1466 lines
38 KiB
C
1466 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* tools/testing/selftests/kvm/lib/x86_64/processor.c
|
|
*
|
|
* Copyright (C) 2018, Google LLC.
|
|
*/
|
|
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "../kvm_util_internal.h"
|
|
#include "processor.h"
|
|
|
|
#ifndef NUM_INTERRUPTS
|
|
#define NUM_INTERRUPTS 256
|
|
#endif
|
|
|
|
#define DEFAULT_CODE_SELECTOR 0x8
|
|
#define DEFAULT_DATA_SELECTOR 0x10
|
|
|
|
vm_vaddr_t exception_handlers;
|
|
|
|
void regs_dump(FILE *stream, struct kvm_regs *regs,
|
|
uint8_t indent)
|
|
{
|
|
fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
|
|
"rcx: 0x%.16llx rdx: 0x%.16llx\n",
|
|
indent, "",
|
|
regs->rax, regs->rbx, regs->rcx, regs->rdx);
|
|
fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
|
|
"rsp: 0x%.16llx rbp: 0x%.16llx\n",
|
|
indent, "",
|
|
regs->rsi, regs->rdi, regs->rsp, regs->rbp);
|
|
fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
|
|
"r10: 0x%.16llx r11: 0x%.16llx\n",
|
|
indent, "",
|
|
regs->r8, regs->r9, regs->r10, regs->r11);
|
|
fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
|
|
"r14: 0x%.16llx r15: 0x%.16llx\n",
|
|
indent, "",
|
|
regs->r12, regs->r13, regs->r14, regs->r15);
|
|
fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
|
|
indent, "",
|
|
regs->rip, regs->rflags);
|
|
}
|
|
|
|
/*
|
|
* Segment Dump
|
|
*
|
|
* Input Args:
|
|
* stream - Output FILE stream
|
|
* segment - KVM segment
|
|
* indent - Left margin indent amount
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Dumps the state of the KVM segment given by @segment, to the FILE stream
|
|
* given by @stream.
|
|
*/
|
|
static void segment_dump(FILE *stream, struct kvm_segment *segment,
|
|
uint8_t indent)
|
|
{
|
|
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
|
|
"selector: 0x%.4x type: 0x%.2x\n",
|
|
indent, "", segment->base, segment->limit,
|
|
segment->selector, segment->type);
|
|
fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
|
|
"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
|
|
indent, "", segment->present, segment->dpl,
|
|
segment->db, segment->s, segment->l);
|
|
fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
|
|
"unusable: 0x%.2x padding: 0x%.2x\n",
|
|
indent, "", segment->g, segment->avl,
|
|
segment->unusable, segment->padding);
|
|
}
|
|
|
|
/*
|
|
* dtable Dump
|
|
*
|
|
* Input Args:
|
|
* stream - Output FILE stream
|
|
* dtable - KVM dtable
|
|
* indent - Left margin indent amount
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Dumps the state of the KVM dtable given by @dtable, to the FILE stream
|
|
* given by @stream.
|
|
*/
|
|
static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
|
|
uint8_t indent)
|
|
{
|
|
fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
|
|
"padding: 0x%.4x 0x%.4x 0x%.4x\n",
|
|
indent, "", dtable->base, dtable->limit,
|
|
dtable->padding[0], dtable->padding[1], dtable->padding[2]);
|
|
}
|
|
|
|
void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
|
|
uint8_t indent)
|
|
{
|
|
unsigned int i;
|
|
|
|
fprintf(stream, "%*scs:\n", indent, "");
|
|
segment_dump(stream, &sregs->cs, indent + 2);
|
|
fprintf(stream, "%*sds:\n", indent, "");
|
|
segment_dump(stream, &sregs->ds, indent + 2);
|
|
fprintf(stream, "%*ses:\n", indent, "");
|
|
segment_dump(stream, &sregs->es, indent + 2);
|
|
fprintf(stream, "%*sfs:\n", indent, "");
|
|
segment_dump(stream, &sregs->fs, indent + 2);
|
|
fprintf(stream, "%*sgs:\n", indent, "");
|
|
segment_dump(stream, &sregs->gs, indent + 2);
|
|
fprintf(stream, "%*sss:\n", indent, "");
|
|
segment_dump(stream, &sregs->ss, indent + 2);
|
|
fprintf(stream, "%*str:\n", indent, "");
|
|
segment_dump(stream, &sregs->tr, indent + 2);
|
|
fprintf(stream, "%*sldt:\n", indent, "");
|
|
segment_dump(stream, &sregs->ldt, indent + 2);
|
|
|
|
fprintf(stream, "%*sgdt:\n", indent, "");
|
|
dtable_dump(stream, &sregs->gdt, indent + 2);
|
|
fprintf(stream, "%*sidt:\n", indent, "");
|
|
dtable_dump(stream, &sregs->idt, indent + 2);
|
|
|
|
fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
|
|
"cr3: 0x%.16llx cr4: 0x%.16llx\n",
|
|
indent, "",
|
|
sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
|
|
fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
|
|
"apic_base: 0x%.16llx\n",
|
|
indent, "",
|
|
sregs->cr8, sregs->efer, sregs->apic_base);
|
|
|
|
fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
|
|
for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
|
|
fprintf(stream, "%*s%.16llx\n", indent + 2, "",
|
|
sregs->interrupt_bitmap[i]);
|
|
}
|
|
}
|
|
|
|
void virt_pgd_alloc(struct kvm_vm *vm)
|
|
{
|
|
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
|
|
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
|
|
|
|
/* If needed, create page map l4 table. */
|
|
if (!vm->pgd_created) {
|
|
vm->pgd = vm_alloc_page_table(vm);
|
|
vm->pgd_created = true;
|
|
}
|
|
}
|
|
|
|
static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
|
|
int level)
|
|
{
|
|
uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
|
|
int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
|
|
|
|
return &page_table[index];
|
|
}
|
|
|
|
static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
|
|
uint64_t pt_pfn,
|
|
uint64_t vaddr,
|
|
uint64_t paddr,
|
|
int level,
|
|
enum x86_page_size page_size)
|
|
{
|
|
uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
|
|
|
|
if (!(*pte & PTE_PRESENT_MASK)) {
|
|
*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
|
|
if (level == page_size)
|
|
*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
|
|
else
|
|
*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
|
|
} else {
|
|
/*
|
|
* Entry already present. Assert that the caller doesn't want
|
|
* a hugepage at this level, and that there isn't a hugepage at
|
|
* this level.
