) {
const struct intel_qgv_point *sp = &qi.points[j];
int ct, bw;
/*
* Max row cycle time
*
* FIXME what is the logic behind the
* assumed burst length?
*/
ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
(clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
bi->deratedbw[j] = min(maxdebw,
bw * (100 - sa->derating) / 100);
drm_dbg_kms(&dev_priv->drm,
"BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
i, j, bi->num_planes, bi->deratedbw[j]);
}
for (j = 0; j < qi.num_psf_points; j++) {
const struct intel_psf_gv_point *sp = &qi.psf_points[j];
bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
drm_dbg_kms(&dev_priv->drm,
"BW%d / PSF GV %d: num_planes=%d bw=%u\n",
i, j, bi->num_planes, bi->psf_bw[j]);
}
if (bi->num_planes == 1)
break;
}
/*
* In case if SAGV is disabled in BIOS, we always get 1
* SAGV point, but we can't send PCode commands to restrict it
* as it will fail and pointless anyway.
*/
if (qi.num_points == 1)
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
else
dev_priv->sagv_status = I915_SAGV_ENABLED;
return 0;
}
static void dg2_get_bw_info(struct drm_i915_private *i915)
{
struct intel_bw_info *bi = &i915->max_bw[0];
/*
* DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
* that doesn't depend on the number of planes enabled. Create a
* single dummy QGV point to reflect that. DG2-G10 platforms have a
* constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s.
*/
bi->num_planes = 1;
bi->num_qgv_points = 1;
if (IS_DG2_G11(i915))
bi->deratedbw[0] = 38000;
else
bi->deratedbw[0] = 50000;
i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
}
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
int num_planes, int qgv_point)
{
int i;
/*
* Let's return max bw for 0 planes
*/
num_planes = max(1, num_planes);
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
const struct intel_bw_info *bi =
&dev_priv->max_bw[i];
/*
* Pcode will not expose all QGV points when
* SAGV is forced to off/min/med/max.
*/
if (qgv_point >= bi->num_qgv_points)
return UINT_MAX;
if (num_planes >= bi->num_planes)
return bi->deratedbw[qgv_point];
}
return 0;
}
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
int psf_gv_point)
{
const struct intel_bw_info *bi =
&dev_priv->max_bw[0];
return bi->psf_bw[psf_gv_point];
}
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
if (!HAS_DISPLAY(dev_priv))
return;
if (IS_DG2(dev_priv))
dg2_get_bw_info(dev_priv);
else if (IS_ALDERLAKE_P(dev_priv))
icl_get_bw_info(dev_priv, &adlp_sa_info);
else if (IS_ALDERLAKE_S(dev_priv))
icl_get_bw_info(dev_priv, &adls_sa_info);
else if (IS_ROCKETLAKE(dev_priv))
icl_get_bw_info(dev_priv, &rkl_sa_info);
else if (DISPLAY_VER(dev_priv) == 12)
icl_get_bw_info(dev_priv, &tgl_sa_info);
else if (DISPLAY_VER(dev_priv) == 11)
icl_get_bw_info(dev_priv, &icl_sa_info);
}
static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}
static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
unsigned int data_rate = 0;
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id) {
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
if (plane_id == PLANE_CURSOR)
continue;
data_rate += crtc_state->data_rate[plane_id];
}
return data_rate;
}
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
bw_state->data_rate[crtc->pipe] =
intel_bw_crtc_data_rate(crtc_state);
bw_state->num_active_planes[crtc->pipe] =
intel_bw_crtc_num_active_planes(crtc_state);
drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
bw_state->data_rate[crtc->pipe],
bw_state->num_active_planes[crtc->pipe]);
}
static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int num_active_planes = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
num_active_planes += bw_state->num_active_planes[pipe];
return num_active_planes;
}
static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int data_rate = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
data_rate += bw_state->data_rate[pipe];
if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active())
data_rate = data_rate * 105 / 100;
return data_rate;
}
struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *bw_state;
bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);
return to_intel_bw_state(bw_state);
}
struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *bw_state;
bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);
return to_intel_bw_state(bw_state);
}
struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *bw_state;
bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
if (IS_ERR(bw_state))
return ERR_CAST(bw_state);
return to_intel_bw_state(bw_state);
}
int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_bw_state *new_bw_state = NULL;
struct intel_bw_state *old_bw_state = NULL;
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int max_bw = 0;
enum pipe pipe;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
enum plane_id plane_id;
struct intel_dbuf_bw *crtc_bw;
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
old_bw_state = intel_atomic_get_old_bw_state(state);
crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe];
memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));
if (!crtc_state->hw.active)
continue;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_ddb_entry *plane_alloc =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
const struct skl_ddb_entry *uv_plane_alloc =
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
unsigned int data_rate = crtc_state->data_rate[plane_id];
unsigned int dbuf_mask = 0;
enum dbuf_slice slice;
dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc);
dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc);
/*
* FIXME: To calculate that more properly we probably
* need to to split per plane data_rate into data_rate_y
* and data_rate_uv for multiplanar formats in order not
* to get accounted those twice if they happen to reside
* on different slices.
* However for pre-icl this would work anyway because
* we have only single slice and for icl+ uv plane has
* non-zero data rate.
* So in worst case those calculation are a bit
* pessimistic, which shouldn't pose any significant
* problem anyway.
*/
for_each_dbuf_slice_in_mask(dev_priv, slice, dbuf_mask)
crtc_bw->used_bw[slice] += data_rate;
}
}
if (!old_bw_state)
return 0;
for_each_pipe(dev_priv, pipe) {
struct intel_dbuf_bw *crtc_bw;
enum dbuf_slice slice;
crtc_bw = &new_bw_state->dbuf_bw[pipe];
for_each_dbuf_slice(dev_priv, slice) {
/*
* Current experimental observations show that contrary
* to BSpec we get underruns once we exceed 64 * CDCLK
* for slices in total.
* As a temporary measure in order not to keep CDCLK
* bumped up all the time we calculate CDCLK according
* to this formula for overall bw consumed by slices.
*/
max_bw += crtc_bw->used_bw[slice];
}
}
new_bw_state->min_cdclk = max_bw / 64;
if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
int ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
return 0;
}
int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_bw_state *new_bw_state = NULL;
struct intel_bw_state *old_bw_state = NULL;
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int min_cdclk = 0;
enum pipe pipe;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
old_bw_state = intel_atomic_get_old_bw_state(state);
}
if (!old_bw_state)
return 0;
for_each_pipe(dev_priv, pipe) {
struct intel_cdclk_state *cdclk_state;
cdclk_state = intel_atomic_get_new_cdclk_state(state);
if (!cdclk_state)
return 0;
min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
}
new_bw_state->min_cdclk = min_cdclk;
if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
int ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
return 0;
}
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_bw_state *new_bw_state = NULL;
const struct intel_bw_state *old_bw_state = NULL;
unsigned int data_rate;
unsigned int num_active_planes;
struct intel_crtc *crtc;
int i, ret;
u32 allowed_points = 0;
unsigned int max_bw_point = 0, max_bw = 0;
unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
bool changed = false;
u32 mask = 0;
/* FIXME earlier gens need some checks too */
if (DISPLAY_VER(dev_priv) < 11)
return 0;
/*
* We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
* it with failure if we try masking any unadvertised points.
* So need to operate only with those returned from PCode.
*/
if (num_qgv_points > 0)
mask |= REG_GENMASK(num_qgv_points - 1, 0);
if (num_psf_gv_points > 0)
mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
unsigned int old_data_rate =
intel_bw_crtc_data_rate(old_crtc_state);
unsigned int new_data_rate =
intel_bw_crtc_data_rate(new_crtc_state);
unsigned int old_active_planes =
intel_bw_crtc_num_active_planes(old_crtc_state);
unsigned int new_active_planes =
intel_bw_crtc_num_active_planes(new_crtc_state);
/*
* Avoid locking the bw state when
* nothing significant has changed.