|
|
*/
|
|
TEST_ASSERT(level != page_size,
|
|
"Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
|
|
page_size, vaddr);
|
|
TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
|
|
"Cannot create page table at level: %u, vaddr: 0x%lx\n",
|
|
level, vaddr);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
|
|
enum x86_page_size page_size)
|
|
{
|
|
const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
|
|
uint64_t *pml4e, *pdpe, *pde;
|
|
uint64_t *pte;
|
|
|
|
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
|
|
"Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
|
|
|
|
TEST_ASSERT((vaddr % pg_size) == 0,
|
|
"Virtual address not aligned,\n"
|
|
"vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
|
|
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
|
|
"Invalid virtual address, vaddr: 0x%lx", vaddr);
|
|
TEST_ASSERT((paddr % pg_size) == 0,
|
|
"Physical address not aligned,\n"
|
|
" paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
|
|
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
|
|
"Physical address beyond maximum supported,\n"
|
|
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
|
|
paddr, vm->max_gfn, vm->page_size);
|
|
|
|
/*
|
|
* Allocate upper level page tables, if not already present. Return
|
|
* early if a hugepage was created.
|
|
*/
|
|
pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
|
|
vaddr, paddr, 3, page_size);
|
|
if (*pml4e & PTE_LARGE_MASK)
|
|
return;
|
|
|
|
pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, 2, page_size);
|
|
if (*pdpe & PTE_LARGE_MASK)
|
|
return;
|
|
|
|
pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, 1, page_size);
|
|
if (*pde & PTE_LARGE_MASK)
|
|
return;
|
|
|
|
/* Fill in page table entry. */
|
|
pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, 0);
|
|
TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
|
|
"PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
|
|
*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
|
|
}
|
|
|
|
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
|
|
{
|
|
__virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
|
|
}
|
|
|
|
static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
|
|
uint64_t vaddr)
|
|
{
|
|
uint16_t index[4];
|
|
uint64_t *pml4e, *pdpe, *pde;
|
|
uint64_t *pte;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
struct kvm_sregs sregs;
|
|
int max_phy_addr;
|
|
/* Set the bottom 52 bits. */
|
|
uint64_t rsvd_mask = 0x000fffffffffffff;
|
|
|
|
entry = kvm_get_supported_cpuid_index(0x80000008, 0);
|
|
max_phy_addr = entry->eax & 0x000000ff;
|
|
/* Clear the bottom bits of the reserved mask. */
|
|
rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
|
|
|
|
/*
|
|
* SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
|
|
* with 4-Level Paging and 5-Level Paging".
|
|
* If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
|
|
* the XD flag (bit 63) is reserved.
|
|
*/
|
|
vcpu_sregs_get(vm, vcpuid, &sregs);
|
|
if ((sregs.efer & EFER_NX) == 0) {
|
|
rsvd_mask |= (1ull << 63);
|
|
}
|
|
|
|
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
|
|
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
|
|
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
|
|
(vaddr >> vm->page_shift)),
|
|
"Invalid virtual address, vaddr: 0x%lx",
|
|
vaddr);
|
|
/*
|
|
* Based on the mode check above there are 48 bits in the vaddr, so
|
|
* shift 16 to sign extend the last bit (bit-47),
|
|
*/
|
|
TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
|
|
"Canonical check failed. The virtual address is invalid.");
|
|
|
|
index[0] = (vaddr >> 12) & 0x1ffu;
|
|
index[1] = (vaddr >> 21) & 0x1ffu;
|
|
index[2] = (vaddr >> 30) & 0x1ffu;
|
|
index[3] = (vaddr >> 39) & 0x1ffu;
|
|
|
|
pml4e = addr_gpa2hva(vm, vm->pgd);
|
|
TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK,
|
|
"Expected pml4e to be present for gva: 0x%08lx", vaddr);
|
|
TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0,
|
|
"Unexpected reserved bits set.");
|
|
|
|
pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
|
|
TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK,
|
|
"Expected pdpe to be present for gva: 0x%08lx", vaddr);
|
|
TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK),
|
|
"Expected pdpe to map a pde not a 1-GByte page.");
|
|
TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0,
|
|
"Unexpected reserved bits set.");
|
|
|
|
pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
|
|
TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK,
|
|
"Expected pde to be present for gva: 0x%08lx", vaddr);
|
|
TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK),
|
|
"Expected pde to map a pte not a 2-MByte page.");
|
|
TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0,
|
|
"Unexpected reserved bits set.");
|
|
|
|
pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
|
|
TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK,
|
|
"Expected pte to be present for gva: 0x%08lx", vaddr);
|
|
|
|
return &pte[index[0]];
|
|
}
|
|
|
|
uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
|
|
{
|
|
uint64_t *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
|
|
|
|
return *(uint64_t *)pte;
|
|
}
|
|
|
|
void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
|
|
uint64_t pte)
|
|
{
|
|
uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
|
|
|
|
*(uint64_t *)new_pte = pte;
|
|
}
|
|
|
|
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
|
|
{
|
|
uint64_t *pml4e, *pml4e_start;
|
|
uint64_t *pdpe, *pdpe_start;
|
|
uint64_t *pde, *pde_start;
|
|
uint64_t *pte, *pte_start;
|
|
|
|
if (!vm->pgd_created)
|
|
return;
|
|
|
|
fprintf(stream, "%*s "
|
|
" no\n", indent, "");
|
|
fprintf(stream, "%*s index hvaddr gpaddr "
|
|
"addr w exec dirty\n",
|
|
indent, "");
|
|
pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
|
|
for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
|
|
pml4e = &pml4e_start[n1];
|
|
if (!(*pml4e & PTE_PRESENT_MASK))
|
|
continue;
|
|
fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
|
|
" %u\n",
|
|
indent, "",
|
|
pml4e - pml4e_start, pml4e,
|
|
addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
|
|
!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
|
|
|
|
pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
|
|
for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
|
|
pdpe = &pdpe_start[n2];
|
|
if (!(*pdpe & PTE_PRESENT_MASK))
|
|
continue;
|
|
fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
|
|
"%u %u\n",
|
|
indent, "",
|
|
pdpe - pdpe_start, pdpe,
|
|
addr_hva2gpa(vm, pdpe),
|
|
PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
|
|
!!(*pdpe & PTE_NX_MASK));
|
|
|
|
pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
|
|
for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
|
|
pde = &pde_start[n3];
|
|
if (!(*pde & PTE_PRESENT_MASK))
|
|
continue;
|
|
fprintf(stream, "%*spde 0x%-3zx %p "
|
|
"0x%-12lx 0x%-10llx %u %u\n",
|
|
indent, "", pde - pde_start, pde,
|
|
addr_hva2gpa(vm, pde),
|
|
PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
|
|
!!(*pde & PTE_NX_MASK));
|
|
|
|
pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
|
|
for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
|
|
pte = &pte_start[n4];
|
|
if (!(*pte & PTE_PRESENT_MASK))
|
|
continue;
|
|
fprintf(stream, "%*spte 0x%-3zx %p "
|
|
"0x%-12lx 0x%-10llx %u %u "
|
|
" %u 0x%-10lx\n",
|
|
indent, "",
|
|
pte - pte_start, pte,
|
|
addr_hva2gpa(vm, pte),
|
|
PTE_GET_PFN(*pte),
|
|
!!(*pte & PTE_WRITABLE_MASK),
|
|
!!(*pte & PTE_NX_MASK),
|
|
!!(*pte & PTE_DIRTY_MASK),
|
|
((uint64_t) n1 << 27)
|
|
| ((uint64_t) n2 << 18)
|
|
| ((uint64_t) n3 << 9)
|
|
| ((uint64_t) n4));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set Unusable Segment
|
|
*
|
|
* Input Args: None
|
|
*
|
|
* Output Args:
|
|
* segp - Pointer to segment register
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets the segment register pointed to by @segp to an unusable state.
|
|
*/
|
|
static void kvm_seg_set_unusable(struct kvm_segment *segp)
|
|
{
|
|
memset(segp, 0, sizeof(*segp));
|
|
segp->unusable = true;
|
|
}
|
|
|
|
static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
|
|
{
|
|
void *gdt = addr_gva2hva(vm, vm->gdt);
|
|
struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
|
|
|
|
desc->limit0 = segp->limit & 0xFFFF;
|
|
desc->base0 = segp->base & 0xFFFF;
|
|
desc->base1 = segp->base >> 16;
|
|
desc->type = segp->type;
|
|
desc->s = segp->s;
|
|
desc->dpl = segp->dpl;
|
|
desc->p = segp->present;
|
|
desc->limit1 = segp->limit >> 16;
|
|
desc->avl = segp->avl;
|
|
desc->l = segp->l;
|
|
desc->db = segp->db;
|
|
desc->g = segp->g;
|
|
desc->base2 = segp->base >> 24;
|
|
if (!segp->s)
|
|
desc->base3 = segp->base >> 32;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set Long Mode Flat Kernel Code Segment
|
|
*
|
|
* Input Args:
|
|
* vm - VM whose GDT is being filled, or NULL to only write segp
|
|
* selector - selector value
|
|
*
|
|
* Output Args:
|
|
* segp - Pointer to KVM segment
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets up the KVM segment pointed to by @segp, to be a code segment
|
|
* with the selector value given by @selector.