*/
if (old_data_rate == new_data_rate &&
old_active_planes == new_active_planes)
continue;
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
new_bw_state->data_rate[crtc->pipe] = new_data_rate;
new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
changed = true;
drm_dbg_kms(&dev_priv->drm,
"pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
new_bw_state->data_rate[crtc->pipe],
new_bw_state->num_active_planes[crtc->pipe]);
}
old_bw_state = intel_atomic_get_old_bw_state(state);
new_bw_state = intel_atomic_get_new_bw_state(state);
if (new_bw_state &&
intel_can_enable_sagv(dev_priv, old_bw_state) !=
intel_can_enable_sagv(dev_priv, new_bw_state))
changed = true;
/*
* If none of our inputs (data rates, number of active
* planes, SAGV yes/no) changed then nothing to do here.
*/
if (!changed)
return 0;
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
data_rate = DIV_ROUND_UP(data_rate, 1000);
num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
for (i = 0; i < num_qgv_points; i++) {
unsigned int max_data_rate;
max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
/*
* We need to know which qgv point gives us
* maximum bandwidth in order to disable SAGV
* if we find that we exceed SAGV block time
* with watermarks. By that moment we already
* have those, as it is calculated earlier in
* intel_atomic_check,
*/
if (max_data_rate > max_bw) {
max_bw_point = i;
max_bw = max_data_rate;
}
if (max_data_rate >= data_rate)
allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i));
drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
i, max_data_rate, data_rate);
}
for (i = 0; i < num_psf_gv_points; i++) {
unsigned int max_data_rate = adl_psf_bw(dev_priv, i);
if (max_data_rate >= data_rate)
allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i));
drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
" required %d\n",
i, max_data_rate, data_rate);
}
/*
* BSpec states that we always should have at least one allowed point
* left, so if we couldn't - simply reject the configuration for obvious
* reasons.
*/
if ((allowed_points & ADLS_QGV_PT_MASK) == 0) {
drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
" bandwidth %d for display configuration(%d active planes).\n",
data_rate, num_active_planes);
return -EINVAL;
}
if (num_psf_gv_points > 0) {
if ((allowed_points & ADLS_PSF_PT_MASK) == 0) {
drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
" bandwidth %d for display configuration(%d active planes).\n",
data_rate, num_active_planes);
return -EINVAL;
}
}
/*
* Leave only single point with highest bandwidth, if
* we can't enable SAGV due to the increased memory latency it may
* cause.
*/
if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
allowed_points &= ADLS_PSF_PT_MASK;
allowed_points |= BIT(max_bw_point);
drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
max_bw_point);
}
/*
* We store the ones which need to be masked as that is what PCode
* actually accepts as a parameter.
*/
new_bw_state->qgv_points_mask = ~allowed_points & mask;
/*
* If the actual mask had changed we need to make sure that
* the commits are serialized(in case this is a nomodeset, nonblocking)
*/
if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
ret = intel_atomic_serialize_global_state(&new_bw_state->base);
if (ret)
return ret;
}
return 0;
}
static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj *obj)
{
struct intel_bw_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
return &state->base;
}
static void intel_bw_destroy_state(struct intel_global_obj *obj,
struct intel_global_state *state)
{
kfree(state);
}
static const struct intel_global_state_funcs intel_bw_funcs = {
.atomic_duplicate_state = intel_bw_duplicate_state,
.atomic_destroy_state = intel_bw_destroy_state,
};
int intel_bw_init(struct drm_i915_private *dev_priv)
{
struct intel_bw_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
&state->base, &intel_bw_funcs);
return 0;
}