|
|
*/
|
|
static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
|
|
struct kvm_segment *segp)
|
|
{
|
|
memset(segp, 0, sizeof(*segp));
|
|
segp->selector = selector;
|
|
segp->limit = 0xFFFFFFFFu;
|
|
segp->s = 0x1; /* kTypeCodeData */
|
|
segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
|
|
* | kFlagCodeReadable
|
|
*/
|
|
segp->g = true;
|
|
segp->l = true;
|
|
segp->present = 1;
|
|
if (vm)
|
|
kvm_seg_fill_gdt_64bit(vm, segp);
|
|
}
|
|
|
|
/*
|
|
* Set Long Mode Flat Kernel Data Segment
|
|
*
|
|
* Input Args:
|
|
* vm - VM whose GDT is being filled, or NULL to only write segp
|
|
* selector - selector value
|
|
*
|
|
* Output Args:
|
|
* segp - Pointer to KVM segment
|
|
*
|
|
* Return: None
|
|
*
|
|
* Sets up the KVM segment pointed to by @segp, to be a data segment
|
|
* with the selector value given by @selector.
|
|
*/
|
|
static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
|
|
struct kvm_segment *segp)
|
|
{
|
|
memset(segp, 0, sizeof(*segp));
|
|
segp->selector = selector;
|
|
segp->limit = 0xFFFFFFFFu;
|
|
segp->s = 0x1; /* kTypeCodeData */
|
|
segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
|
|
* | kFlagDataWritable
|
|
*/
|
|
segp->g = true;
|
|
segp->present = true;
|
|
if (vm)
|
|
kvm_seg_fill_gdt_64bit(vm, segp);
|
|
}
|
|
|
|
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
|
|
{
|
|
uint16_t index[4];
|
|
uint64_t *pml4e, *pdpe, *pde;
|
|
uint64_t *pte;
|
|
|
|
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
|
|
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
|
|
|
|
index[0] = (gva >> 12) & 0x1ffu;
|
|
index[1] = (gva >> 21) & 0x1ffu;
|
|
index[2] = (gva >> 30) & 0x1ffu;
|
|
index[3] = (gva >> 39) & 0x1ffu;
|
|
|
|
if (!vm->pgd_created)
|
|
goto unmapped_gva;
|
|
pml4e = addr_gpa2hva(vm, vm->pgd);
|
|
if (!(pml4e[index[3]] & PTE_PRESENT_MASK))
|
|
goto unmapped_gva;
|
|
|
|
pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
|
|
if (!(pdpe[index[2]] & PTE_PRESENT_MASK))
|
|
goto unmapped_gva;
|
|
|
|
pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
|
|
if (!(pde[index[1]] & PTE_PRESENT_MASK))
|
|
goto unmapped_gva;
|
|
|
|
pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
|
|
if (!(pte[index[0]] & PTE_PRESENT_MASK))
|
|
goto unmapped_gva;
|
|
|
|
return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & 0xfffu);
|
|
|
|
unmapped_gva:
|
|
TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
|
|
{
|
|
if (!vm->gdt)
|
|
vm->gdt = vm_vaddr_alloc_page(vm);
|
|
|
|
dt->base = vm->gdt;
|
|
dt->limit = getpagesize();
|
|
}
|
|
|
|
static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
|
|
int selector)
|
|
{
|
|
if (!vm->tss)
|
|
vm->tss = vm_vaddr_alloc_page(vm);
|
|
|
|
memset(segp, 0, sizeof(*segp));
|
|
segp->base = vm->tss;
|
|
segp->limit = 0x67;
|
|
segp->selector = selector;
|
|
segp->type = 0xb;
|
|
segp->present = 1;
|
|
kvm_seg_fill_gdt_64bit(vm, segp);
|
|
}
|
|
|
|
static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
|
|
{
|
|
struct kvm_sregs sregs;
|
|
|
|
/* Set mode specific system register values. */
|
|
vcpu_sregs_get(vm, vcpuid, &sregs);
|
|
|
|
sregs.idt.limit = 0;
|
|
|
|
kvm_setup_gdt(vm, &sregs.gdt);
|
|
|
|
switch (vm->mode) {
|
|
case VM_MODE_PXXV48_4K:
|
|
sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
|
|
sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
|
|
sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
|
|
|
|
kvm_seg_set_unusable(&sregs.ldt);
|
|
kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
|
|
kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
|
|
kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
|
|
kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
|
|
break;
|
|
|
|
default:
|
|
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
|
|
}
|
|
|
|
sregs.cr3 = vm->pgd;
|
|
vcpu_sregs_set(vm, vcpuid, &sregs);
|
|
}
|
|
|
|
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
|
|
{
|
|
struct kvm_mp_state mp_state;
|
|
struct kvm_regs regs;
|
|
vm_vaddr_t stack_vaddr;
|
|
stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
|
|
DEFAULT_GUEST_STACK_VADDR_MIN);
|
|
|
|
/* Create VCPU */
|
|
vm_vcpu_add(vm, vcpuid);
|
|
vcpu_setup(vm, vcpuid);
|
|
|
|
/* Setup guest general purpose registers */
|
|
vcpu_regs_get(vm, vcpuid, ®s);
|
|
regs.rflags = regs.rflags | 0x2;
|
|
regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
|
|
regs.rip = (unsigned long) guest_code;
|
|
vcpu_regs_set(vm, vcpuid, ®s);
|
|
|
|
/* Setup the MP state */
|
|
mp_state.mp_state = 0;
|
|
vcpu_set_mp_state(vm, vcpuid, &mp_state);
|
|
|
|
/* Setup supported CPUIDs */
|
|
vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
|
|
}
|
|
|
|
/*
|
|
* Allocate an instance of struct kvm_cpuid2
|
|
*
|
|
* Input Args: None
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: A pointer to the allocated struct. The caller is responsible
|
|
* for freeing this struct.
|
|
*
|
|
* Since kvm_cpuid2 uses a 0-length array to allow a the size of the
|
|
* array to be decided at allocation time, allocation is slightly
|
|
* complicated. This function uses a reasonable default length for
|
|
* the array and performs the appropriate allocation.
|
|
*/
|
|
static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
int nent = 100;
|
|
size_t size;
|
|
|
|
size = sizeof(*cpuid);
|
|
size += nent * sizeof(struct kvm_cpuid_entry2);
|
|
cpuid = malloc(size);
|
|
if (!cpuid) {
|
|
perror("malloc");
|
|
abort();
|
|
}
|
|
|
|
cpuid->nent = nent;
|
|
|
|
return cpuid;
|
|
}
|
|
|
|
/*
|
|
* KVM Supported CPUID Get
|
|
*
|
|
* Input Args: None
|
|
*
|
|
* Output Args:
|
|
*
|
|
* Return: The supported KVM CPUID
|
|
*
|
|
* Get the guest CPUID supported by KVM.
|
|
*/
|
|
struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
|
|
{
|
|
static struct kvm_cpuid2 *cpuid;
|
|
int ret;
|
|
int kvm_fd;
|
|
|
|
if (cpuid)
|
|
return cpuid;
|
|
|
|
cpuid = allocate_kvm_cpuid2();
|
|
kvm_fd = open_kvm_dev_path_or_exit();
|
|
|
|
ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
|
|
ret, errno);
|
|
|
|
close(kvm_fd);
|
|
return cpuid;
|
|
}
|
|
|
|
/*
|
|
* KVM Get MSR
|
|
*
|
|
* Input Args:
|
|
* msr_index - Index of MSR
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
|
|
*
|
|
* Get value of MSR for VCPU.
|
|
*/
|
|
uint64_t kvm_get_feature_msr(uint64_t msr_index)
|
|
{
|
|
struct {
|
|
struct kvm_msrs header;
|
|
struct kvm_msr_entry entry;
|
|
} buffer = {};
|
|
int r, kvm_fd;
|
|
|
|
buffer.header.nmsrs = 1;
|
|
buffer.entry.index = msr_index;
|
|
kvm_fd = open_kvm_dev_path_or_exit();
|
|
|
|
r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
|
|
TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
|
|
" rc: %i errno: %i", r, errno);
|
|
|
|
close(kvm_fd);
|
|
return buffer.entry.data;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU CPUID Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU id
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: KVM CPUID (KVM_GET_CPUID2)
|
|
*
|
|
* Set the VCPU's CPUID.
|
|
*/
|
|
struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
struct kvm_cpuid2 *cpuid;
|
|
int max_ent;
|
|
int rc = -1;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
cpuid = allocate_kvm_cpuid2();
|
|
max_ent = cpuid->nent;
|
|
|
|
for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
|
|
rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
|
|
if (!rc)
|
|
break;
|
|
|
|
TEST_ASSERT(rc == -1 && errno == E2BIG,
|
|
"KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
|
|
rc, errno);
|
|
}
|
|
|
|
TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
|
|
rc, errno);
|
|
|
|
return cpuid;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Locate a cpuid entry.
|
|
*
|
|
* Input Args:
|
|
* function: The function of the cpuid entry to find.
|
|
* index: The index of the cpuid entry.
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: A pointer to the cpuid entry. Never returns NULL.
|
|
*/
|
|
struct kvm_cpuid_entry2 *
|
|
kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
|
|
{
|
|
struct kvm_cpuid2 *cpuid;
|
|
struct kvm_cpuid_entry2 *entry = NULL;
|
|
int i;
|
|
|
|
cpuid = kvm_get_supported_cpuid();
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
if (cpuid->entries[i].function == function &&
|
|
cpuid->entries[i].index == index) {
|
|
entry = &cpuid->entries[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
|
|
function, index);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* VM VCPU CPUID Set
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU id
|
|
* cpuid - The CPUID values to set.
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: void
|
|
*
|
|
* Set the VCPU's CPUID.
|
|
*/
|
|
void vcpu_set_cpuid(struct kvm_vm *vm,
|
|
uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int rc;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
|
|
rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
|
|
TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
|
|
rc, errno);
|
|
|
|
}
|
|
|
|
/*
|
|
* VCPU Get MSR
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* msr_index - Index of MSR
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
|
|
*
|
|
* Get value of MSR for VCPU.
|
|
*/
|
|
uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
struct {
|
|
struct kvm_msrs header;
|
|
struct kvm_msr_entry entry;
|
|
} buffer = {};
|
|
int r;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
buffer.header.nmsrs = 1;
|
|
buffer.entry.index = msr_index;
|
|
r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
|
|
TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
|
|
" rc: %i errno: %i", r, errno);
|
|
|
|
return buffer.entry.data;
|
|
}
|
|
|
|
/*
|
|
* _VCPU Set MSR
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* msr_index - Index of MSR
|
|
* msr_value - New value of MSR
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: The result of KVM_SET_MSRS.
|
|
*
|
|
* Sets the value of an MSR for the given VCPU.
|
|
*/
|
|
int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
|
|
uint64_t msr_value)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
struct {
|
|
struct kvm_msrs header;
|
|
struct kvm_msr_entry entry;
|
|
} buffer = {};
|
|
int r;
|
|
|
|
TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
|
|
memset(&buffer, 0, sizeof(buffer));
|
|
buffer.header.nmsrs = 1;
|
|
buffer.entry.index = msr_index;
|
|
buffer.entry.data = msr_value;
|
|
r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* VCPU Set MSR
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* vcpuid - VCPU ID
|
|
* msr_index - Index of MSR
|
|
* msr_value - New value of MSR
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: On success, nothing. On failure a TEST_ASSERT is produced.
|
|
*
|
|
* Set value of MSR for VCPU.
|
|
*/
|
|
void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
|
|
uint64_t msr_value)
|
|
{
|
|
int r;
|
|
|
|
r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
|
|
TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
|
|
" rc: %i errno: %i", r, errno);
|
|
}
|
|
|
|
void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
|
|
{
|
|
va_list ap;
|
|
struct kvm_regs regs;
|
|
|
|
TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
|
|
" num: %u\n",
|
|
num);
|
|
|
|
va_start(ap, num);
|
|
vcpu_regs_get(vm, vcpuid, ®s);
|
|
|
|
if (num >= 1)
|
|
regs.rdi = va_arg(ap, uint64_t);
|
|
|
|
if (num >= 2)
|
|
regs.rsi = va_arg(ap, uint64_t);
|
|
|
|
if (num >= 3)
|
|
regs.rdx = va_arg(ap, uint64_t);
|
|
|
|
if (num >= 4)
|
|
regs.rcx = va_arg(ap, uint64_t);
|
|
|
|
if (num >= 5)
|
|
regs.r8 = va_arg(ap, uint64_t);
|
|
|
|
if (num >= 6)
|
|
regs.r9 = va_arg(ap, uint64_t);
|
|
|
|
vcpu_regs_set(vm, vcpuid, ®s);
|
|
va_end(ap);
|
|
}
|
|
|
|
void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
|
|
{
|
|
struct kvm_regs regs;
|
|
struct kvm_sregs sregs;
|
|
|
|
fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
|
|
|
|
fprintf(stream, "%*sregs:\n", indent + 2, "");
|
|
vcpu_regs_get(vm, vcpuid, ®s);
|
|
regs_dump(stream, ®s, indent + 4);
|
|
|
|
fprintf(stream, "%*ssregs:\n", indent + 2, "");
|
|
vcpu_sregs_get(vm, vcpuid, &sregs);
|
|
sregs_dump(stream, &sregs, indent + 4);
|
|
}
|
|
|
|
struct kvm_x86_state {
|
|
struct kvm_vcpu_events events;
|
|
struct kvm_mp_state mp_state;
|
|
struct kvm_regs regs;
|
|
struct kvm_xsave xsave;
|
|
struct kvm_xcrs xcrs;
|
|
struct kvm_sregs sregs;
|
|
struct kvm_debugregs debugregs;
|
|
union {
|
|
struct kvm_nested_state nested;
|
|
char nested_[16384];
|
|
};
|
|
struct kvm_msrs msrs;
|
|
};
|
|
|
|
static int kvm_get_num_msrs_fd(int kvm_fd)
|
|
{
|
|
struct kvm_msr_list nmsrs;
|
|
int r;
|
|
|
|
nmsrs.nmsrs = 0;
|
|
r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
|
|
TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
|
|
r);
|
|
|
|
return nmsrs.nmsrs;
|
|
}
|
|
|
|
static int kvm_get_num_msrs(struct kvm_vm *vm)
|
|
{
|
|
return kvm_get_num_msrs_fd(vm->kvm_fd);
|
|
}
|
|
|
|
struct kvm_msr_list *kvm_get_msr_index_list(void)
|
|
{
|
|
struct kvm_msr_list *list;
|
|
int nmsrs, r, kvm_fd;
|
|
|
|
kvm_fd = open_kvm_dev_path_or_exit();
|
|
|
|
nmsrs = kvm_get_num_msrs_fd(kvm_fd);
|
|
list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
|
|
list->nmsrs = nmsrs;
|
|
r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
|
|
close(kvm_fd);
|
|
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
|
|
r);
|
|
|
|
return list;
|
|
}
|
|
|
|
struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
struct kvm_msr_list *list;
|
|
struct kvm_x86_state *state;
|
|
int nmsrs, r, i;
|
|
static int nested_size = -1;
|
|
|
|
if (nested_size == -1) {
|
|
nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
|
|
TEST_ASSERT(nested_size <= sizeof(state->nested_),
|
|
"Nested state size too big, %i > %zi",
|
|
nested_size, sizeof(state->nested_));
|
|
}
|
|
|
|
/*
|
|
* When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
|
|
* guest state is consistent only after userspace re-enters the
|
|
* kernel with KVM_RUN. Complete IO prior to migrating state
|
|
* to a new VM.
|
|
*/
|
|
vcpu_run_complete_io(vm, vcpuid);
|
|
|
|
nmsrs = kvm_get_num_msrs(vm);
|
|
list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
|
|
list->nmsrs = nmsrs;
|
|
r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
|
|
r);
|
|
|
|
state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
|
|
r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
|
|
r);
|
|
|
|
if (kvm_check_cap(KVM_CAP_XCRS)) {
|
|
r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
|
|
r);
|
|
}
|
|
|
|
r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
|
|
r);
|
|
|
|
if (nested_size) {
|
|
state->nested.size = sizeof(state->nested_);
|
|
r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
|
|
r);
|
|
TEST_ASSERT(state->nested.size <= nested_size,
|
|
"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
|
|
state->nested.size, nested_size);
|
|
} else
|
|
state->nested.size = 0;
|
|
|
|
state->msrs.nmsrs = nmsrs;
|
|
for (i = 0; i < nmsrs; i++)
|
|
state->msrs.entries[i].index = list->indices[i];
|
|
r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
|
|
TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
|
|
r, r == nmsrs ? -1 : list->indices[r]);
|
|
|
|
r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
|
|
r);
|
|
|
|
free(list);
|
|
return state;
|
|
}
|
|
|
|
void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
|
|
{
|
|
struct vcpu *vcpu = vcpu_find(vm, vcpuid);
|
|
int r;
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
|
|
r);
|
|
|
|
if (kvm_check_cap(KVM_CAP_XCRS)) {
|
|
r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
|
|
r);
|
|
}
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
|
|
TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
|
|
r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
|
|
r);
|
|
|
|
r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
|
|
r);
|
|
|
|
if (state->nested.size) {
|
|
r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
|
|
TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
|
|
r);
|
|
}
|
|
}
|
|
|
|
bool is_intel_cpu(void)
|
|
{
|
|
int eax, ebx, ecx, edx;
|
|
const uint32_t *chunk;
|
|
const int leaf = 0;
|
|
|
|
__asm__ __volatile__(
|
|
"cpuid"
|
|
: /* output */ "=a"(eax), "=b"(ebx),
|
|
"=c"(ecx), "=d"(edx)
|
|
: /* input */ "0"(leaf), "2"(0));
|
|
|
|
chunk = (const uint32_t *)("GenuineIntel");
|
|
return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
|
|
}
|
|
|
|
uint32_t kvm_get_cpuid_max_basic(void)
|
|
{
|
|
return kvm_get_supported_cpuid_entry(0)->eax;
|
|
}
|
|
|
|
uint32_t kvm_get_cpuid_max_extended(void)
|
|
{
|
|
return kvm_get_supported_cpuid_entry(0x80000000)->eax;
|
|
}
|
|
|
|
void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
bool pae;
|
|
|
|
/* SDM 4.1.4 */
|
|
if (kvm_get_cpuid_max_extended() < 0x80000008) {
|
|
pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
|
|
*pa_bits = pae ? 36 : 32;
|
|
*va_bits = 32;
|
|
} else {
|
|
entry = kvm_get_supported_cpuid_entry(0x80000008);
|
|
*pa_bits = entry->eax & 0xff;
|
|
*va_bits = (entry->eax >> 8) & 0xff;
|
|
}
|
|
}
|
|
|
|
struct idt_entry {
|
|
uint16_t offset0;
|
|
uint16_t selector;
|
|
uint16_t ist : 3;
|
|
uint16_t : 5;
|
|
uint16_t type : 4;
|
|
uint16_t : 1;
|
|
uint16_t dpl : 2;
|
|
uint16_t p : 1;
|
|
uint16_t offset1;
|
|
uint32_t offset2; uint32_t reserved;
|
|
};
|
|
|
|
static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
|
|
int dpl, unsigned short selector)
|
|
{
|
|
struct idt_entry *base =
|
|
(struct idt_entry *)addr_gva2hva(vm, vm->idt);
|
|
struct idt_entry *e = &base[vector];
|
|
|
|
memset(e, 0, sizeof(*e));
|
|
e->offset0 = addr;
|
|
e->selector = selector;
|
|
e->ist = 0;
|
|
e->type = 14;
|
|
e->dpl = dpl;
|
|
e->p = 1;
|
|
e->offset1 = addr >> 16;
|
|
e->offset2 = addr >> 32;
|
|
}
|
|
|
|
void kvm_exit_unexpected_vector(uint32_t value)
|
|
{
|
|
ucall(UCALL_UNHANDLED, 1, value);
|
|
}
|
|
|
|
void route_exception(struct ex_regs *regs)
|
|
{
|
|
typedef void(*handler)(struct ex_regs *);
|
|
handler *handlers = (handler *)exception_handlers;
|
|
|
|
if (handlers && handlers[regs->vector]) {
|
|
handlers[regs->vector](regs);
|
|
return;
|
|
}
|
|
|
|
kvm_exit_unexpected_vector(regs->vector);
|
|
}
|
|
|
|
void vm_init_descriptor_tables(struct kvm_vm *vm)
|
|
{
|
|
extern void *idt_handlers;
|
|
int i;
|
|
|
|
vm->idt = vm_vaddr_alloc_page(vm);
|
|
vm->handlers = vm_vaddr_alloc_page(vm);
|
|
/* Handlers have the same address in both address spaces.*/
|
|
for (i = 0; i < NUM_INTERRUPTS; i++)
|
|
set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
|
|
DEFAULT_CODE_SELECTOR);
|
|
}
|
|
|
|
void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct kvm_sregs sregs;
|
|
|
|
vcpu_sregs_get(vm, vcpuid, &sregs);
|
|
sregs.idt.base = vm->idt;
|
|
sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
|
|
sregs.gdt.base = vm->gdt;
|
|
sregs.gdt.limit = getpagesize() - 1;
|
|
kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
|
|
vcpu_sregs_set(vm, vcpuid, &sregs);
|
|
*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
|
|
}
|
|
|
|
void vm_install_exception_handler(struct kvm_vm *vm, int vector,
|
|
void (*handler)(struct ex_regs *))
|
|
{
|
|
vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
|
|
|
|
handlers[vector] = (vm_vaddr_t)handler;
|
|
}
|
|
|
|
void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
struct ucall uc;
|
|
|
|
if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
|
|
uint64_t vector = uc.args[0];
|
|
|
|
TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
|
|
vector);
|
|
}
|
|
}
|
|
|
|
bool set_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 *ent)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
|
|
|
|
if (cur->function != ent->function || cur->index != ent->index)
|
|
continue;
|
|
|
|
memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
|
|
uint64_t a3)
|
|
{
|
|
uint64_t r;
|
|
|
|
asm volatile("vmcall"
|
|
: "=a"(r)
|
|
: "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
|
|
return r;
|
|
}
|
|
|
|
struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
|
|
{
|
|
static struct kvm_cpuid2 *cpuid;
|
|
int ret;
|
|
int kvm_fd;
|
|
|
|
if (cpuid)
|
|
return cpuid;
|
|
|
|
cpuid = allocate_kvm_cpuid2();
|
|
kvm_fd = open_kvm_dev_path_or_exit();
|
|
|
|
ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
|
|
TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
|
|
ret, errno);
|
|
|
|
close(kvm_fd);
|
|
return cpuid;
|
|
}
|
|
|
|
void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
static struct kvm_cpuid2 *cpuid_full;
|
|
struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
|
|
int i, nent = 0;
|
|
|
|
if (!cpuid_full) {
|
|
cpuid_sys = kvm_get_supported_cpuid();
|
|
cpuid_hv = kvm_get_supported_hv_cpuid();
|
|
|
|
cpuid_full = malloc(sizeof(*cpuid_full) +
|
|
(cpuid_sys->nent + cpuid_hv->nent) *
|
|
sizeof(struct kvm_cpuid_entry2));
|
|
if (!cpuid_full) {
|
|
perror("malloc");
|
|
abort();
|
|
}
|
|
|
|
/* Need to skip KVM CPUID leaves 0x400000xx */
|
|
for (i = 0; i < cpuid_sys->nent; i++) {
|
|
if (cpuid_sys->entries[i].function >= 0x40000000 &&
|
|
cpuid_sys->entries[i].function < 0x40000100)
|
|
continue;
|
|
cpuid_full->entries[nent] = cpuid_sys->entries[i];
|
|
nent++;
|
|
}
|
|
|
|
memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
|
|
cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
|
|
cpuid_full->nent = nent + cpuid_hv->nent;
|
|
}
|
|
|
|
vcpu_set_cpuid(vm, vcpuid, cpuid_full);
|
|
}
|
|
|
|
struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
|
|
{
|
|
static struct kvm_cpuid2 *cpuid;
|
|
|
|
cpuid = allocate_kvm_cpuid2();
|
|
|
|
vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
|
|
|
|
return cpuid;
|
|
}
|
|
|
|
#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541
|
|
#define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163
|
|
#define X86EMUL_CPUID_VENDOR_AuthenticAMD_edx 0x69746e65
|
|
|
|
static inline unsigned x86_family(unsigned int eax)
|
|
{
|
|
unsigned int x86;
|
|
|
|
x86 = (eax >> 8) & 0xf;
|
|
|
|
if (x86 == 0xf)
|
|
x86 += (eax >> 20) & 0xff;
|
|
|
|
return x86;
|
|
}
|
|
|
|
unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
|
|
{
|
|
const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
|
|
unsigned long ht_gfn, max_gfn, max_pfn;
|
|
uint32_t eax, ebx, ecx, edx, max_ext_leaf;
|
|
|
|
max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
|
|
|
|
/* Avoid reserved HyperTransport region on AMD processors. */
|
|
eax = ecx = 0;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (ebx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx ||
|
|
ecx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx ||
|
|
edx != X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
|
|
return max_gfn;
|
|
|
|
/* On parts with <40 physical address bits, the area is fully hidden */
|
|
if (vm->pa_bits < 40)
|
|
return max_gfn;
|
|
|
|
/* Before family 17h, the HyperTransport area is just below 1T. */
|
|
ht_gfn = (1 << 28) - num_ht_pages;
|
|
eax = 1;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (x86_family(eax) < 0x17)
|
|
goto done;
|
|
|
|
/*
|
|
* Otherwise it's at the top of the physical address space, possibly
|
|
* reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
|
|
* the old conservative value if MAXPHYADDR is not enumerated.
|
|
*/
|
|
eax = 0x80000000;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
max_ext_leaf = eax;
|
|
if (max_ext_leaf < 0x80000008)
|
|
goto done;
|
|
|
|
eax = 0x80000008;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
|
|
if (max_ext_leaf >= 0x8000001f) {
|
|
eax = 0x8000001f;
|
|
cpuid(&eax, &ebx, &ecx, &edx);
|
|
max_pfn >>= (ebx >> 6) & 0x3f;
|
|
}
|
|
|
|
ht_gfn = max_pfn - num_ht_pages;
|
|
done:
|
|
return min(max_gfn, ht_gfn - 1);
|
|
}
|